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A Different Solution Method for the Confluent Hypergeometric
Equation

Okkes OZTURK'

ABSTRACT: Fractional calculus theory includes definition of the derivatives and integrals of arbitrary order. This
theory is used to solve some classes of singular differential equations and fractional order differential equations.
One of these equations is the confluent hypergeometric equation. In this paper, we intend to solve this equation by
applying V# method as a different solution method.
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Konfluent Hipergeometrik Denklemi I¢in Farkl Bir Coziim
Metodu

OZET: Kesirli hesap teorisi, keyfi mertebeden tiirev ve integral tanimini kapsamaktadir. Diferansiyel denklemlerin
ve kesirli diferansiyel denklemlerin bazi siniflarint ¢6zmek igin bu teori kullanilmaktadir. Bu denklemlerden birisi
konfluent hipergeometrik denklemidir. Bu makalede, farkli bir ¢6ziim metodu olarak N# metodunun uygulanmasiyla
bu denklemi ¢dzmeyi hedeflemekteyiz.
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INTRODUCTION

The fractional calculus theory enables a set of
axioms and methods to generalize the coordinate and
corresponding derivative notions from integer k to

arbitrary order u, {xk d%/0x¥} - {x* 0" /0xH}
in a good light. Fractional differential equations are
applied in a widespread manner in robot technology, PID

control systems, Schrédinger equation, KdV equations,
heat transfer, relativity theory, economy, filtration,
controller design, mechanics, optics, modelling and so
on (Akgiil, 2014; Akgiil et al., 2015).

Riemann-Liouville fractional differentiation and
fractional integration that are two most important
definitions of fractional calculus are, respectively,

DLF(D) =ﬁdtkff(r)(t—r)" “igr (k-1<p<k), n
and,
DI = - )ffm(t—rw tdr (> au>0), @

where k €N and I is Euler’s function gamma
(Oldham and Spanier, 1974; Miller and Ross, 1993;
Podlubny, 1999; Yilmazer and Ozturk, 2013).

MATERIAL AND METHOD

Definition 2.1. If the function f(2) is analytic
(regular) inside and on C , where C ={C~,C*}, C~

d
£ = @), = “) f (f (dr

Z)u+1

fox(2) = Hlir?kf#(z) (k ez,

216

is a contour along the cut joining the points z and
—o0 + ilm(z), which starts from the point at —o0,
encircles the point Z once counter-clockwise, and
returns to the pointat —0, and € " is a contour along
the cut joining the points z and ® + ilm(2), which
starts from the point at oo, encircles the point Z once

counter-clockwise, and returns to the point at oo,

(ugzZ),

3)
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where T # z,

—nw<arg(t—z)<m for CT,
4)

0<arg(t—z) <2m for C*.

In that case, f, M(Z) (u>0) is the fractional derivative of f (2) of order 4 and f, ﬂ(z) (u< 0) is the

fractional integral of f(z) of order —i, confirmed (in each case) that

[f (D] < (ueER). 5)
(Yilmazer and Ozturk, 2013).

Lemma 2.1. (Linearity) When fractional order derivatives f, p and Yy exist, then

D [af@D], =calf@D],

(6)
(i) [, f(2) + c,9(D], = ¢, [f (D], + c,[9(D],
where f (2), g(Z) are analytic and single-valued functions, ¢; and €z are constants and, 4 € R, z € C.
Lemma 2.2. (Index law) If fractional order derivatives () p and (f “)v exist, then
F@D)}, = f @l = {[f D]}, (7
rv+u+1) s
where f(2) is an analytic and single-valued function, V and 4 € R, z € C ,and [fr0)rgrn) < @
Property 2.1. Let A be a constant. So,
(e’lz)v =1e¥” (1#0,veR,z€C). (8)
Property 2.2. Let A be a constant. So,
(e_’lz)v =e ™e ¥ (A% 0,vER,zE Q). 9)
Property 2.3. Let 4 be a constant. So,
. rlv—2) rv—-24)
A — A-inv A-v
z") =e"mzAV ——= |vERzZEC |- <o) (10)
(=9, L2 < [
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Property 2.4.
['(z+1)=2zI'(z+1) =2z, (11)
and,
N kF(v)I‘(l—v)
rv—k) =(-1) Tkr1-w (12)

where k € Z{ and v € R.

Lemma 2.3. (N* method) If fractional order derivatives f, n and gy exist, then generalized Leibniz rule

1S

B RN M(p+1)
Ne(f g) =(f.9), = LiT(u+ 1= T (k+1)

fuck G (13)

where f(2) and 9(2) are single-valued and analytic functions, 4 € R, z€C and

I'(u+1)
I(u—k+1Dr(k+1)

RESULTS AND DISCUSSION

The hypergeometric equation

d?*y(z)
dz?

dy(z)

z(1-2) +[c—(a+b+ 1)2]7— aby(z) =0, (14)

has three regular singular points at z = 0,1  singularities can be merged at b and infinity, where

and o (a,b and c are parameters). The z=x/b and b — 0. Thus, confluent equation is
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2

dy

X 2+(c—x)——ay—0

(15)

solutions of which are the confluent hypergeometric
M(a,c;x).

essential singularity at infinity. Jn () (Bessel

functions, which are defined as

functions) and L,(x) (Laguerre polynomials),

The confluent hypergeometric equation has

can be formed in terms of the solutions of the

a regular singular point at x =0 and an confluent hypergeometric equation as
—ix AT 1 .
Jn (x )— (5) M<n+z,2n+ 1;21x),

L,(x) =M(—n,1;x).

Linearly independent solutions of “Eq. 15.” are defined as

ala+1)(a+ 2)x3

ax ala+1)x? N
cc+1)(c+2) 3! ’

y,(x) = M(a,c; x)_1+c1' cc+1) 2!

(c#0,-1,-2,..),
and,

y,(x)=x"M(a+1-c,2-c;x) (c#234,..),

Integral representation of the confluent hypergeometric functions ;F, (@, b; x) can be defined as

I'(c)

Fore—a ) &A=
0

M(a,c;x) = ) *dt (a,ceR,c>a>0).

(Bayin, 2006).

Remark 3.1. The familiar Bessel differential equation of general order 12

dz—f+zdf (z2

—1>)f=0,
dz? dz )f

which is named after F. Wilheim Bessel. More
precisely, just as in the earlier works (Lin et al., 2005;
Wang et al., 2006), we aim here at demonstrating how
the underlying simple fractional-calculus approach

to the solutions of the classical differential equation,

Cilt/ Volume: 7, Say1/ Issue: 2,2017

which were considered in the earlier works (Lin et al.,
2005; Wang et al., 2006; Akgiil et al., 2013), would
lead us analogously to several interesting consequences
including (for example) an alternative investigation of

solutions of the confluent hypergeometric equation.
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Theorem 3.1. Let Y € {y: 0+ | yﬂ| < oo, € ]R}. “Eq. 15.”” can be written as

xy, + (c=x)y; —ay =0 (x#0). (16)

And “Eq. 16.” has particular solutions as follows

y(I) — A[xa—cex]a_l’ 17

y(II) — Bx—(c+1) [x1+aex]_(2+c_a)‘ (18)

where y, = d*y/dx* (k=0,12,..),y, =y =vy(x),A,B are constants.

Proof. (I) At first, by applying N* 'method to the both sides of “Eq. 16.”, we obtain

XYpiy T+ c—x)y,, — (u+ a)y, =0. (19)
If we suppose that
u+a=0, (20)
then, we have
U= —a. 1)

By substituting “Eq. 21.” into “Eq. 19.”, we obtain

Vi Hlc—a)x™t—1]y,_, = 0. (22)

Let

Vicg= U= u(x) [y(x) = ua—l]' (23)
So, we have differential equation as
U+ [(c—a)x'—1Ju=0. (24)
Solution of the “Eq. 24.” is

u = Ax? ce~, (25)
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and we obtain a fractional solution of the “Eq. 16.” as

y(I) — A[xa_cex]a_l. (26)
(IT) We suppose that
y=xth (x#0), (27)
where h = h(x). Then,
y, =tx"th + xthy, (28)
and,
y, =t(t—Dx""2h + 2tx""th, + x*h,. (29)

By substituting “Eq. 27.”, “Eq. 28.”” and “Eq. 29.” into “Eq. 16.”, we have

xh, + 2t +c—x)h, + [t(t+c+ Dx = (t+a)]h = 0. (30)
We suppose that
t(t+c+1)=0. (31)
So,
t=0 or t=—-(c+1). (32)

(IT-i) We have “Eq. 16.” from “Eq. 30.””, where t =0 .

(II-ii) We write equation as

xh, —(c+2+x)h,; +(c+1—-a)h=0. (33)

where ¢ = —(c + 1). Now, by applying N method to the both sides of “Eq. 33.”, we obtain

Xhypy +u—(c+2+2)]hyy + (—p+c+1—-a)h, =0. (34)
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If we choose that
—-u+c+1—-a=0, (35)
then, we find
u=c+1-—a. (36)
By substituting “Eq. 36.” into “Eq. 34.””, we have
(hyyeeg)1— A+ )x t+1]h,, ., =0. (37)
Let

Rypre—a =w= w(x), [h(x) = W—(2+c—a)]' (38)

Then, we have another differential equation as

w, — [(1+ a)x '+ 1]lw = 0. (39)
The solution of “Eq. 39" is
w = Bx!*t%e*, (40)
and,
h = B(x"*e") (5, @n

and finally, we find another fractional solution of the “Eq. 16.” as
y(II) — Bx—(c+D (x1+aex)_(2+c_a). (42)
Example 3.1. Let a =2 and ¢ = 1 for “Eq. 16.”. So, we have equation as
xy, +(1=x)y, —2y=0 (x=0). (43)
Therefore, we can write solutions of the “Eq. 43.” as follows

y(l) = A(Xex)l,
yID = Bx~2(x3e¥)_,.

So, we obtain solutions by calculating as

d(xe*)

D= A(xe*), = 4
y (xe*), P

=Ae*(x + 1),

and,
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yI = Bx~2(x%e*)_, = Bx 2 f x3e” dx,
=Bx?[e*(x®—3x%+ 6x—6)].

_ 1
Theorem 3.2. Let [(x*7¢),| < oo (k€ ZT U{0}), x # 0, and |;| < 1. The solution of “Eq. 26.”
be written as follows

o — a—c x _ _ 1
y Ax“e* JF, [1—a,c a,x.

(44)
Proof. By means of “Eq. 13.”, we have
'@
M = AZ X9, (e* . 45
LiT(a— TGk + 1 * e )
By using “Eq. 8.”, “Eq. 10.”, “Eq. 11.” and “Eq. 12.”, we can rewrite the “Eq. 45.” as follows
y(l)zA Fk+1-a) 1( 1)kackl“(k+c—a)ex’
( DT(1— a) k! I['(c—a)
S 1 /1\¢
S 0
x% ‘e [1—a],[c a]kk' ”
k=0
= Ax?*Ce* [1 a,c—a; ] (46)

1
Theorem 3.3. Let |(x1+a)k| <o (kezZ*u{0}), x #0, , and |;| < 1. The solution of “Eq. 42.”
can be written as follows

yID = Bxa=ce* F |2 —a+c,—1 —a'l] (47)
240 ’ ’x '

Proof. By means of “Eq. 13.”, we have
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'(la—c—1)

y = py=(c+D

k=0

lla—c—1-k)k!

By using “Eq. 8.”, “Eq. 10.”, “Eq. 11.” and “Eq. 12.”, we rewrite the “Eq. 48.” as follows

'(k+2—a+c) 1

(D — py—(c+D) Z
Y L EDTe-at oK

=Bx% Ce* Z[Z —a+cl,[-1—a]

k=0

1
=Bx%*‘e* ,F, [2 —a+c,—1-—aq; ;]

CONCLUSION

In this paper, we used N method for the
confluent hypergeometric equation. We also obtained
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