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Deep learning methods have been developed to solve different 
problems due to the complex nature of real-world problems. 
Accurate future forecasting of a country's installed capacity is 
also crucial for developing a good energy sustainability strategy 
for the country. In this paper, three different time series 
forecasting methods are used for forward forecasting of installed 
capacity: Gated Recurrent Unit (GRU), Convolutional Neural 
Network (CNN) and Long Short-Term Memory (LSTM). 
Installed power values for the years 1923-2021 were used in the 
study. Then, future forecasts are made until 2030. The GRU 
model achieved the best RMSE in the testing phase compared to 
the LSTM and CNN models. Although CNN is successful during 
training, it has a higher RMSE during testing compared to GRU. 
While all models predict a potential increase in electricity 
capacity by 2030, GRU and LSTM predict a more significant 
increase up to this point compared to CNN. 
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Gerçek dünya problemlerinin karmaşık yapısı nedeniyle farklı 
problemleri çözmek için derin öğrenme yöntemleri 
geliştirilmiştir. Ülkelere ait kurulu gücün doğru şekilde ileri 
tahmini de ülkenin iyi bir enerji sürdürülebilirliği stratejisi 
geliştirilmesi için büyük önem taşımaktadır. Bu makalede, 
kurulu gücün ileri tahmini için üç farklı zaman serisi tahmin 
yöntemi kullanılmıştır: Kapılı Tekrarlayan Birim (GRU), 
Evrişimli Sinir Ağı (CNN) ve Uzun Kısa Süreli Bellek (LSTM). 
Çalışmada 1923-2021 yıllarına ait kurulu güç değerleri 
kullanılmıştır. Daha sonra 2030 yılına kadar gelecek tahminleri 
yapılmıştır. GRU modeli, test aşamasında LSTM ve CNN 
modellerine göre, en iyi RMSE'yi elde ederek en doğru model 
olarak ortaya çıkmıştır. CNN eğitim sırasında başarılı olmasına 
rağmen, test sırasında GRU'ya kıyasla daha yüksek RMSE 
sergilemiştir.  Tüm modeller 2030 yılına kadar elektrik 
kapasitesinde potansiyel bir artış öngörürken GRU ve LSTM, 
CNN'e kıyasla bu noktaya kadar daha belirgin bir artış 
öngörmüştür. 
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1. INTRODUCTION 
 
Accurate forecasting of energy production and consumption is crucial for effective energy planning and 
management. Artificial Neural Networks (ANNs) are preferred for such forecasting problems due to their 
ability to model complex relationships in data. However, the advent of deep learning techniques has 
significantly advanced this field. Deep learning methods, including Convolutional Neural Networks 
(CNNs), Long Short-Term Memory (LSTM) networks, and Gated Recurrent Units (GRU), have 
demonstrated superior performance in handling complex and high-dimensional data, leading to more 
accurate and robust forecasting models. Bilgili et al. [1] focused on forecasting renewable energy generation 
(REG) using two methods: ANFIS with FCM, and LSTM neural networks. Both models performed well, 
with LSTM showing particular strength in handling daily fluctuations in energy data. The study highlights 
the effectiveness of these methods for short-term REG forecasting in Türkiye. 
 
Similarly, Sun et al. [2] used RNN and CNN models for real-time turbine power forecasting with 719 days 
of DCS data. The RNN model provided the best balance of accuracy and efficiency, outperforming 
traditional models. Their findings highlight the potential of deep learning for enhancing turbine power 
prediction and aiding in turbine control and predictive maintenance. Expanding on these approaches, Wan 
et al. [3] proposed a CNN-LSTM model that combines CNN and LSTM methods for short-term electrical 
load forecasting. In addition, they improved their work to deal with the information loss in long time series 
data and added attention mechanisms. As a result, the proposed model has led to improvements in 
cogeneration systems. When the results are analyzed, it is evident that better prediction results are obtained 
compared to traditional LSTM models. Meanwhile, Agga et al. [4] introduced a CNN-LSTM model for PV 
power forecasting in Rabat, Morocco, combining CNN's spatial analysis with LSTM's temporal analysis. 
This hybrid approach outperformed traditional methods, offering improved accuracy and stability, with 
potential applications in optimizing power systems and future research in wind power and energy cost 
forecasting.  
 
Chang et al. [5] introduced the TESDL method for forecasting renewable energy, enhancing the integration 
of large-scale photovoltaics into the grid. Their deep learning-based model improved accuracy and managed 
energy volatility effectively, offering better efficiency and robustness, which could reduce costs for 
photovoltaic farms. Anu Shalini et al. [6] developed a grid-connected hybrid system with solar and wind 
inputs, using a modified Z source converter and also battery storage. They employed a CNN-BiLSTM deep 
learning algorithm for power prediction, achieving low harmonic distortion and consistent power supply. 
The ANN controller and SVPWM method were most effective in reducing harmonic currents and managing 
energy. Al-Ali et al. [7] developed a solar energy forecasting model using a hybrid CNN-LSTM-
Transformer approach. They enhanced accuracy and reduced complexity through clustering and self-
organizing maps for feature selection. Their model outperformed existing methods, showing high accuracy 
in solar power predictions and potential for long-term forecasting and broader energy applications. 
Additionally, Sözen et al. [8] developed equations for prediction of Türkiye's net energy consumption 
(NEC) using Artificial Neural Network. They utilized two models. Both models showed high accuracy in 
training and testing, indicating that ANN can effectively predict future energy consumption. The study 
highlights the flexibility of the ANN technique and its potential to aid in energy policy planning by 
providing mathematical equations for future consumption trends. Warkad et al. [9] developed an ANN-
based method for predicting day-ahead electricity nodal prices, improving decision-making by managing 
price volatility. In the IEEE 30-bus system and Indian market simulations, the approach demonstrated 
accurate predictions using a multilayer feed-forward neural network with back propagation.  The 
Levenberg-Marquardt algorithm provided fast convergence and low errors, making it practical for 
developing countries to enhance market strategies. 
 
Olcay et al. [10] developed models to predict how environmental factors impact solar power plants (SPPs). 
Using data from a Turkish solar plant, they applied Random Forest Regression (RFR) and LSTM networks. 
The LSTM model outperformed RFR in accuracy, showing better capability in handling complex 
dependencies, thus improving the reliability of energy forecasts in SPPs. Aksu [11] used the LSTM 
networks method to predict short-term solar irradiance in Türkiye, highlighting its solar potential. The study 
compared LSTM with ANN and found that LSTM offered more accurate predictions, especially at peak 
values. Aksu suggested that future research could benefit from combining LSTM with CNN for improved 
accuracy. 
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Installed power forecasting in the energy sector plays an important role in strategic planning and operational 
decisions. Recently, a lot of work has been done on advanced forecasting techniques to improve forecasting 
accuracy in this area. Luo et al. [12] introduced a new grey prediction model that enhanced the forecasting 
of wind power installed capacity (WPIC). They combined Particle Swarm Optimization (PSO) with 
parameter optimization to improve accuracy. Their model outperformed traditional grey models, although 
they noted some limitations, including the influence of abnormal data points and the need for further 
parameter refinement. Li et al. [13] compared four forecasting models for coal-fired power installed 
capacity in China: ARIMA, NMGM, GM-ARIMA and MGM. Their results showed high forecasting 
accuracy, with a predicted slower growth rate but higher annual added capacity compared to the previous 
decade. They recommended improving thermal power utilization and increasing renewable energy to 
balance growth and reduce carbon emissions. Chen et al. [14] introduced a novel grey model with fractional 
order accumulation, abbreviated as FOGM (1,1), to accurately forecast China's installed generation 
capacity, which includes wind power, hydroelectric, nuclear, and thermal. After calibrating model using 
data from 2000 to 2015, they used it to predict the capacity from 2016 to 2020. Their findings suggest that 
the FOGM (1,1) model is well-suited for this task, showing that wind power capacity in China is expected 
to rapidly increase in the coming decades, playing an increasingly significant role in the energy mix. 
 
Recently, deep learning methods have been frequently used for solving complex systems. In this study, 
three different methods popular in the field of deep learning are used to solve a real-time problem. The 
LSTM method is one of the recurrent method types. The advantage of this method is that it can memorize 
previous states. This allows it to learn long-term dependencies and model structures. Compared to the 
LSTM, the GRU method has a faster training time and lower computational effort.  The CNN method is 
successful in capturing similar patterns in consecutive time steps. This study builds on these developments 
by investigating deep learning techniques to estimate Türkiye's installed capacity. By incorporating and 
extending methods used in recent studies, we aim to enhance the accuracy and reliability of energy 
forecasts, thereby contributing to more effective energy planning and management.  
 
2. METHODS  
 
2.1. Long Short-Term Memory (LSTM) 
 
Long Short-Term Memory (LSTM) networks represent a specialized approach within deep learning for 
handling and modeling sequential data. Unlike standard Recurrent Neural Networks (RNNs), which often 
struggle with long-term dependencies, LSTMs are designed to address these challenges effectively. The 
fundamental unit of an LSTM is the memory cell, which preserves a vector of internal state information to 
retain past data. Each memory cell is controlled by three distinct gates: the forget gate, which determines 
the portion of the past data to be discarded; the input gate, which controls the extent to which new data is 
incorporated into the memory cell; and the output gate, which manages how the stored information is used 
to produce the final output. This structure enables LSTMs to excel in tasks such as time series prediction, 
language modeling, text classification, and translation. As a result, LSTMs have become integral to both 
advanced research and practical applications in deep learning. LSTM networks rely on several key 
components that collaboratively manage and process sequential data. These components include the input 
gate, forget gate, hidden state, cell state, candidate cell state and output gate. Each component plays a role 
in maintaining and updating the network's memory, which is a key building block for the method's success. 
 
Forget gate 
 
The forget gate decides how much influence past information has on the cell state. The extent to which this 
information is removed from the cell state is decided in this gate structure. It outputs a value between 0 and 
1, determining how much of the previous memory is retained. The mathematical expression for the forget 
gate is given by: 
 
𝑓௧ ൌ  𝜎ሺ𝑊௫௙𝑥௧ ൅ 𝑊௛௙ℎ௧ିଵ ൅ 𝑏௙ሻ  (1)
 
here, 𝑓௧ represents the output of the forget gate, 𝑊௫௙ , 𝑊௛௙ and 𝑏௙ are the weight and bias parameters,  ℎ௧ିଵ 
is the hidden state from the previous time step, and 𝑥௧ is the current input. 𝜎 is a sigmoid function, σ = 1 
denotes keeping something, and σ = 0 denotes getting rid of it. 
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Input gate 
 
The input gate manages the amount of new information that is integrated into the cell state. It outputs a 
value between 0 and 1, specifying the proportion of new data to be added. The mathematical expression for 
the input gate is: 
 
𝑖௧ ൌ  𝜎ሺ𝑊௫௜ 𝑥௧ ൅ 𝑊௛௜ ℎ௧ିଵ ൅ 𝑏௜ሻ   (2)
 
where 𝑖௧ represents the output of the input gate, and 𝑊௫௜, 𝑊௛௜ and 𝑏௜ are the corresponding weight and bias 
parameters. 
 
Candidate cell state 
 
This component determines which new information will be incorporated into the cell state. It combines new 
data with the input gate's output to update the memory. The formula for the candidate cell state is: 
 
𝑧௧ ൌ  tan ℎ ሺ𝑊௫௭ 𝑥௧ ൅ 𝑊௛௭ ℎ௧ିଵ  ൅ 𝑏௭ሻ (3)
 
here 𝑧௧  represents the candidate cell state, while 𝑊௫௭ , 𝑊௛௭  and  𝑏௭ are the weight and bias parameters 
involved in the memory update process. 
 
Cell state 
 
The cell state represents the updated memory, which is computed by combining the previous cell state, the 
input gate's contribution, the candidate cell state and the forget gate's output. The formula for the updated 
cell state is: 
 
𝑐௧ ൌ  𝑓௧ ∗  𝑐௧ିଵ ൅  𝑖௧ ∗ 𝑧௧  (4)
 
where 𝑐௧ denotes the updated cell state and 𝑐௧ିଵ is the previous cell state. 
 
Output gate 
 
The output gate determines how the cell state information is used to generate the network's output. It 
produces a value between 0 and 1, which influences the final output. The formula for the output gate is: 
 
𝑜௧ ൌ  𝜎ሺ𝑊௫௢𝑥௧ ൅ 𝑊௛௢ℎ௧ିଵ ൅ 𝑏௢ሻ (5)
 
where 𝑜௧ is the output of the output gate, and 𝑊௫଴, 𝑊௛௢ and 𝑏௢ are the weight and bias parameters. 
 
Hidden state 
 
The hidden state conveys the information from the cell state to the subsequent layers of the network. It is 
computed using: 
 
ℎ௧ ൌ  𝑜௧ ∗  tan ℎ ሺ𝑐௧ሻ  (6)
 
where ℎ௧ represents the hidden state at the current time step. The structure of the LSTM method is illustrated 
in Figure 1. LSTM is designed to eliminate the problem of vanishing gradients, which is a major problem 
for RNNs. To solve this problem, the method uses gates and a special cell structure as shown in the figure. 
The equations of the gates are given visually in the figure, which increases the comprehensibility of the 
structure of the method. These gates and the cell state in the structure of the LSTM enable the model to 
process long-term information efficiently and effectively in the learning process. These features make the 
LSTM a powerful tool for sequential data and time series analysis. 
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Figure 1. The structure of the Long Short-Term Memory (LSTM) neural network. 

 
2.2. Convolutional Neural Networks (CNN)  
 
Convolutional Neural Networks (CNNs) are a specialized class of deep neural networks designed to process 
and analyze spatial data. They excel in tasks such as image recognition and classification due to their ability 
to automatically and adaptively learn spatial hierarchies of features. A typical CNN comprises several core 
components: convolutional layers, which apply learnable filters to extract spatial patterns; activation 
functions, such as ReLU, which introduce non-linearity to improve learning; pooling layers, which 
downsample feature maps to reduce dimensionality and enhance computational efficiency; and fully 
connected layers, which integrate learned features for high-level reasoning and classification. By leveraging 
these components, CNNs have revolutionized computer vision and are also making significant strides in 
other fields, such as audio processing and natural language understanding. The basic structure of the CNN 
is shown in Figure 2. The overall architecture of a CNN structure usually consists of a number of layers, 
where each layer has the ability to learn and extract different aspects of the data. The basic components of 
a CNN, as shown in the figure, include: pooling layers, fully connected layers and convolutional layers. 
Convolutional layers learn local features by applying filters (kernels) on the input data. These processes 
capture patterns and features in each region of the data. Pooling layers reduce the feature maps from the 
convolutional layers and summarize the most important information. This reduces the computational cost 
of the model and helps prevent overlearning (overfitting). Fully connected layers use high-level features 
for classification or regression tasks. These layers make the final predictions using the network's learned 
features. 
 
This architecture of CNN is designed to work effectively with high-dimensional inputs such as visual data. 
In particular, convolutional layers are powerful for capturing local relationships within the data, allowing 
the network to learn various features of the images. Pooling layers improve computational efficiency, by 
reducing the data size and strengthening the generalization capacity of the model. Fully connected layers 
perform final classification or prediction using these learned features. These layer structures of the CNN 
model enable the network to extract features with high performance, making the method applicable in many 
different fields. 
 

 
Figure 2.  Basic structure of a Convolutional Neural Network (CNN). 

 
2.3. Gated Recurrent Units (GRU) 
 
The Gated Recurrent Unit (GRU) is a simplified variant of the Long Short-Term Memory (LSTM) network, 
designed to address the vanishing gradient problem and improve the efficiency of RNNs in modeling 
sequential data. The GRU accomplishes this through its gating mechanisms, specifically the update gate 
and the reset gate, which manage the flow of information through the network. The following equations 
describe the functioning of these gates and the overall update of the hidden state in the GRU: 
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Update Gate 
 
𝑓௧ ൌ  𝜎ሺ𝑊௫௙ 𝑥௧  ൅ 𝑊௛௙ℎ௧ିଵ ൅ 𝑏௙ሻ   (7)
 
The update gate 𝑓௧ determines the extent to which the previous hidden state ℎ௧ିଵ should be preserved and 
passed to the current hidden state ℎ௧. It combines the current input 𝑥௧ with the previous hidden state ℎ௧ିଵ, 
applying a sigmoid activation function 𝜎 to regulate the update. Where, 𝑊௫௙ and 𝑊௛௙ are the weight 
parameters, and 𝑏௙ is the bias parameter. 
 
Reset Gate 
 
𝑟௧ ൌ  𝜎ሺ𝑊௫௥𝑥௧  ൅ 𝑊௛௥ℎ௧ିଵ ൅ 𝑏௥) (8)
 
The reset gate 𝑟௧ controls the degree to which the previous hidden state  ℎ௧ିଵ contributes to the candidate 
activation 𝑧௧.  By modulating the influence of the past state, 𝑟௧ allows the model to effectively "forget" 
irrelevant information, making room for more pertinent data. Here 𝑊௫௥ and 𝑊௛௥ are the weight parameters, 
and 𝑏௥ is the bias parameter. 
 
Candidate Activation 
 
𝑧௧ ൌ tanhሺ𝑊௫௭𝑥௧ ൅ 𝑊௛௭ሺ𝑟௧ ∗ ℎ௧ିଵሻ ൅ 𝑏௭ሻ   (9)
 
The candidate activation  𝑧௧ represents the proposed update to the hidden state based on the current input 
𝑥௧ and the reset gate's modulation of the previous hidden state. The hyperbolic tangent function tanh is 
applied to ensure that the candidate activation values remain within a bounded range. Where, 𝑊௫௭ and 𝑊௛௭ 
are the weight parameters, and 𝑏௭ is the bias parameter. 
  
Hidden State Update 
 
ℎ௧ ൌ 𝑓௧ ∗  ℎ௧ିଵ ൅  ሺ1 െ 𝑓௧ ሻ ∗ 𝑧௧   (10)
 
Finally, the hidden state ℎ௧ is updated by a linear interpolation between the previous hidden state ℎ௧ିଵ and 
the candidate activation 𝑧௧ , controlled by the update gate 𝑓௧. This equation ensures that the network can 
retain relevant past information while incorporating new information as needed. The architecture of the 
GRU cell is demonstrated in Figure 3. As shown in the figure, the GRU architecture is similar to the LSTM 
architecture. GRU's cell architecture, together with the gates that control how information is stored and 
updated, allows for learning long-term dependencies, as in the LSTM method. However, GRU's structure 
is designed to provide simpler and faster computations, making it preferable for large data sets and time 
series problems. 
 
 

 
Figure 3. Structure of a GRU cell  

 
3. RESULTS AND DISCUSSIONS 
 
In this study, we analyzed the performance of GRU, CNN, and LSTM models on a dataset [15] of Türkiye's 
annual installed capacity spanning from 1923 to 2021, consisting of 99 observations. The dataset was 
preprocessed by applying 0-1 normalization, scaling each value between 0 and 1 using the formula: 
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𝑥ᇱ ൌ  
𝑥 െ min ሺ𝑥ሻ

maxሺ𝑥ሻ െ min ሺ𝑥ሻ
 

 
Dataset was divided into 79 data points (approximately 80%) for training and 20 (approximately 20%) for 
testing, with predictions extended 9 steps ahead to 2030. To effectively capture temporal dependencies, a 
look-back period of 3 was utilized, meaning that each model predicted future values based on the three 
preceding data points, resulting in the first three data points being excluded from the predictions. As given 
in Table 1, the results revealed that the GRU model achieved the lowest RMSE during testing, with a value 
of 2.51, outperforming both CNN and LSTM. The CNN model had an RMSE of 5.02 during testing and 
performed better during training with an RMSE of 0.49. The LSTM model had the 2.78 RMSE values 
during testing and 0.74 during training.  
 
Table 1. Estimation results using different deep learning methods 

Model 
RMSE 

(Training phase) 
RMSE 

(Testing phase) 
GRU 0.67 2.51 

LSTM 0.74 2.78 
CNN 0.49 5.02 

 
These results show that the look-back mechanism significantly improves the model's ability to predict future 
values. The look-back mechanism is a strategy that allows the model to remember patterns and information 
from past data. Through this mechanism, the model can better understand and predict current and future 
situations using past data. Especially in time series analysis, effective processing of historical data plays a 
critical role in improving the accuracy of future forecasts. Therefore, the capacity of the model to learn 
long-term dependencies by taking into account historical data directly affects the accuracy of forecasts. In 
particular, the GRU (Gated Recurrent Unit) model shows the highest forecast accuracy among the other 
models tested, suggesting that the GRU effectively uses this look-back mechanism. The gates in GRU's 
design are optimized to appropriately store and update historical information. This structural advantage 
enhances the model's ability to extract meaningful information from historical data and use this information 
in future predictions. As a result, GRU's high forecast accuracy clearly demonstrates the effectiveness of 
the look-back mechanism and the model's capacity to learn long-term dependencies. This highlights why 
the GRU is such a powerful tool in time series data and other sequential data analysis. 
 
Table 2. Forecast results for Türkiye’s installed capacity data (GW) between 2022 and 2030 

Years CNN LSTM GRU 
2022 98.45 105.56 105.95 
2023 100.67 110.51 111.05 
2024 101.95 115.59 116.52 
2025 102.90 121.23 122.43 
2026 104.30 126.62 128.21 
2027 105.49 132.18 134.23 
2028 106.69 137.89 140.38 
2029 107.93 143.52 146.58 
2030 109.14 149.21 152.89 

 
Following the evaluation of the models' performance, the analysis was extended to forecast future electricity 
capacity up to the year 2030, with the results being presented in Table 2. Lower values were consistently 
predicted by the CNN model compared to both LSTM and GRU, with the predicted capacity in 2030 
reaching 109.14 GW. In contrast, slightly higher future capacities were forecasted by the LSTM and GRU 
models, with a peak value of 149.21 GW in 2030 being predicted by LSTM, and 152.89 GW in 2030 being 
predicted by GRU. These predictions, which examine the future trends of electricity generation capacity, 
reveal a clear development until 2030. Projections by three different models-GRU, LSTM and CNN-
generally signal a potential plateau in electricity generation capacity by 2030. However, each of these 
models exhibits marked differences in forecasts, reflecting annual growth trends in a different way. In the 
period up to 2030, the observed gradual increase in electricity generation capacity points to an overall 
sustained growth. However, the trend and pace of this growth differ depending on the structural features of 
the model used and the way it processes temporal information.  
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The prediction results of the CNN model for the training and testing phase are shown in Figure 4. The CNN 
model closely follows the actual data during both the training and testing phases. Forward prediction results 
up to 2030 are also given in this figure. In the future prediction segment, there is a slight divergence, with 
the CNN model predicting a more gradual increase in capacity compared to the actual trend. This suggests 
that while the CNN model captures the general trend effectively, it may slightly underestimate the rate of 
growth in the later years. 
 

 
Figure 4. Results for the real and predicted values with CNN model. 

 
Figure 5. illustrates the LSTM model's results. The LSTM model exhibits a strong correlation with the real 
data throughout the training and testing phases, mirroring the actual trend with high accuracy. In the future 
prediction period, the LSTM model shows a more pronounced increase in capacity, aligning closely with 
the observed trend. 
 

 
Figure 5. Results for the real and predicted values with LSTM model. 

 
Figure 6. presents the GRU model's performance. The GRU model demonstrates a very close fit to the real 
data during both training and testing phases, like the LSTM model. In the future prediction section, the 
GRU model forecasts a continued and consistent increase in capacity, which aligns well with the actual 
trend. This result suggests that the GRU model not only accurately captures the historical data but also 
provides reliable future predictions, potentially offering the most stable performance among the three 
models. 
 

 
Figure 6. Results for the real and predicted values with GRU model. 
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The GRU and LSTM models present a steeper growth curve compared to the CNN model, meaning that 
these models predict a faster capacity growth. This trend is due to the fact that GRU and LSTM process 
temporal information more intensively and learn long-term dependencies more efficiently. This suggests 
that these models tend to predict a sharper and faster increase in the future based on past data. The CNN 
model, on the other hand, processes temporal information differently and tends to better capture local 
patterns and short-term trends, thus predicting a smoother and more gradual increase. This approach of the 
CNN allows it to take more explicit account of short-term fluctuations and local characteristics in the time 
series data, but it is more conservative on long-term trends. 
 
These differences reflect the underlying structures and methodologies of how each model processes 
temporal information. The GRU and LSTM models predict future growth potential more aggressively, 
thanks to their capacity to learn long-term dependencies in sequential data, while the CNN model's 
approach, which prioritizes local characteristics and short-term patterns, leads to a more cautious growth 
forecast. 
 
While the projections of these three models suggest that a plateau in electricity generation capacity is likely 
to be reached by 2030, the different trends presented by each model provide important insights for decision 
makers. Taking these different trends into account can help develop more comprehensive and flexible 
strategies for energy planning. Models that aggressively predict long-term growth potential may be suitable 
for scenarios that require faster capacity expansion, while models that predict a smoother ramp-up may be 
a better guide for risk management and gradual development plans. 

 
4. CONCLUSIONS 
 
This study assessed the forecasting performance of GRU, CNN, and LSTM models on annual electricity 
capacity data spanning from 1923 to 2021. The GRU model demonstrated the best performance in terms of 
predictive accuracy, achieving the lowest RMSE during testing. The CNN model, while performing well 
during training, showed a higher RMSE during testing compared to the other methods. 
 
The results suggest that the look-back mechanism was effective in capturing temporal dependencies, with 
GRU proving to be the most robust in predicting future values. All models indicated a potential plateau in 
electricity capacity by 2030, but GRU and LSTM predicted a more pronounced increase leading up to that 
year, compared to CNN. 
 
This study highlights the importance of selecting appropriate forecasting models based on their 
performance in capturing both short-term and long-term trends. The GRU model's superior performance 
underscores its suitability for accurate predictions in long-term capacity forecasting. Future research could 
build on these findings by incorporating additional data or exploring hybrid models to further enhance 
forecasting accuracy and address the nuances observed in these predictions. 
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