
Fundamental Journal of Mathematics and Applications, 8(1) (2025), 1-11

Research Paper / Open Access

Fundamental Journal of Mathematics and Applications
ISSN Online: 2645-8845

www.dergipark.org.tr/en/pub/fujma

https://doi.org/10.33401/fujma.1560482

Two New General Integral Results Related to the
Hilbert Integral Inequality

Christophe Chesneau 1,†,

1Department of Mathematics, LMNO, University of Caen-Normandie, 14032 Caen, France
†christophe.chesneau@gmail.com

Article Information

Keywords: Hilbert integral in-
equality; Homogeneous conditions;
Integral inequalities; Lower and up-
per bounds

AMS 2020 Classification: 26D15;
33E20

Abstract

In this article, we generalize two integral results from the literature. The first result concerns a
flexible double integral inequality, considering a specific form for the integrated function and a
double integral as a lower or upper bound. Several examples are discussed, as well as some of
its indirect connections with the Hilbert integral inequality. The second result also gives a double
integral inequality, but with the product of the square root of simple integrals, following the spirit
of the Hilbert integral inequality. Several theoretical and numerical examples are discussed. Both
of our results have the property of being dependent on several adjustable functions and parameters,
thus offering a wide range of applications.

1. Introduction

Historically, integral inequalities have attracted attention in almost all areas of mathematics. Some of the most famous are
the Cauchy-Schwarz integral inequality, the Jensen integral inequality, the Hölder integral inequality, the Minkowski integral
inequality, the Hardy-Littlewood-Sobolev integral inequality, the Hilbert integral inequality, the Sobolev integral inequality, the
Gagliardo-Nirenberg integral inequality, the Poincaré integral inequality, the Grönwall integral inequality, the Young integral
inequality, the logarithmic Sobolev integral inequality, the Chebyshev integral inequality, the Steffensen integral inequality
and the Grüss integral inequality. They are widely used in fields as diverse as calculus, functional analysis, probability
theory, numerical analysis, mathematical physics, and partial differential equations. For a comprehensive introduction to these
inequalities, see [1, 2, 3, 4, 5]. In recent research, the study of integral inequalities has taken on considerable importance. For
some contemporary references, i.e., in 2024 at the time of writing, see, for example, [6, 7, 8, 9].

In this article, we focus on the framework of the Hilbert integral inequality. It plays an important role in applications involving
double integrals, where certain types of product and ratio functions are present. This is particularly the case in analysis,
approximation theory, probability theory and partial differential equations. Mathematically, the Hilbert integral inequality is
expressed as follows: ∫ +∞

0

∫ +∞

0

f (x)g(y)
x+ y

dxdy≤ π

√∫ +∞

0
f 2(x)dx

√∫ +∞

0
g2(x)dx, (1.1)

where f ,g : [0,+∞)→ [0,+∞) are quadratic integrable functions. The upper bound is thus of the form constant multiplied by
the L2 norms of f and g. The constant π is optimal and cannot be improved, as shown in [1, 5]. Note that, in the special case
g = f , the Hilbert integral inequality reduces to∫ +∞

0

∫ +∞

0

f (x) f (y)
x+ y

dxdy≤ π

∫ +∞

0
f 2(x)dx. (1.2)

This simplified version will have some focus for the purposes of this article. The importance of the Hilbert integral inequality
has led to numerous variants and extensions, with applications in both pure and applied mathematics. These variants have been
the subject of extensive research, as can be seen in the studies in [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. In
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addition, the survey in [25] provides a comprehensive overview of these developments, including the various techniques used
to improve or generalize the inequality. It also gives examples of how these inequalities are used in different contexts. For
some recent references on the topic, i.e., in 2024 at the time of writing, see [26, 27, 28, 29].

In this article, we demonstrate two general integral inequalities that extend some results established in [17], which in turn
extend those in [16]. In particular, the following formula is discussed in [17, Lemma 2.1]:∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy, (1.3)

where h : [0,+∞)2 7→ [0,+∞) is a symmetric bivariate function, and F : [0,+∞)2 7→ R is a bivariate function depending on an
intermediate univariate function k : [0,+∞) 7→ [0,+∞), of the form F(x,y) = 1+ k(x)− k(y) (or, without loss of generality,
F(x,y) = 1+k(y)−k(x)). In the first result of this article, we show how to extend Equation (1.3), with a more general function
F depending on two intermediate univariate functions. In particular, inequalities come naturally depending on the monotonicity
of these functions. It is worth noting that the lower or upper bound obtained is expressed as a double integral, similar to the
right term in Equation (1.3).

In the second result, still based on our extended function F , we generalize [17, Part of the proof of Theorem 3.1] by
demonstrating a new variant of the Hilbert integral inequality. It is innovative in its use of two adjustable univariate functions
and parameters. More specifically, we demonstrate an integral inequality of the following form:

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy≤
√∫ +∞

0
p(x) f 2(x)dx

√∫ +∞

0
q(x) f 2(x)dx,

where p,q : [0,+∞) 7→ [0,+∞) are explicitly determined. In a sense, it extends the special Hilbert integral inequality presented
in Equation (1.2); when F reduces to the constant 1, it is expected that p and q reduce to the constant π . Some consequences
of this result are discussed and a new precise variant of the Hilbert integral inequality is established.

The rest of the article is divided into three sections: Section 2 presents the first general integral inequality result, including the
detailed proofs and some examples. A connection with the Hilbert integral inequality is also made. Section 3 deals with the
second general integral inequality result. It also gives detailed proof, discussion and some examples. Section 4 contains a
conclusion.

2. First general integral inequality result

The proposition below is our first general result on integral inequalities, which significantly extends the scope of [17, Lemma
2.1]. A double integral is obtained as a lower or upper bound.

Proposition 2.1. Let f : [0,+∞) 7→ [0,+∞) and u,v : [0,+∞) 7→ R be univariate functions, and h : [0,+∞)2 7→ [0,+∞) be
a bivariate function. We suppose that h is symmetric, i.e., h(x,y) = h(y,x) for any (x,y) ∈ [0,+∞)2. Based on u and v, let
F : [0,+∞)2 7→ R be the bivariate function defined by

F(x,y) = 1+u(x)[v(x)− v(y)].

Then, distinguishing four cases of assumptions on u and v, the results below hold.

Case 1: If v is constant and u is an arbitrary function, we have∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy,

provided that the integrals involved converge.

Case 2: If u is constant and v is an arbitrary function, we have∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy,

provided that the integrals involved converge and∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

|v(y)|dydx <+∞. (2.1)
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Case 3: If u and v are both increasing, or both decreasing, we have∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy≥
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy,

provided that the integrals involved converge and∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

|u(y)||v(x)− v(y)|dydx <+∞. (2.2)

Case 4: If u is increasing and v is decreasing, or if u is decreasing and v is increasing, we have∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy≤
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy,

provided that the integrals involved converge and the assumption in Equation (2.2) holds.

Proof. Let us prove the four cases, one after the other.

Case 1: If v is constant and u is an arbitrary function, we have F(x,y) = 1, so that∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy.

Case 2: If u is constant, say u(x) = c for any x ∈ [0,+∞) and v is an arbitrary function, we have∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

{1+ c[v(x)− v(y)]}dxdy

=
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy

+ c
[∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

v(x)dxdy−
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

v(y)dxdy
]
.

Let us focus on the last integral term (without the constant factor). Changing the notations x and y, using the symmetry
of h and the Fubini theorem thanks to Equation (2.1) to justify the change of the order of integration, it can be expressed
as ∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

v(y)dxdy =
∫ +∞

0

∫ +∞

0

f (y) f (x)
h(y,x)

v(x)dydx

=
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

v(x)dxdy.

So we have ∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy+ c×0

=
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy.

The desired result is obtained.

Case 3: Let us now suppose that u and v are both increasing, or both decreasing. The following decomposition holds:∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

{1+u(x)[v(x)− v(y)]}dxdy

=
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy+
1
2

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

u(x)[v(x)− v(y)]dxdy

+
1
2

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

u(x)[v(x)− v(y)]dxdy.
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Let us focus on the last integral term (without the constant factor). Changing the notations x and y, using the symmetry
of h and the Fubini theorem thanks to Equation (2.2) to justify the change of the order of integration, it can be expressed
as ∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

u(x)[v(x)− v(y)]dxdy =
∫ +∞

0

∫ +∞

0

f (y) f (x)
h(y,x)

u(y)[v(y)− v(x)]dydx

= −
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

u(y)[v(x)− v(y)]dxdy.

We therefore have∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy

+
1
2

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

[u(x)−u(y)][v(x)− v(y)]dxdy. (2.3)

If u and v are both increasing, for any x≥ y, we have u(x)≥ u(y) and v(x)≥ v(y), implying that [u(x)−u(y)][v(x)−
v(y)]≥ 0, and, for any y≥ x, we have u(y)≥ u(x) and v(y)≥ v(x), still implying that [u(x)−u(y)][v(x)− v(y)]≥ 0.

On the other hand, if u and v are both decreasing, for any x ≥ y, we have u(y) ≥ u(x) and v(y) ≥ v(x), implying
again that [u(x)−u(y)][v(x)− v(y)] ≥ 0, and, for any y ≥ x, we have u(x) ≥ u(y) and v(x) ≥ v(y), still implying that
[u(x)−u(y)][v(x)− v(y)]≥ 0. Since f and h are positive, we have

1
2

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

[u(x)−u(y)][v(x)− v(y)]dxdy≥ 0.

This and Equation (2.3) imply that∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy≥
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy.

The desired result is obtained.

Case 4: Let us now suppose that u is increasing and v is decreasing, or u is decreasing and v is increasing. Applying Equation
(2.3), we still can write∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy

+
1
2

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

[u(x)−u(y)][v(x)− v(y)]dxdy. (2.4)

If u is increasing and v is decreasing, for any x ≥ y, we have u(x) ≥ u(y) and v(y) ≥ v(x), implying that [u(x)−
u(y)][v(x)− v(y)]≤ 0, and, for any y≥ x, we have u(y)≥ u(x) and v(x)≥ v(y), still implying that [u(x)−u(y)][v(x)−
v(y)]≤ 0.

On the other hand, if u is decreasing and v is increasing, for any x≥ y, we have u(y)≥ u(x) and v(x)≥ v(y), implying
again that [u(x)−u(y)][v(x)− v(y)] ≤ 0, and, for any y ≥ x, we have u(x) ≥ u(y) and v(y) ≥ v(x), still implying that
[u(x)−u(y)][v(x)− v(y)]≤ 0. Since f and h are positive, we have

1
2

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

[u(x)−u(y)][v(x)− v(y)]dxdy≤ 0.

The combination of this with Equation (2.4) gives∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy≤
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy.

The desired result is obtained.

This concludes the proof of Proposition 2.1.

The interest of Proposition 2.1 is that the double integral under consideration is very general in form, and lower and upper
bounds can be derived under a simple monotonicity analysis of only two intermediate functions. However, if there is no
monotonicity (or no constant constant function), it cannot be applied.
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Taking u as the constant equal to 1 (and v arbitrary), Case 2 in Proposition 2.1 becomes [17, Lemma 2.1], recalled in Equation
(1.3) (with k = v). It also extends [16, Lemma 1.3], which considers u as the constant equal to 1 and v(x) = 1/(1+ x). The
other cases give new perspectives of applications.

As a direct consequence, if u is increasing and v is decreasing, or if u is decreasing and v is increasing, applying Case 4 of
Proposition 2.1 with h(x,y) = x+ y and the Hilbert integral inequality, we get∫ +∞

0

∫ +∞

0

f (x) f (y)
x+ y

F(x,y)dxdy≤
∫ +∞

0

∫ +∞

0

f (x) f (y)
x+ y

dxdy≤ π

∫ +∞

0
f 2(x)dx,

provided that the integrals involved converge and the assumption in Equation (2.2) holds. Some numerical examples are now
proposed to illustrate the results in Proposition 2.1, starting with Case 2. We take f (x) = e−x and h(x,y) = x+ y, so that∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy =
∫ +∞

0

∫ +∞

0

e−x−y

x+ y
dxdy = 1,

to work with a manageable benchmark.

Illustration of Case 2: Taking u(x) = 4 and v(x) = log(x), so that u is constant and v is an arbitrary selected function, we
have F(x,y) = 1+u(x)[v(x)− v(y)] = 1+4log(x/y), and∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

e−x−y

x+ y

[
1+4log

(
x
y

)]
dxdy

= 1

=
∫ +∞

0

∫ +∞

0

e−x−y

x+ y
dxdy

=
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy.

As expected, the desired double integrals are equal.

Illustration of Case 3: Taking u(x) = x and v(x) = x2, so that u and v are both increasing, we have F(x,y) = 1+u(x)[v(x)−
v(y)] = 1+ x(x2− y2), and∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

e−x−y

x+ y

[
1+ x(x2− y2)

]
dxdy

= 2

≥ 1

=
∫ +∞

0

∫ +∞

0

e−x−y

x+ y
dxdy

=
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy.

As another example for this case, taking u(x) = e−x and v(x) = 1/(1+ x), so that u and v are both decreasing, we have
F(x,y) = 1+u(x)[v(x)− v(y)] = 1+ e−x[1/(1+ x)−1/(1+ y)], and∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

e−x−y

x+ y

[
1+ e−x

(
1

1+ x
− 1

1+ y

)]
dxdy

≈ 1.03772

≥ 1

=
∫ +∞

0

∫ +∞

0

e−x−y

x+ y
dxdy =

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy.

As expected, the desired inequality is obtained for both examples.
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Illustration of Case 4: Taking u(x) =
√

x and v(x) = 1/(1 + x2), so that u is increasing and v is decreasing, we have
F(x,y) = 1+u(x)[v(x)− v(y)] = 1+

√
x[1/(1+ x2)−1/(1+ y2)], and∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

e−x−y

x+ y

[
1+
√

x
(

1
1+ x2 −

1
1+ y2

)]
dxdy

≈ 0.931516

≤ 1

=
∫ +∞

0

∫ +∞

0

e−x−y

x+ y
dxdy

=
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy.

As another example for this case, taking u(x) = e−x2
and v(x) = log(x), so that u is decreasing and v is increasing, we

have F(x,y) = 1+u(x)[v(x)− v(y)] = 1+ e−x2
log(x/y), and∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

e−x−y

x+ y

[
1+ e−x2

log
(

x
y

)]
dxdy

≈ 0.752483

≤ 1

=
∫ +∞

0

∫ +∞

0

e−x−y

x+ y
dxdy

=
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy.

As expected, the desired inequality is obtained for both examples.

The next section is devoted to a general variant of the Hilbert integral inequality, with some connection to the main double
integral in Proposition 2.1. Additional assumptions are made on F and h, including the positivity of F .

3. Second general integral inequality result

Inspired by [17, Theorem 3.1] and in the light of the functional configuration in Proposition 2.1, the result below shows a
generalized variant of the Hilbert integral inequality. Upper bounds are obtained through various weighted L2 norms of f .

Proposition 3.1. Let f : [0,+∞) 7→ [0,+∞) and u,v : [0,+∞) 7→ R be univariate functions, and h : [0,+∞)2 7→ [0,+∞) be a
bivariate function. Based on u and v, let F : [0,+∞)2 7→ R be the bivariate function defined by

F(x,y) = 1+u(x)[v(x)− v(y)].

The assumptions below are made for F and h.

A1: F is positive, i.e., for any (x,y) ∈ [0,+∞)2, F(x,y)≥ 0.

A2: h is symmetric, i.e., h(x,y) = h(y,x) for any (x,y) ∈ [0,+∞)2, and homogeneous in the sense that there exists λ ∈ R
satisfying, for any (x,y,z) ∈ [0,+∞)3,

h(zx,zy) = zλ h(x,y).

Then, for any α ∈ R, the following integral inequality holds:∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy ≤
√∫ +∞

0
x1−λ {[1+u(x)v(x)]cα −u(x)Tα [v](x)} f 2(x)dx

×
√∫ +∞

0
x1−λ {cα +Tα [uv](x)− v(x)Tα [u](x)} f 2(x)dx,

where

cα =
∫ +∞

0

rα

h(1,r)
dr
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and, for any function k : [0,+∞) 7→ R, Tα [k] is the following integral operator:

Tα [k](x) =
∫ +∞

0

rα

h(1,r)
k(rx)dr,

provided that the integrals involved converge. Taking k as the constant equal to 1, we can note that Tα [k](x) = cα .

Proof. Using the positivity of F described in A1, the decomposition (y/x)α/2(x/y)α/2 = 1 and applying the Cauchy-Schwarz
integral inequality according to the variables x and y, we get

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x)√
h(x,y)

√
F(x,y)

(y
x

)α/2
× f (y)√

h(x,y)

√
F(x,y)

(
x
y

)α/2

dxdy

≤

√∫ +∞

0

∫ +∞

0

f 2(x)
h(x,y)

F(x,y)
(y

x

)α

dxdy

√∫ +∞

0

∫ +∞

0

f 2(y)
h(x,y)

F(x,y)
(

x
y

)α

dxdy

=

√∫ +∞

0
p(x) f 2(x)dx

√∫ +∞

0
q(y) f 2(y)dy, (3.1)

where

p(x) =
∫ +∞

0

1
h(x,y)

F(x,y)
(y

x

)α

dy

and

q(y) =
∫ +∞

0

1
h(x,y)

F(x,y)
(

x
y

)α

dx.

Let us now express p(x) and q(y), one after the other. Using the change of variables y = rx and the homogeneous property of h
in A2, we get

p(x) = x
∫ +∞

0

1
h(x,rx)

F(x,rx)rα dr = x1−λ

∫ +∞

0

1
h(1,r)

F(x,rx)rα dr

= x1−λ

∫ +∞

0

1
h(1,r)

{1+u(x)[v(x)− v(rx)]}rα dr

= x1−λ

{
[1+u(x)v(x)]

∫ +∞

0

rα

h(1,r)
dr−u(x)

∫ +∞

0

rα

h(1,r)
v(rx)dr

}
= x1−λ {[1+u(x)v(x)]cα −u(x)Tα [v](x)} . (3.2)

On the other hand, for q(y), using the change of variables x = ry, the symmetry and the homogeneous property of h in A2, we
get

q(y) = y
∫ +∞

0

1
h(ry,y)

F(ry,y)rα dr = y1−λ

∫ +∞

0

1
h(r,1)

F(ry,y)rα dr

= y1−λ

∫ +∞

0

1
h(1,r)

{1+u(ry)[v(ry)− v(y)]}rα dr

= y1−λ

{∫ +∞

0

rα

h(1,r)
dr+

∫ +∞

0

rα

h(1,r)
u(ry)v(ry)dr− v(y)

∫ +∞

0

rα

h(1,r)
u(ry)dr

}
= y1−λ {cα +Tα [uv](y)− v(y)Tα [u](y)} . (3.3)

Combining Equations (3.1), (3.2) and (3.3), and standardizing the notation x and y, we obtain

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy ≤
√∫ +∞

0
x1−λ {[1+u(x)v(x)]cα −u(x)Tα [v](x)} f 2(x)dx

×
√∫ +∞

0
x1−λ {cα +Tα [uv](x)− v(x)Tα [u](x)} f 2(x)dx,

which is the desired inequality. This concludes the proof.
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The interest of Proposition 3.1 lies in its generality and the form of the upper bound obtained; it is typical of those appearing in
some variants of the Hilbert integral inequality, i.e., with the product of two weighted L2 norms of f .

In fact, if we analyze the proof of Proposition 3.1, it can be easily extended to two functions, f ,g : [0,+∞) 7→ [0,+∞), as
follows: ∫ +∞

0

∫ +∞

0

f (x)g(y)
h(x,y)

F(x,y)dxdy ≤
√∫ +∞

0
x1−λ {[1+u(x)v(x)]cα −u(x)Tα [v](x)} f 2(x)dx

×
√∫ +∞

0
x1−λ {cα +Tα [uv](x)− v(x)Tα [u](x)}g2(x)dx.

We have concentrated on the case f = g mainly to make some connections with Proposition 2.1.

Let now discuss A1. If, for any x ∈ [0,+∞), u(x)∈ [0,1] and v(x)∈ [0,1], then, for any (x,y)∈ [0,+∞)2, we have u(x)v(x)≥ 0
and u(x)v(y)≤ 1, so that

F(x,y) = u(x)v(x)+ [1−u(x)v(y)]≥ 0.

The assumption A1 is thus satisfied.

In the context of Case 3 in Proposition 2.1, i.e., if u and v are both increasing, or both decreasing, under some integrability
assumptions, if A1 and A2 of Proposition 3.1 are satisfied, then this result gives∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy ≤
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy

≤
√∫ +∞

0
x1−λ {[1+u(x)v(x)]cα −u(x)Tα [v](x)} f 2(x)dx

×
√∫ +∞

0
x1−λ {cα +Tα [uv](x)− v(x)Tα [u](x)} f 2(x)dx. (3.4)

As noted in [17], the choices α = −1/2, h(x,y) = x+ y, u(x) = 1 and v(x) = 1/(1+ x) give the improved Hilbert integral
inequality demonstrated in [16, Theorem 2.1].

With this in mind, let us illustrate Proposition 3.1 with a new example activating the function u. We consider α = −1/2,
h(x,y) = x+ y, u(x) = 1/(1+ x) and v(x) = 1/(1+ x). So we have

F(x,y) = 1+
1

1+ x

(
1

1+ x
− 1

1+ y

)
= 1+

y− x
(1+ x)2(1+ y)

.

Since u(x) ∈ [0,1] and v(x) ∈ [0,1], the assumption A1 holds. Furthermore, with the selected function h, the assumption A2 is
obviously satisfied with λ = 1. Let now remark that

cα =
∫ +∞

0

rα

h(1,r)
dr

=
∫ +∞

0

1√
r(1+ r)

dr

=
{

2arctan[
√

r]
}r→+∞

r=0

= π,

Tα [u](x) =
∫ +∞

0

rα

h(1,r)
u(rx)dr =

∫ +∞

0

1√
r(1+ r)(1+ rx)

dr

=

{
2

x−1
[√

xarctan[
√

xr]− arctan[
√

r]
]}r→+∞

r=0

=
π

1+
√

x
,

Tα [v](x) = Tα [u](x) =
π

1+
√

x
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and

Tα [uv](x) =
∫ +∞

0

rα

h(1,r)
u(rx)v(rx)dr

=
∫ +∞

0

1√
r(1+ r)(1+ rx)2 dr

=

{
1

(x−1)2

[
(x−1)x

√
r

1+ rx
+2arctan[

√
r]+ (x−3)

√
xarctan[

√
xr]
]}r→+∞

r=0

=
[2+
√

x]π

2 [1+
√

x]2
.

It follows from Proposition 3.1 that∫ +∞

0

∫ +∞

0

f (x) f (y)
x+ y

[
1+

y− x
(1+ x)2(1+ y)

]
dxdy =

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy

≤
√∫ +∞

0
x1−λ {[1+u(x)v(x)]cα −u(x)Tα [v](x)} f 2(x)dx

×
√∫ +∞

0
x1−λ {cα +Tα [uv](x)− v(x)Tα [u](x)} f 2(x)dx

=

√∫ +∞

0

{[
1+

1
(1+ x)2

]
π− π

(1+ x)[1+
√

x]

}
f 2(x)dx

×

√√√√∫ +∞

0

{
π +

[2+
√

x]π

2 [1+
√

x]2
− π

(1+ x)[1+
√

x]

}
f 2(x)dx

= π

√∫ +∞

0

x5/2 +2x3/2 + x2 + x+2
√

x+1
[1+
√

x](1+ x)2 f 2(x)dx

×

√∫ +∞

0

5x3/2 +2x2 +6x+3
√

x+2
2[1+

√
x]2(1+ x)

f 2(x)dx.

Also, since u and v are both decreasing, based on Equation (3.4), we have∫ +∞

0

∫ +∞

0

f (x) f (y)
x+ y

dxdy ≤
∫ +∞

0

∫ +∞

0

f (x) f (y)
x+ y

[
1+

y− x
(1+ x)2(1+ y)

]
dxdy

≤ π

√∫ +∞

0

x5/2 +2x3/2 + x2 + x+2
√

x+1
[1+
√

x](1+ x)2 f 2(x)dx

×

√∫ +∞

0

5x3/2 +2x2 +6x+3
√

x+2
2[1+

√
x]2(1+ x)

f 2(x)dx.

Let us verify these inequalities with a numerical example. Considering f (x) = e−x, we have∫ +∞

0

∫ +∞

0

e−x−y

x+ y
dxdy = 1,

∫ +∞

0

∫ +∞

0

e−x−y

x+ y

[
1+

y− x
(1+ x)2(1+ y)

]
dxdy≈ 1.02897

∫ +∞

0

x5/2 +2x3/2 + x2 + x+2
√

x+1
[1+
√

x](1+ x)2 e−2xdx≈ 0.535435,

∫ +∞

0

5x3/2 +2x2 +6x+3
√

x+2
2[1+

√
x]2(1+ x)

e−2xdx≈ 0.523919,

and we check that 1≤ 1.02897≤ π
√

0.535435
√

0.523919≈ 1.66393. So many more examples can be formulated on a similar
basis of analysis.
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4. Conclusion

In this article, we have established two new integral inequalities that extend some key results in [17, 16]. Both are centered on
the following double integral: ∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy

where the novelty lies in the general definition of F of the following form: F(x,y) = 1+u(x)[v(x)− v(y)]. The first result is
adaptable and gives lower and upper bounds for this double integral. The second result is related to the setting of the Hilbert
integral inequality, where some new upper bounds are obtained involving weighted L2 norms of f . The perspectives of our
results make them important in several mathematical areas where challenging double integrals (involving certain product and
ratio functions) need to be bounded in order to draw conclusions.
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