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Abstract 

In this study, we investigate complete (k,2)-arcs and (k,3)-arcs derived from a Ceva configuration in the projective plane of order 
five by implementing an algorithm in C#. Our results indicate the existence of a complete (6,2)-arc that has no points in common 

with the (7,3)-arc formed by the Ceva configuration. Furthermore, we identify eight different complete (10,3)-arcs that include a 
Ceva configuration. Additionally, we explore cyclic order Ceva configurations, denoted as 𝐶1 , 𝐶2, 𝐶3 ,  and 𝐶4 , all of which have a 

common center. The vertices of each configuration 𝐶𝑖  are on the sides of the preceding configuration 𝐶𝑖−1, with i ranging from 2 

to 4. We determine different thirty-two complete (10,3)-arcs and different two complete (6,2)-arcs by constructing cyclic order 
Ceva configurations 𝐶1 , 𝐶2, 𝐶3 , 𝐶4 with a common center in PG(2,5). 
 

© 2023 DPU All rights reserved. 
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1. Introduction 

In projective geometry, arcs are very important and have many uses in combinatorics and related domains. A k-arc 

is defined as a set K of k points (where k ≥ 3) that are not all located on the same line in a finite projective plane π 

(which need not be Desarguesian). A (𝑝 + 2) −arc is referred to as a hyperoval. The highest value of k can be achieved 

only when p is even, while k ≥ 𝑝 + 2  if the plane π has an order of p. Ovals are commonly referred to in the literature, 

with Hirschfeld being a notable source [1]. Research on arcs in projective planes is extensive, particularly regarding 

full (k,2)-arcs that create complete quadrangles, leading to Fano planes in the projective plane, as analyzed in [2, 3]. 

The identification and classification of Fano subplanes in a projective plane of order nine, related to parts of a left 

nearfield of order nine, are described in [4].  

Fano configurations in 5-dimensional projective spaces over GF(2) are discovered in [5]. In the projective planes 

of order nine and twenty-five, the simplest Cartesian Group techniques for classifying (k,3)-arcs are outlined in 
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references [6, 7]. The research by Altıntaş investigates (k,2)-arcs in the projective plane of order five, coordinated by 

elements from GF(5), using an arc-finding algorithm developed in C# [8]. Complete (k,n)−arcs, n=2,3,4 related to 

Desargues configuration are determined in [9].  

One of the conclusions that eluded Euclid is Ceva's Theorem, which will be stated and examined from now on. It 

appears nowhere in his thirteen volumes of the Elements.  Giovanny Ceva established the theory that bears his name 

circa 1678. The outcome was published in his work De Lineis Rectis, also known as The Straight Line. In addition, 

he addressed various additional geometric results and rediscovered Menelaus' Theorem. According to the Ceva 

Theorem, if we draw segments from a triangle's vertices to the interior points of its opposite sides, the segments will 

only be concurrent that is, share a common point if and only if the ratios taken cyclically that the cevians on the 

opposite sides determine multiply out to 1 [10].   

In the recent Benyi-Curgus generalization of the theorems of Ceva and Menelaus [11], both the collinearity of 

points and the concurrence of straightlines specified by six points on the edges of a triangle are characterized. Both 

Menelaus's and Ceva's theorems have intriguing applications in projective and Euclidean geometries. 

Theorems of Ceva and Menelaus are well-known conclusions. However, these theorems characterize a projective 

property through an affine property: concurrency in Ceva's theorem and collinearity in Menelaus' theorem. Benitez 

aims to get over this, therefore. In particular, the cross ratio a projective quantity is used in the study to characterize 

the concurrence of the cevians [12]. One can express Menelaus' theorem in a projective form by using the dual of this 

latter characterization. Nicolae discusses the Ceva-Menelaus transformation of a line into four curves. This proved to 

be a parabola, a hyperbola, or a bean ellipse. The triangle's three straight lines are tangent to each of the conics. 

Furthermore, in the study the harmonic transform for a ceviana has no envelope since it is a beam of straight lines 

flowing through a point is discovered [13]. 

Menelaus and Ceva theorems in projective planes 𝑃2(F), where F is the field of characteristic not equal to two, 

were given by Kelly B. Funk [14]. Menelaus and Ceva 6-figures were first introduced in Moufang projective planes 

by Kaya and Çiftçi in [15]. Menelaus and Ceva’s 6-figures in fibered geometry were examined in [16] with multiple 

degrees of membership of the points and lines of the basic geometry. Intuitionistic fuzzy projective Menelaus and 

Ceva's conditions in the intuitionistic fuzzy projective plane with base plane that is projective plane are given by Akça 

et al. [17].  

The primary goal of this work is to examine (k,3)-arcs in PG(2,5) that are associated with the Ceva configuration. 

In Section 2, we present specific terms that are important for our research. The projective plane of order five over 

GF(5) is constructed in Section 3 together with its lines, points, and incidence relation. A Ceva configuration is then 

determined in this projective plane. In Section 4, we introduce our algorithm and method to find all the results that 

related to (k,n)− arcs derived by a Ceva configuration in PG(2,5).  It is demonstrated that eight distinct complete 

(10,3)-arcs exist, each containing a Ceva configuration and a complete (6,2)-arc formed by the remaining points, 

utilizing the algorithm implemented in C#. Also, cylic order Ceva configurations 𝐶1, 𝐶2, 𝐶3, 𝐶4 derived from the Ceva 

configuration 𝐶1 are defined in PG(2,5). We give the examples related to the complete (10,3)-arcs and complete (6,2)- 

arcs derived by the cyclic order Ceva configurations 𝐶1, 𝐶2, 𝐶3, 𝐶4 with the common center. In the last section, we give 

our results. 

2. Preliminaries 

This section offers a review of important definitions and theorems concerning projective planes, along with an 

outline of certain properties of arcs in these planes.  
 

Definition 1. A projective plane (N, D, ∘) consists of a set N of points, and a set D of subsets of N, called lines, such 

that every pair of points is contained in exactly one line, every two different lines intersect in exactly one point, and 

there exist four points, no three of which are collinear.  
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Definition 2.  The vector space V(n+1,q) is (n+1)-dimensional and consists of vectors with coordinates from the finite 

field GF(q). The projective space PG(n,q) is defined as the collection of points, each corresponding to a line that 

passes through the origin in V(n+1,q). Specifically, this means that each point in PG(n,q) can be represented as P(x), 

where x is any non-zero vector in V(n+1,q). If K is the finite field GF(q), also denoted as 𝐹𝑞, then the n-dimensional 

projective plane is referred to as PG(n,K) or PG(n,q). In this context, q represents the order of PG(n,q). The number 

of points in this projective plane can be determined using the formula 

θ(n) =
𝑞𝑛+1−1

𝑞−1
. 

 

(𝑥1, 𝑥2, . . . ,  𝑥𝑛)  represents a point in N, where 𝑥1, 𝑥2, . . . , 𝑥𝑛  are not all zero, and (𝜆𝑥1, 𝜆𝑥2, . . . ,  𝜆𝑥𝑛) ≡
(𝑥1, 𝑥2, . . . ,  𝑥𝑛), 𝜆 ∈  𝐾\{0}. Similarly, the notation [a_1,a_2,...,a_n ]  denotes any line in D, where 𝑎1, 𝑎2, . . ., 𝑎𝑛  are 

not all zero. The relationship [𝜇𝑎1, . . . , 𝜇𝑎𝑛] ≡ [𝑎1, . . . , 𝑎𝑛]  holds for 𝜇 ∈  𝐾\{0} . The projective plane 𝑃2𝐾  is 

characterized as a point-line geometry (N, D, ∘) defined by K. The incidence relation is given by ∘: (𝑥1, . . . , 𝑥𝑛) ∘
[𝑎1, . . . , 𝑎𝑛] if and only if 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3+. . . + 𝑎𝑛𝑥𝑛 = 0. 

Let p denote a prime number and r a positive integer. The projective plane of order 𝑞 = 𝑝𝑟over the finite field 𝐾 =
𝐺𝐹(𝑝𝑟),  where 𝑝𝑟 represents the number of elements, is expressed as 𝑃2𝐾 = 𝑃𝐺(2, 𝑝𝑟 ) [18]. 

 

Definition 4. Let 𝑃  be  a projective plane. In 𝑃, a 6-figure is a sequence of 6 distinct points (𝐴1𝐴2𝐴3, 𝐴1
′𝐴2

′𝐴3
′) 

such that 𝐴1𝐴2𝐴3 is a triangle, and 𝐴1
′ ∈ 𝐴2𝐴3, 𝐴2

′ ∈ 𝐴3𝐴1, 𝐴3
′ ∈ 𝐴1𝐴2. 𝐴1, 𝐴2, 𝐴3, 𝐴1

′, 𝐴2
′, 𝐴3

′ are called vertices 

of this 6-figure. If the lines 𝐴1𝐴1
′, 𝐴2𝐴2

′, 𝐴3𝐴3
′ are concurrent, (𝐴1𝐴2𝐴3, 𝐴1

′𝐴2
′𝐴3

′) is called a Ceva 6-figure [15]. 

 

Definition 5. In a projective plane, a (k,n)-arc K is defined as a set of k points such that any line intersects K at exactly 

n points, with no line intersecting the set at more than n points, where n ≥ 2 [19]. 

  

Definition 6. A line l in a projective plane is defined as an μ-secant of a (k,n)-arc K if it intersects K at μ points. Let 

τ_i represent the total number of i-secants to K. The notations𝜎𝑖 or 𝜎𝑖(𝑄) denote the count of i-secants to the set K 

that pass through a point Q, which is part of P \ K. A point Q is classified as an index zero point if the condition 

𝜎𝑛(𝑄) = 0   holds [20]. 

If no (k+1,n)-arc contains a (k,n)-arc, then the (k,n)-arc is considered complete [20]. 

 

Definition 7. The points out of a (𝑘, 𝑛) −arc K  in P which passes through it i-secant of K    is called a point of index 

i [20]. 

3. The Projective plane of order 5 

The study considers PG(2,5), which is built over GF(5) using the irreducible polynomial 𝑓(𝑥) = 𝑥3 + 2𝑥2 + 𝑥 −
1. The elements of GF(5) with thirty one points and thirty one lines are 0, 1, 2, 3, and 4. In the projective plane order 

five, every line consists of six points, and each point is associated with six lines that pass through it [21]. 

The projective plane of order five has a point set N defined as 𝑵 = {𝑵𝒊| 𝒊 = 𝟏, 𝟐,   . . ., 𝟑𝟏} where 

   𝑵𝟏 = (𝟎, 𝟎, 𝟏),         𝑵𝟐 = (𝟏, 𝟏, 𝟏),     𝑵𝟑 = (𝟏, 𝟐, 𝟐), 𝑵𝟒 = (𝟏, 𝟒, 𝟐), 𝑵𝟓 = (𝟏, 𝟒, 𝟑),  

𝑵𝟔 = (𝟏, 𝟑, 𝟒),   𝑵𝟕 = (𝟏, 𝟎, 𝟑), 𝑵𝟖 = (𝟏, 𝟑, 𝟏), 𝑵𝟗 = (𝟏, 𝟐, 𝟒), 𝑵𝟏𝟎 = (𝟏, 𝟎, 𝟒), 
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𝑵𝟏𝟏 = (𝟏, 𝟎, 𝟏),   𝑵𝟏𝟐 = (𝟏, 𝟐, 𝟏),  𝑵𝟏𝟑 = (𝟏, 𝟐, 𝟑),  𝑵𝟏𝟒 = (𝟏, 𝟑, 𝟎), 𝑵𝟏𝟓 = (𝟎, 𝟏, 𝟑), 

𝑵𝟏𝟔 = (𝟏, 𝟏, 𝟑),   𝑵𝟏𝟕 = (𝟏, 𝟑, 𝟑),  𝑵𝟏𝟖 = (𝟏, 𝟑, 𝟐), 𝑵𝟏𝟗 = (𝟏, 𝟒, 𝟎), 𝑵𝟐𝟎 = (𝟎, 𝟏, 𝟒), 

𝑵𝟐𝟏 = (𝟏, 𝟏, 𝟎),   𝑵𝟐𝟐 = (𝟎, 𝟏, 𝟏),  𝑵𝟐𝟑 = (𝟏, 𝟏, 𝟐), 𝑵𝟐𝟒 = (𝟏, 𝟒, 𝟒), 𝑵𝟐𝟓 = (𝟏, 𝟎, 𝟐), 

𝑵𝟐𝟔 = (𝟏, 𝟒, 𝟏),  𝑵𝟐𝟕 = (𝟏, 𝟐, 𝟎),  𝑵𝟐𝟖 = (𝟎, 𝟏, 𝟐), 𝑵𝟐𝟗 = (𝟏, 𝟏, 𝟒), 𝑵𝟑𝟎 = (𝟏, 𝟎, 𝟎), 

     𝑵𝟑𝟏 = (𝟎, 𝟏, 𝟎).     

 

Table 1 presents the incidence relation between the points and the lines in the projective plane PG(2,5). In this table, 

each row corresponds to a specific line, denoted as 𝑫𝒊, where 𝒊 ranges from 1 to 31. For each line 𝑫𝒊, the table lists 

the points on that line. 

   Table 1. The points and lines based on incidence relation. 

𝐷1 𝑁2 𝑁3 𝑁17  𝑁22  𝑁24  𝑁30  

𝐷2 𝑁3 𝑁4 𝑁18  𝑁23  𝑁25  𝑁31  

𝐷3 𝑁4 𝑁5 𝑁19  𝑁24  𝑁26  𝑁1  

𝐷4 𝑁5 𝑁6 𝑁20  𝑁25  𝑁27  𝑁2 

𝐷5 𝑁6 𝑁7 𝑁21  𝑁26  𝑁28  𝑁3 

𝐷6 𝑁7 𝑁8 𝑁22  𝑁27  𝑁29  𝑁4 

𝐷7 𝑁8 𝑁9  𝑁23  𝑁28  𝑁30  𝑁5 

𝐷8 𝑁9  𝑁10  𝑁24  𝑁29  𝑁31  𝑁6 

𝐷9 𝑁10  𝑁11  𝑁25  𝑁30  𝑁1  𝑁7 

𝐷10 𝑁11  𝑁12  𝑁26  𝑁31  𝑁2 𝑁8 

𝐷11 𝑁12  𝑁13  𝑁27  𝑁1  𝑁3 𝑁9  

𝐷12 𝑁13  𝑁14  𝑁28  𝑁2 𝑁4 𝑁10  

𝐷13 𝑁14  𝑁15  𝑁29  𝑁3 𝑁5 𝑁11  

𝐷14 𝑁15  𝑁16  𝑁30  𝑁4 𝑁6 𝑁12  

𝐷15 𝑁16  𝑁17  𝑁31  𝑁5 𝑁7 𝑁13  

𝐷16 𝑁17  𝑁18  𝑁1  𝑁6 𝑁8 𝑁14  

𝐷17 𝑁18  𝑁19  𝑁2 𝑁7 𝑁9  𝑁15  

𝐷18 𝑁19  𝑁20  𝑁3 𝑁8 𝑁10  𝑁16  

𝐷19  𝑁20  𝑁21  𝑁4 𝑁9  𝑁11  𝑁17  

𝐷20 𝑁21  𝑁22  𝑁5 𝑁10  𝑁12  𝑁18  

𝐷21 𝑁22  𝑁23  𝑁6 𝑁11  𝑁13  𝑁19  

𝐷22 𝑁23  𝑁24  𝑁7 𝑁12  𝑁14  𝑁20  

𝐷23 𝑁24  𝑁25  𝑁8 𝑁13  𝑁15  𝑁21  

𝐷24 𝑁25  𝑁26  𝑁9  𝑁14  𝑁16  𝑁22  

𝐷25 𝑁26  𝑁27  𝑁10  𝑁15  𝑁17  𝑁23  

𝐷26 𝑁27  𝑁28  𝑁11  𝑁16  𝑁18  𝑁24  

𝐷27 𝑁28  𝑁29  𝑁12  𝑁17  𝑁19  𝑁25  

𝐷28 𝑁29  𝑁30  𝑁13  𝑁18  𝑁20  𝑁26  

𝐷29 𝑁30  𝑁31  𝑁14  𝑁19  𝑁21  𝑁27  

𝐷30 𝑁31  𝑁1  𝑁15  𝑁20  𝑁22  𝑁28  

𝐷𝟑𝟏 𝑁1  𝑁2 𝑁16  𝑁21  𝑁23  𝑁29  

 



 Altıntaş Kahriman, E. and Bayar, A., (2024)/ Journal of Scientific Reports-A, 59,10-18 

14 

 

4. An algorithm for constructing (k,n)-arcs related to the Ceva configuration in the projective plane of order 

five 

In this section, we present an algorithm used to construct (𝑘, 𝑛) −arcs,  and to identify (𝑘, 3) −arcs based on secant 

distributions in PG(2,5). 

Method: Finding (𝒌, 𝒏) −arcs  

Step 1: To identify the points and lines of PG(2,5), we utilize the irreducible polynomial 𝑓(𝑥) = 𝑥3 + 2𝑥2 + 𝑥 − 1. 

By applying this polynomial, we determine thirty-one points and thirty-one lines within the projective plane, as 

detailed in Table 1. 

Step 2: Consider a Ceva Configuration in given projective plane of order five. In Ceva configuration, a center point 

and six other points form a (7,3)-arc denoted by 𝐶 in PG(2,5), which is incomplete.  

Step 3: There are 6 points not on the lines spanned by the points of Ceva configuration.  

Step 4: The complete (𝑘, 3) −arcs are investigated by adding these six points to (7, 3) −arc.  

We present the following algorithm, implemented in C#, designed to identify complete (k,3)-arcs within PG(2,5): 

Steps of Algorithm  

𝐴 ← 𝑅𝑒𝑎𝑑(𝐸𝑥𝑐𝑒𝑙 𝐹𝑖𝑙𝑒) 

𝐵 ← 𝑅𝑒𝑎𝑑(𝑇𝑒𝑥𝑡 𝐹𝑖𝑙𝑒) 

𝐶 ← 𝐴 

while s(C)>0 

    𝐵𝑖 ← 𝑖𝑛𝑝𝑢𝑡(𝑏), {𝑏|𝑏 ∈ 𝐶, 𝑏 ∉ 𝐵, 𝑖 = 𝑠(𝐵) + 1} 

    j=1 

   while 𝑗 ≤ 𝑠(𝐵) 

        for k=(j+1) to s(B) 

           m ← 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑟𝑜𝑤 𝑜𝑛 𝐵𝑗 , 𝐵𝑘 

           𝐷 ← 𝐴𝑚𝑛; {𝐴𝑚𝑛|𝐴𝑚𝑛 ≠ 𝐵𝑗 , 𝐴𝑚𝑛 ≠ 𝐵𝑘 , 𝑛 = 1, . . . , 10 } 

           Remove a from A; {𝑎|𝑎 ∈ 𝐴, 𝑎 ∈ 𝐷} 

           𝐶 ← 𝑐; {𝑐|𝑐 ∈ 𝐴, 𝑐 ∉ 𝐶} 

        end for 

        j=j+1 

    end while 

end while 

Theorem 1.  Let 𝐶 be a Ceva configuration in PG(2,5). If the given algorithm is applied to the points of Ceva 

configuration to find (k,3)- arcs, there is a (6,2)- arc constructing with the remaining points. 
Proof. Let 𝐶 be Ceva configuration in  PG(2,5). If we apply the algorithm to 𝐶, six points are remained in PG(2,5). 

Since all points of a projective plane lie on a pencil of lines through a single point, the points of a Ceva configuration 

are on a pencil of lines through a point. So, five line through any point outside 𝐶 contains one point of the Ceva 

configuration, while one line contains two points of 𝐶. Since any three points from the remaining set are not collinear, 

it follows that this set of remaining points forms a (6,2)-arc. 

 

Theorem 2. There exist eight distinct complete (10,3)-arcs that include a Ceva configuration in PG(2,5). 

Proof. Let 𝐶 represent a Ceva configuration. By utilizing the algorithm outlined in Theorem 1 on 𝐶, we can get a . 

(6,2)-arc. Each point in this (6,2)-arc lies on six lines, of which five intersect the Ceva configuration 𝐶 at a single 

point, while one line intersects it at two points. Consequently, there are three lines that intersect the configuration and 

pass through the points of the (6,2)-arc, which qualify as 2-secant lines. Choosing one remaining point from each of 
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these 2-secant lines and adding them to the (7,3)-arc formed by the Ceva configuration results in eight distinct 

complete (10,3)-arcs. 

 

Theorem 3. Let 𝐶1, be a Ceva configuration in PG(2,5). Then the cyclic order of Ceva configurations 𝐶1, 𝐶2, 𝐶3, 𝐶4 

can be constructed having the same center such that the vertices of Ceva configuration 𝐶𝑖, are the points on the sides 

of the Ceva configuration 𝐶𝑖−1, i=2,3,4. 

Proof. Let 𝐶1 be the Ceva configuration (A1A2A3, A1
′A2

′A3
′) with the center M in  𝑃𝐺(2,5).  Let the vertices of 𝐶2 

with the center M be A1
′, A2

′, and A3
′. If we define the points A1

′′, A2
′′, and A3

′′ as the intersection points MA1
′  ∩

A2
′A3

′,  MA2
′  ∩  A1

′A3
′,  and MA3

′ ∩ A1
′A2

′ ,  respectively, 𝐶2  is obtained as the Ceva configuration 

(A1
′A2

′A3
′, A1

′′A2
′′A3

′′) with the center M. In the same way that we obtained 𝐶2  from 𝐶1, we can now define a Ceva 

configuration 𝐶3  as (A1
′′A2

′′A3
′′, A1

′′′A2
′′′A3

′′′) such that the vertices of 𝐶3  are the points on the sides of 𝐶2 where 

A1
′′′, A2

′′′, and A3
′′′ as the intersection points MA1

′′  ∩ A2
′′A3

′′,  MA2
′′  ∩  A1

′′A3
′′, and MA3

′′ ∩ A1′′A2
′′. Similarly, 

the Ceva configuration 𝐶4  is constructed by using the side points and the center M of 𝐶3 . 𝐶4  can be found as 

(A1
′′′A2

′′′A3
′′′, A1A2A3)  where A1

′′′′ , A2
′′′′ ,  and A3

′′′′  are the intersection points MA1
′′′  ∩ A2

′′′A3
′′′,  MA2

′′′  ∩
 A1

′′′A3
′′′, and MA3

′′′ ∩ A1′′′A2
′′′, respectively. Since the vertices of 𝐶5 are the points A1, A2, A3 on the sides of 𝐶4, 

𝐶5  configuration is the same as 𝐶1 .  Thus, 𝐶1, 𝐶2, 𝐶3, 𝐶4   are cyclic order of Ceva configurations 𝐶𝑖 , i=1,2,3,4 in 

PG(2,5). 

 

Corollary. Let C1, C2, C3, C4  be  cyclic order of Ceva configurations 𝐶𝑖, i=1,2,3,4 in PG(2,5). Then there are thirty 

two (10,3)- arcs which is defined by C1, C2, C3, and C4. 
Proof. Let C1, C2, C3, C4 be  cyclic order of Ceva configurations Ci, i=1,2,3,4 in PG(2,5).  Since there are eight different 

complete (10,3) −arcs containing a Ceva configuration in PG(2,5) from Theorem 2, thirty two different compelte 

(10,3)-arcs are constructed from the Ceva configurations C1, C2, C3, and C4. 
 

Now, by taking cylic order Ceva configurations C1, C2, C3, C4  derived from the Ceva configuration C1 =
(𝑁3𝑁2𝑁6, 𝑁5𝑁21𝑁24) in PG(2,5), we give all complete (10,3)−arcs with tables and complete (6,2)−arcs for each Ceva 

configurations 𝐶𝑖, i = 1,2,3,4. 

 

Example 1. Let C1 be (7,3)-arc defined by the Ceva configuration (𝑁3𝑁2𝑁6, 𝑁5𝑁21𝑁24) with the center point 𝑁29. By 

implementing this algorithm to C1, it is seen that C1 = {𝑁2, 𝑁3, 𝑁5, 𝑁6, 𝑁21, 𝑁24, 𝑁29} is (7,3)-arc but incomplete arc. 

In this projective plane, the points on the lines spanned by (7,3)-arc are deleted in PG(2,5), then 𝑁4, 𝑁8, 𝑁12, 𝑁13, 𝑁18, 
𝑁18, 𝑁19 points are remained. Since six lines pass through each of these points in PG(2,5), five of them intersect the 

Ceva configuration in one point, and one of them intersect the Ceva configuration in two points. In Table 2, 1−secant 

and 2−secant lines of the Ceva configuration passing through the remaining points out of (7, 3)−arc are given in 

PG(2,5). 

  Table 2.  The secant lines of the Ceva configuration. 

Point 1-secant lines 2-secant lines 

𝑁4 𝐷2, 𝐷6, 𝐷12, 𝐷14, 𝐷19  𝐷3 

𝑁8 𝐷6, 𝐷7, 𝐷10, 𝐷16 , 𝐷18 𝐷23 

𝑁12 𝐷10, 𝐷11, 𝐷14, 𝐷22, 𝐷27 𝐷20 

𝑁13 𝐷11, 𝐷12, 𝐷15, 𝐷21, 𝐷28 𝐷23 

𝑁18 𝐷2, 𝐷16, 𝐷17 , 𝐷26, 𝐷28 𝐷20 

𝑁19  𝐷17, 𝐷18, 𝐷21, 𝐷27, 𝐷29  𝐷3 
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When the algorithm applied to C1 and the remaining points, eight complete (10,3)−arcs are obtained and given in 

Table 3. 

        Table 3. The complete (10,3)-arcs containing the Ceva configuration C1. 

The incomplete (7,3)-arc C1 The complete (10,3)-arcs 

𝐶1 ∪ {𝑁4 , 𝑁8, 𝑁12} {𝑁2, 𝑁3, 𝑁4, 𝑁5 , 𝑁6, 𝑁8, 𝑁12, 𝑁21, 𝑁24, 𝑁29} 

𝐶1 ∪ {𝑁4 , 𝑁8, 𝑁18} {𝑁2 , 𝑁3, 𝑁4, 𝑁5 , 𝑁6, 𝑁8, 𝑁18,𝑁21, 𝑁24, 𝑁29} 

𝐶1 ∪ {𝑁4, 𝑁12 , 𝑁13} {𝑁2, 𝑁3, 𝑁4, 𝑁5, 𝑁6, 𝑁12, 𝑁13 , 𝑁21 , 𝑁24, 𝑁29} 

𝐶1 ∪ {𝑁4, 𝑁13 , 𝑁18} {𝑁2, 𝑁3, 𝑁4, 𝑁5, 𝑁6, 𝑁13, 𝑁18 , 𝑁21 , 𝑁24, 𝑁29} 

𝐶1 ∪ {𝑁8, 𝑁12 , 𝑁19} {𝑁2, 𝑁3, 𝑁5, 𝑁6, 𝑁8, 𝑁12 , 𝑁19 , 𝑁21, 𝑁24, 𝑁29} 

𝐶1 ∪ {𝑁8, 𝑁18 , 𝑁19} {𝑁2, 𝑁3, 𝑁5, 𝑁6, 𝑁8, 𝑁18 , 𝑁19 , 𝑁21, 𝑁24, 𝑁29} 

𝐶1 ∪ {𝑁12 , 𝑁13, 𝑁19} {𝑁2, 𝑁3, 𝑁5, 𝑁6 , 𝑁12 , 𝑁13 , 𝑁19 , 𝑁21, 𝑁24, 𝑁29} 

𝐶1 ∪ {𝑁13 , 𝑁18, 𝑁19} {𝑁2, 𝑁3, 𝑁5, 𝑁6 , 𝑁13 , 𝑁18 , 𝑁19 , 𝑁21, 𝑁24, 𝑁29} 

 

Let's start by taking the points  𝑁5, 𝑁21, 𝑁24 on the sides of 𝐶1 = (𝑁3𝑁2𝑁6, 𝑁5𝑁21𝑁24) as the vertices of a new Ceva 

configuration 𝐶2 = (𝑁5𝑁21𝑁24, 𝑁1𝑁10𝑁15) having the same center point 𝑁29.  If we apply the algorithm to 𝐶2, then 

the remaining points are 𝑁7, 𝑁17, 𝑁20, 𝑁13, 𝑁18, 𝑁19. Six lines pass through each of these points. Five of them intersect 

𝐶2 in one points, and one is the remaining line, which intersect 𝐶2 in two points. If one remaining point is chosen from 

each of these 2-secant lines and added to 𝐶2, eight different complete (10,3)-arcs are obtained as following Table 4. 

And also these remaining points 𝑁7, 𝑁17, 𝑁20, 𝑁13, 𝑁18, 𝑁19 construct (6,2)−arcs according to Theorem 1. 

             Table 4. The complete (10,3)-arcs containing the Ceva configuration 𝐶2. 

The incomplete (7,3)-arc C2 The complete (10,3)-arcs 

𝐶2  ∪ {𝑁7 , 𝑁17 , 𝑁20} {𝑁1 , 𝑁5, 𝑁7, 𝑁10, 𝑁15, 𝑁17  , 𝑁20 , 𝑁21 , 𝑁24 , 𝑁29} 

𝐶2  ∪ {𝑁7 , 𝑁17 , 𝑁28} {𝑁1, 𝑁5, 𝑁7 , 𝑁10 , 𝑁15 , 𝑁17, 𝑁21, 𝑁24, 𝑁28, 𝑁29} 

𝐶2  ∪ {𝑁7, 𝑁20, 𝑁27} {𝑁1 , 𝑁5 , 𝑁7, 𝑁10 , 𝑁15 , 𝑁20 , 𝑁21 , 𝑁24 , 𝑁27, 𝑁29} 

𝐶2  ∪ {𝑁7, 𝑁27, 𝑁28} {𝑁1 , 𝑁5 , 𝑁7, 𝑁10 , 𝑁15 , 𝑁21 , 𝑁24 , 𝑁27 , 𝑁28, 𝑁29} 

𝐶2  ∪ {𝑁17 , 𝑁20, 𝑁30} {𝑁1 , 𝑁5, 𝑁10 , 𝑁15 , 𝑁17 , 𝑁20 , 𝑁21 , 𝑁24 , 𝑁29 , 𝑁30} 

𝐶2  ∪ {𝑁17 , 𝑁28, 𝑁30} {𝑁1 , 𝑁5, 𝑁10 , 𝑁15 , 𝑁17 , 𝑁21 , 𝑁24 , 𝑁28 , 𝑁29 , 𝑁30} 

𝐶2  ∪ {𝑁20 , 𝑁27 , 𝑁30} {𝑁1, 𝑁5, 𝑁10, 𝑁15, 𝑁20, 𝑁21, 𝑁24, 𝑁27, 𝑁29, 𝑁30} 

𝐶2  ∪ {𝑁27 , 𝑁28 , 𝑁30} {𝑁1, 𝑁5, 𝑁10, 𝑁15, 𝑁21, 𝑁24, 𝑁27, 𝑁28, 𝑁29, 𝑁30} 

 

Let 𝐶3 and 𝐶2 be taken instead of 𝐶2  and 𝐶1,  respectively. Then new Ceva configuration 𝐶3  is 

(𝑁1𝑁10𝑁15, 𝑁11𝑁23𝑁31) with the same center point 𝑁29.  If we apply the algorithm to 𝐶3, then the remaining points 

are 𝑁4, 𝑁8, 𝑁12, 𝑁13, 𝑁18, 𝑁19. If one remaining point is chosen from each of these 2-secant lines and added to 𝐶3, eight 

different complete (10,3)-arcs are obtained as following Table 5. 

               Table 5. The complete (10,3)-arcs containing the Ceva configuration 𝐶3. 

The incomplete (7,3)-arc C3 The complete (10,3)-arcs 

𝐶3 ∪ {𝑁7, 𝑁17, 𝑁20} {𝑁1 , 𝑁5, 𝑁7, 𝑁10 , 𝑁15, 𝑁17  , 𝑁20 , 𝑁21 , 𝑁24 , 𝑁29} 

𝐶3 ∪ {𝑁7, 𝑁17, 𝑁28} {𝑁1, 𝑁5, 𝑁7 , 𝑁10 , 𝑁15 , 𝑁17, 𝑁21, 𝑁24, 𝑁28 , 𝑁29} 

𝐶3 ∪ {𝑁7, 𝑁20 , 𝑁27} {𝑁1 , 𝑁5 , 𝑁7, 𝑁10, 𝑁15 , 𝑁20 , 𝑁21, 𝑁24, 𝑁27, 𝑁29} 

𝐶3 ∪ {𝑁7, 𝑁27 , 𝑁28} {𝑁1 , 𝑁5 , 𝑁7, 𝑁10, 𝑁15 , 𝑁21 , 𝑁24, 𝑁27, 𝑁28, 𝑁29} 
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𝐶3 ∪ {𝑁17, 𝑁20, 𝑁30} {𝑁1 , 𝑁5, 𝑁10, 𝑁15 , 𝑁17 , 𝑁20 , 𝑁21 , 𝑁24 , 𝑁29 , 𝑁30} 

𝐶3 ∪ {𝑁17, 𝑁28, 𝑁30} {𝑁1 , 𝑁5, 𝑁10, 𝑁15 , 𝑁17 , 𝑁21 , 𝑁24 , 𝑁28 , 𝑁29 , 𝑁30} 

𝐶3 ∪ {𝑁20 , 𝑁27, 𝑁30} {𝑁1, 𝑁5, 𝑁10 , 𝑁15, 𝑁20, 𝑁21, 𝑁24, 𝑁27, 𝑁29 , 𝑁30} 

𝐶3 ∪ {𝑁27 , 𝑁28, 𝑁30} {𝑁1, 𝑁5, 𝑁10 , 𝑁15, 𝑁21, 𝑁24, 𝑁27, 𝑁28, 𝑁29 , 𝑁30} 

 

Now, let 𝐶4  and 𝐶3 be taken instead of 𝐶3  and 𝐶2,  respectively. Then new Ceva configuration 𝐶4  is 

(𝑁11𝑁23𝑁31, 𝑁3𝑁2𝑁6) with the same center point 𝑁29. If we apply the algorithm to 𝐶4, then the remaining points are 

𝑁7, 𝑁17, 𝑁20, 𝑁27, 𝑁28, 𝑁30. If one remaining point is chosen from each of these 2−secant lines and added to 𝐶4, eight 

different complete (10,3)−arcs are obtained as following Table 6.  

                          Table 6. The complete (10,3)-arcs containing the Ceva configuration C4. 

The completion of (7,3)-arc C4 The complete (10,3)-arcs 

𝐶4 ∪ {𝑁7, 𝑁17 , 𝑁20} {𝑁2, 𝑁3, 𝑁6, 𝑁7, 𝑁11 , 𝑁17, 𝑁20, 𝑁23, 𝑁29, 𝑁31} 

𝐶4 ∪ {𝑁7, 𝑁17 , 𝑁27} {𝑁2, 𝑁3, 𝑁6, 𝑁7, 𝑁11 , 𝑁17, 𝑁23, 𝑁27, 𝑁29, 𝑁31} 

𝐶4 ∪ {𝑁7, 𝑁20 , 𝑁30} {𝑁2, 𝑁3, 𝑁6, 𝑁7, 𝑁11 , 𝑁20 , 𝑁23 , 𝑁29 , 𝑁30 , 𝑁31} 

𝐶4 ∪ {𝑁7, 𝑁27 , 𝑁30} {𝑁2, 𝑁3, 𝑁6, 𝑁7, 𝑁11 , 𝑁23 , 𝑁27 , 𝑁28 , 𝑁29 , 𝑁31} 

𝐶4 ∪ {𝑁17, 𝑁20, 𝑁28} {𝑁2, 𝑁3, 𝑁6 , 𝑁11 , 𝑁17 , 𝑁20 , 𝑁23 , 𝑁28 , 𝑁29 , 𝑁31} 

𝐶4 ∪ {𝑁17, 𝑁27, 𝑁28} {𝑁2, 𝑁3, 𝑁6 , 𝑁11 , 𝑁17 , 𝑁23 , 𝑁27 , 𝑁28 , 𝑁29 , 𝑁31} 

𝐶4 ∪ {𝑁20 , 𝑁28 , 𝑁30} {𝑁2, 𝑁3 , 𝑁6, 𝑁11, 𝑁20, 𝑁23, 𝑁28, 𝑁29 , 𝑁30, 𝑁31} 

𝐶4 ∪ {𝑁27 , 𝑁28 , 𝑁30} {𝑁2, 𝑁3 , 𝑁6, 𝑁11, 𝑁23, 𝑁27, 𝑁28, 𝑁29 , 𝑁30, 𝑁31} 

 

5. Conclusion 

In this work, it is determined that (k,2)-arcs and (k,3)-arcs obtained from a Ceva configuration in PG(2,5) by giving 

the algorithm implemented in C#. The following conclusions are found in PG(2,5): 

1. There is a complete (6,2)-arc that does not contain any common points with the (7,3)-arc determined by a Ceva 

configuration. 

2. There are eight different complete (10,3)-arcs containing a Ceva configuration. 

3. There are cyclic order Ceva configurations 𝐶1, 𝐶2, 𝐶3, 𝐶4 having the same center such that the vertices of the Ceva 

configuration 𝐶𝑖, are the points on the sides of the Ceva configuration 𝐶𝑖−1, i=2,3,4. 

4. Related to the cyclic order Ceva configurations  𝐶1, 𝐶2, 𝐶3, 𝐶4, there are two different complete (6,2)-arcs and thirty-

two different complete (10,3)-arcs. 

These findings show that there is a significant relationship between arcs and Ceva configurations in the projective 

planes. 
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