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Abstract 

Bearings are fundamental and delicate elements directly influencing performance, efficiency, 
stability, and operational lifespan. However, harsh and fluctuating operating conditions not 
only jeopardize the safe working environment but also lead to abrupt and unforeseen 
component faults, resulting in economic losses. Diagnosing faults in bearings operating under 
variable speed conditions necessitates a shift from traditional methods towards more intricate 
signal processing techniques and artificial intelligence models with more challenging 
interpretations. Nevertheless, this research article aims to significantly reduce computational 
burden and complexity by employing simpler and more straightforward models both in the 
process of feature extraction and classification, utilizing deep learning methodologies. The 
research article encompasses the transformation of raw vibration data obtained from bearings 
operating under variable speed conditions into visual representations and their subsequent 
classification using the Long Short-Term Memory (LSTM), one of the deep learning models. 
The developed LSTM-based fault classification model, trained with very limited data, achieves 
100% accuracy in classifying four different states of the bearing. 
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Değişken hız koşullarında rulman arızalarının derin öğrenme 
kullanılarak teşhisi 

Özet 

Rulmanlar, performansı, verimliliği, stabiliteyi ve operasyonel ömrü doğrudan etkileyen temel 
ve hassas bileşenlerdir. Ancak, zorlu ve değişken çalışma koşulları, yalnızca güvenli çalışma 
ortamını tehlikeye atmakla kalmaz, aynı zamanda ani ve öngörülemeyen bileşen arızalarına 
yol açarak ekonomik kayıplara neden olmaktadır. Değişken hız koşulları altında çalışan 
rulmanlarda arıza teşhisi, geleneksel yöntemlerden daha karmaşık sinyal işleme tekniklerini 
ve yorumlanması daha zor yapay zekâ modellerini gerektirir. Buna rağmen, bu araştırma 
makalesi, hem özellik çıkarma hem de sınıflandırma sürecinde daha basit ve anlaşılır modeller 
kullanarak hesaplama yükünü ve model karmaşıklığını önemli ölçüde azaltmayı 
amaçlamaktadır. Araştırma makalesi, değişken hız koşulları altında çalışan rulmanlardan elde 
edilen ham titreşim verilerinin görsel temsillere dönüştürülmesini ve ardından derin öğrenme 
modellerinden biri olan LSTM ile sınıflandırılmasını kapsamaktadır. Geliştirilen LSTM tabanlı 
arıza sınıflandırma modeli, oldukça sınırlı verilerle eğitildiğinde, rulmanın dört farklı 
durumunu %100 doğrulukla sınıflandırmayı başarmaktadır. 
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1 Introduction 

Signal analysis constitutes a comprehensive array 
of mathematical methods employed for interpreting 
analog and digital signals, prevalent across a 
multitude of technological sectors ranging from 
healthcare to industry, defense, and energy 
systems. Through these methodologies, signals are 
scrutinized to discern their temporal and spatial 
variations. The outcomes gleaned from such 
analyses play pivotal roles in the detection of 
diverse ailments, the design of electronic limb 
prosthetics, the establishment of radar systems, or 
the diagnosis of mechanical equipment faults.  

Signal analysis finds widespread application in 
diagnosing a range of faults occurring in rotating 
machinery and scheduling maintenance activities. 
In modern industries, the analysis of signals 
acquired from real-time sensors (including sound, 
heat, vibration, image, magnetic field, etc.) 
facilitates the prediction of potential component 
failures, maintenance intervals, and the remaining 
operational lifespan of machines. Among the 
techniques employed in this form of predictive 
maintenance analysis, vibration analysis stands out 
as the most commonly utilized method. 

Vibration analysis is a process aimed at 
investigating the temporal and spatial changes of 
vibration transmitted from any component, 
machine, or structure. Its objective is to assess the 
overall health condition and detect any abnormal 
incidents. Vibration analysis is widely employed for 
diagnosing bearing faults [1–10]. Such faults can 
manifest in diverse forms, including cracks, 
fractures, clearances, or ball spalling in different 
parts like the outer race, inner race, balls, or cage. 
These defective components, upon interacting with 
other metal surfaces, influence and modify the 
vibration and sound signals transmitted by the 
machine [10].  

When examining artificial intelligence models 
developed for bearing faults, the procedural steps 
involve applying diverse signal processing 
techniques to vibration data to extract features, 
interpreting these features using artificial 
intelligence models, and assessing the model's 
performance. Meaningful information uncovering 
fault characteristics from vibration signals is 
obtained through transformations in the Time 
Domain (TD), Frequency Domain (FD), or Time-
Frequency Domain (TFD) during the feature 
extraction process. Statistical properties of the 

signal such as variance, standard deviation, mean, 
skewness and kurtosis are extracted in the TD. In 
the FD, various transformation methods such as 
Fast Fourier Transform (FFT), Cepstral Analysis or 
Envelope Analysis are generally used. In the TFD, 
various transformation techniques such as Wavelet 
Transform (WT), Short Time Fourier Transform 
(STFT), Variational Mode Decomposition (VMD), 
Empirical Mode Decomposition (EMD), Hilbert 
Huang Transform (HHT) or Welch Method are used 
[11]. In some studies, a single feature is employed, 
whereas in others, diverse combinations of these 
features are utilized. It is seen that various Machine 
Learning (ML) models such as Decision Trees, 
Support Vector Machines (SVM) and Deep Learning 
(DL) models such as LSTM, Convolutional Neural 
Network (CNN), and Auto Encoder (AE) are used in 
the process of interpreting the extracted features 
[11,12]. Nevertheless, upon scrutiny of the analyzed 
studies, it becomes apparent that deep learning 
(DL) models are employed with greater frequency 
[12]. The primary rationale behind the preference 
for DL algorithms over other ML algorithms lies in 
their capacity to autonomously extract features 
from raw data and adeptly interpret both image and 
sequential data. 

Upon scrutinizing fault diagnosis methods for 
variable speed conditions, it becomes evident that 
more intricate artificial intelligence architectures 
are utilized. This is attributed to the fact that the 
variable speed generates both Amplitude 
Modulation (AM) and Frequency Modulation (FM) 
in addition to the vibration data [1]. Additionally, 
domain shifts occur across various domains, such as 
training, validation, and testing, resulting in 
differences in sample distributions [2]. 
Nevertheless, accessing fault data in actual 
industrial applications poses a significant challenge. 
Consequently, researchers investigating fault 
diagnosis under variable speeds have directed their 
focus towards fault diagnosis models developed 
with limited datasets [2]. Therefore, prior to fault 
diagnosis, addressing these challenges is essential. 

This study investigates artificial intelligence-based 
research that analyzes vibration data collected 
under variable speed conditions. The research 
examined utilized the OTTAWA dataset [13,14], 
which comprises vibration data from the bearing 
under variable speed conditions. This data set 
encompasses vibration data corresponding to 
healthy, ball faults, outer race faults, inner race 
faults, and compound faults of bearings operating 
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under variable speed conditions (decreasing, 
increasing, first increasing then decreasing, first 
decreasing then increasing,) [14]. 

In [1], a deep learning model comprising Speed 
Normalization (SN) and AE branches was proposed. 
The SN structure, constructed using CNN 
architecture, separates speed information from the 
vibration signal, thereby eliminating the AM 
present in the vibration signal. Subsequently, the AE 
unsupervised learning model segregates the data 
into healthy and faulty categories. The proposed 
deep learning model was trained solely on healthy 
data, while during the testing phase, it was 
evaluated using both healthy and faulty data. AUC 
value was selected as the performance metric in the 
study conducted on three different datasets, 
achieving a performance of 99.8% on the OTTAWA 
test data. 

In [2], taking into account both the overfitting 
problem induced by inadequate data and the 
domain shift resulting from variable speed, an 
advanced method termed Hybrid Augmented 
Network with Balance Domain Window (BW-HAN) 
is proposed to address these challenges. In the 
proposed model, multiple integration of BW-HAN 
blocks is used, including a convolutional 
subsampling patch embedding section and a 
window multi-head self-attention mechanism 
section. The first section catches the low-level local 
features of the samples, while the second section 
extracts the high-dimensional global features of the 
samples. In order to overcome the domain shift, a 
partitioning method for balancing the distribution 
of the data space by means of data reconstruction 
was developed in this study. In the study, where the 
data length was chosen as 4096, a total of 1000 
samples were utilized, comprising 600 samples for 
the healthy condition, 200 for inner race faults, and 
200 for outer race faults. Of these samples, 4% are 
reserved for training and the remaining 96% for 
testing. In the study involving the classification of 
three classes, an achievement of 99.43% accuracy 
was attained. 

In [3], the mathematical equation of the Fault 
Response Waveform (FRW) is constructed by 
including the fault frequency. This mathematical 
equation is used as the mother wavelet when the 
WT is applied to the raw vibration data. In this 
study, a new method was developed by analyzing 
the similarity between the computations used in the 
WT method and the computations obtained by 
convolving the raw data with the kernel in the 1D 

CNN model. Based on this similarity, the FRW was 
used to assign values for the kernel in the CNN 
model. Based on this idea, Fault Response 
Convolutional Layer (FRCL) was developed to 
extract features that are not affected by operating 
conditions. In addition, Improved Soft Threshold 
Function (ISTF) and The Multi-Scale Attention 
Module (MSAM) modules were developed to 
improve diagnostic performance. In this study, 
where healthy, outer race fault and inner race fault 
were classified, the proposed CNN model was 
trained using data from increasing speed conditions 
and tested with data from decreasing speed 
conditions and vice versa. In the study where the 
data length was selected as 2048, 97 samples were 
used for each class in both training and test phases 
and the highest success was obtained as 98.45% in 
the accuracy value in the test data. 

In [4], in the feature extraction phase, Automated 
Relative Energy-based Empirical Mode 
Decomposition (AREEMD) was first used. With 
AREEMD, the signal was first decomposed into IMFs 
components. Then all IMFs with low amplitude 
compared to the original signal were eliminated. All 
selected IMFs were collected in the next step. Low 
amplitude and high frequency components were 
thus filtered out from the original signal. 
Subsequently cepstral analysis was applied to the 
obtained signal. In this analysis method, cepstrum 
was obtained by taking Inverse FFT (IFFT) of the 
logarithm of the FFT of the signal. In the next step, 
Autoregressive Features were extracted with the 
5th Order Yule-Walker Model. In this study, 
weighted-KNN (wKNN) was proposed in the 
classification stage. In addition to cepstral 
autoregressive features, time autoregressive, shape 
and statistical features, hjorth features were used 
comparatively. In the classification stage, five 
different classifiers were used in addition to wKNN. 
In the application developed on three different data 
sets and the combination of these data sets, healthy, 
outer race faults, inner race faults were classified 
for OTTAWA data set. The model proposed in this 
study achieved 100% success in accuracy value. 

In [5], first, a Noise Eliminated Ensemble Empirical 
Mode Decomposition (NEEEMD) method was used 
to suppress noise in the vibration data. This method 
decomposes the vibration data into IMFs and then 
obtains the wavelet packet energy entropy, small 
packet energy coefficients and Gini coefficients for 
each IMF as a TFD feature. In addition, dimensional 
statistical properties (mean, standard deviation, 
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kurtosis, skewness, etc.) and dimensionless 
statistical properties of the vibration data for the TD 
were used. At the same time, in the TFD, features of 
the FFT of the signal (concentration and dispersion 
of the spectrum, positional changes of the main 
frequency band, etc.) were used. Robust 
Unsupervised Feature Selection with Local 
Preservation (RUSLP) was used in an attempt to 
choose effective features from the extracted 
multidimensional feature space. In the classification 
stage, Binary Tree Least Squares Twin Support 
Vector Machine (BTLSTSVM) was used. In the 
article, studies were carried out on three different 
data sets. In the study where only increasing speed 
data for healthy, outer race faults and inner race 
faults were used for OTTAWA dataset, the data 
length was selected as 2000. For the seven features 
selected with RUSLP, BTLSTSVM achieved 100% on 
the precision performance metric. 

In [6], the effectiveness of different ML and DL 
techniques was examined using MATLAB's 
Classification Learner application, employing nine 
commonly utilized statistical features pertaining to 
vibration data. In this study, the effectiveness of 
Principal Component Analysis (PCA) and 
Curvilinear Component Analysis (CCA) methods in 
dimensionally reducing the feature space was 
investigated. In the study, it was stated that PCA 
results showed that there were five intrinsic 
dimensionalities for the data, but it was insufficient 
for class differentiation. In the CCA method used to 
analyses data geometry and topology, the first five 
components showed a better discrimination 
between class clusters. In the study where healthy 
condition, ball faults, outer race faults and inner 
race faults were classified, about 30 ML techniques 
and CNN model were used comparatively. In the 
study based on the CCA technique, the data was 
distributed as 30% validation and testing set and 
70% training set. According to the results, the 
classification models using raw data achieved 
higher performance than the CCA method. In the 
study analysed, it is stated that this is due to the fact 
that the reduction in complexity of the original data 
that occurs when CCA is applied is accompanied by 
a reduction in the discriminative feature space. 
Contrary to this, raw data encapsulates all the 
original features, which are inherently more 
intricate and potentially more discernible. 
According to the classification results tested with 
raw data, Artificial Neural Network (ANN) achieved 
the highest success with 97.7% accuracy. 

In [7], a Convolution Enabled Transformer (Con-eT) 
was developed as a deep encoder. This model 
combines the advantages of the vanilla transformer 
and the convolution process in CNN. Within the 
research, local features were extracted utilizing the 
convolutional layer, while the global features 
inherent in the transformer were preserved 
through the self-attention mechanism. The 
developed model was more effectively encoded 
depth detection features irrespective of the 
condition, while simultaneously reducing the 
number of model parameters. Later on, a Random 
Contrastive Regularization (RCR) method was 
introduced to enable the model to learn features 
independent of the operating conditions and 
enhance its generalization performance across 
varying conditions. In the study where healthy, 
outer race faults and inner race faults were 
classified, a data length of 4096 was selected. Only 
increasing speed conditions for all three classes 
were used during training, while decreasing, 
increasing after decreasing and decreasing after 
increasing speed conditions were used in the test 
phase. The recommended model, trained on 3492 
examples and tested on 10476 examples, attained 
an accuracy of 100% on the test data.  

When looking at the studies examined, it is seen that 
very complex artificial intelligence models are used 
either in the feature extraction process or in the 
interpretation of the extracted features. Especially 
the models using attention and transformer 
structures require additional calculations and 
memory allocation. The aforementioned 
circumstances render the interpretation of the data 
challenging, thereby necessitating a time-
consuming model training process. This may 
potentially lead to difficulties, particularly in 
devices constrained by limited resources or in real-
time applications where minimal latency is of 
paramount importance. In reality, the complexity 
observed in the models within the examined studies 
stems from an inability to select an appropriate data 
size. It is essential that the data length be chosen to 
encompass a complete cycle of the machine while 
operating at its minimum speed. 

In this research article, a fault classification model 
is proposed for bearings operating under variable 
speed conditions using the OTTAWA dataset 
[13,14]. The study, in which the fault characteristics 
of the bearing are extracted from the vibration data 
of the bearing, consists of obtaining a two-
dimensional visual representation of the data and 
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classifying them with the LSTM model. The 
simplicity of both the feature extraction process and 
the employed LSTM model notably abbreviates the 
interpretation process of the vibration data. In the 
study focused on classifying healthy condition, ball 
faults, outer race faults and inner race faults of the 
bearing, the training phase utilized only 4% of the 
data for model training and validation, with the 
remaining 96% reserved for model testing. Notably, 
during testing, attaining 100% accuracy, precision, 
and f1-score values underscores the model's 
remarkable capacity for generalization. 

2 Material and method 

The study recommends a fault classification model 
for bearings operating under variable speed 
conditions. In this investigation, the two-
dimensional representation of vibration data from 
the bearing is chosen as the feature, and an LSTM-
based deep learning model is utilized for the 
classification phase. The principle diagram of the 
proposed model is given in Figure1. 

 

Figure 1. Principle diagram of the proposed fault 
classification model 

The proposed model comprises three stages: 

✓ Data preprocessing: The data length for 
constructing model inputs is chosen to 
encompass a single revolution of the 
machine at its lowest speed. Following the 
normalization process, one-dimensional 
vibration data is restructured into a two-
dimensional format. The acquired two-
dimensional data is partitioned into three 
subsets, allocating 4% for training and 
validation, and reserving 96% for testing. 

✓ Model Training: The model is trained with 
training and validation data. 

✓ Model Testing: The trained model is tested 
with test data. 

2.1 Acquisition of data 

During the acquisition of the OTTAWA dataset [14], 
experiments were conducted on a Spectra Quest 
machine fault simulator (MFS-PK5M) [13]. The 
experimental setup is given in Figure 2. 

 

Figure 2. Experimental setup for the OTTAWA data 
[13] 

The data comprises vibration signals emanating 
from bearings exhibiting diverse health conditions 
under varying rotational speed conditions. [14]. The 
health conditions of the bearing are healthy, ball 
fault, outer race fault, inner race fault and 
compound fault. The operational conditions of the 
bearing's rotational speed comprise speed increase, 
speed decrease, initial speed increase followed by 
decrease, and initial speed decrease followed by 
increase. There are 60 datasets in total and all this 
data is sampled at 200,000Hz and the sampling time 
is 10 seconds [14]. 

This study classifies four distinct health conditions 
of the bearing, namely healthy, inner race fault, 
outer race fault, and ball fault. The rotational speeds 
used for these health conditions are given in Table 
1. This study employs a total of 48 distinct data, 
consisting of 12 rotational speeds allocated to each 
health condition associated with the bearing. Each 
data consists of 2,000,000 vibration signal. When 
study [13] is examined, the operating speeds vary 
between 29 Hz and 9.8 Hz. The minimum speed for 
this study is taken as approximately 10 Hz. Hence, 
the data length corresponding to one revolution of 
the bearing amounts to 20,000 (200 kHz / 10 Hz). 
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Figure 3 shows the vibration signals for healthy, 
inner race fault, outer race fault and ball fault 
samples. 

Table 1. Rotational speeds used in the OTTAWA 
data 

Health 
Condition 

Rotational Speed Condition 

Increasing Decreasing 

First 
Increasing 
Then 
Decreasing 

First 
Decreasing 
Then 
Increasing 

Healthy 

H-A-1 H-B-1 H-C-1 H-D-1 

H-A-2 H-B-2 H-C-2 H-D-2 

H-A-3 H-B-3 H-C-3 H-D-3 

Inner  
Race  
Faults 

I-A-1 I-B-1 I-C-1 I-D-1 

I-A-2 I-B-2 I-C-2 I-D-2 

I-A-3 I-B-3 I-C-3 I-D-3 

Outer  
Race 
Faults 

O-A-1 O-B-1 O-C-1 O-D-1 

O-A-2 O-B-2 O-C-2 O-D-2 

O-A-3 O-B-3 O-C-3 O-D-3 

Ball  
Faults 

B-A-1 B-B-1 B-C-1 B-D-1 

B-A-2 B-B-2 B-C-2 B-D-2 

B-A-3 B-B-3 B-C-3 B-D-3 

 

Figure 3. The vibration signals corresponding to 
samples of (a) healthy, (b) inner race fault, (c) 

outer race fault, and (d) ball fault 

2.2 Signal to image mapping 

Traditional fault diagnosis methods use various 
techniques such as FFT, STFT, EMD, VMD, WT, HHT, 
etc. to reveal the fault characteristics inherent in the 
raw vibration data. These methods require expert 
knowledge as well as highly complex and time-
consuming mathematical calculations. In contrast 
to traditional methods, only raw data is used in the 
feature extraction process in this study to once 
again prove the ability of deep learning methods to 
interpret raw data. However, the utilization of a 
dataset with a length of 20,000 in this study will 
adversely affect both the efficiency and inference 
time of the forthcoming artificial intelligence 
network. In order to address this issue, researchers 
have enhanced the performance and interpretive 
process of the artificial intelligence network by 
transforming the data from one-dimensional space 
to two-dimensional space [8–10]. In this method, 
also known as signal to image mapping technique, 
one-dimensional raw vibration data are converted 
into grey images which are two-dimensional 
representations. In the studies [8–10] examined, 
raw data with length N2 in one-dimensional space 
are transformed into two-dimensional matrices of 
size NxN. However, it is not possible to obtain a 
quadratic matrix when the data length is 20,000. 
Therefore, in this study, the raw data is transformed 
into a rectangular matrix of 100x200 dimensions 
rather than a quadratic matrix. During the 
generation of the two-dimensional representation 
of the vibration signal, the raw vibration data is 
initially normalized within the range of 0 to 1. 
Subsequently, each value of the one-dimensional 
normalized vibration signals is sequentially 
positioned from left to right onto the two-
dimensional image, where each value corresponds 
to a pixel value. Figure 4 depicts randomly selected 
two-dimensional grayscale images representing 
healthy, inner race fault, outer race fault, and ball 
fault. When the obtained grey images are examined, 
it is observed that each health condition of the 
bearing exhibits identical patterns within itself. 
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Figure 4. The two-dimensional grayscale images 
corresponding to samples of (a) healthy, (b) inner 

race fault, (c) outer race fault, and (d) ball fault 

In the next stage, the grey images obtained are 
divided into three by random selection with 4% 
training and validation and 96% testing for each 
class. 60% of the 4% data is training data and 40% 
is validation data. Table 2 shows the sample 
distributions used for training, validation and 
testing. 

Table 2. Sample distributions 

  Training Validation Test 

Healthy 28 20 1152 

Inner Race 
Faults 

28 20 1152 

Outer Race 
Faults 

28 20 1152 

Ball Faults 28 20 1152 

Total 112 80 4608 

2.3 Classification with deep learning 

The advancement of artificial intelligence 
technologies, propelled by the development of 
advanced sensor technologies, wireless 
communication, and information processing 
systems, has significantly accelerated. Deep 
learning, a sub-discipline of artificial intelligence, is 
a machine learning technique that imitates the 
observation, analysis, learning and decision-making 
processes of the human brain by using big data. 
LSTM, a type of deep learning model, serves as a 
robust tool in applications necessitating sequential 
analysis of data, such as text generation, text 
classification, handwriting recognition, and 
augmenting audio to silent videos. Moreover, the 
LSTM are extensively employed as diagnostic and 
predictive models in assessing machine health. 

In this research article, LSTM-based deep learning 
model is used as a fault diagnosis model. The 

structure of an LSTM block with an input vector 
length of 3 and having 2 units [15,16] is given in 
Figure 5.  The LSTM cell has 3 inputs (xt, ct-1, ht-1) and 
2 outputs (ct, ht). At the same time the LSTM cell has 
4 dense layers (forget gate, input gates, output 
gate). Where: 

xt : input value at time step t 

ct-1 : cell state value at time step t-1 

ht-1 : hidden state value at time step t-1 

ct : cell state value at time step t 

ht : hidden state value at time step t 

Here the vector lengths ht-1, ct-1, ht and ct are defined 
by the unit parameter of the LSTM cell, while the 
vector length xt is defined by the input shape 
parameter of the LSTM cell [15]. 

 

Figure 5. The structure of an LSTM block with an 
input vector length of 3 and having 2 units [15,16] 

The output functions of four dense layers are given 
below [15]: 

𝑓𝑡 = 𝜎𝑠(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (1) 

𝑖𝑡 = 𝜎𝑠(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (2) 

𝑖𝑖𝑡 = 𝜎ℎ𝑡(𝑊𝑖𝑖𝑥𝑡 + 𝑈𝑖𝑖ℎ𝑡−1 + 𝑏𝑖𝑖) (3) 

𝑜𝑡 = 𝜎𝑠(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (4) 

Where: 

ft : output vector of forget gate’s dense layer  

it : output vector of input gate’s first dense  

                 layer 

iit : output vector of input gate’s second dense  

                 layer  

ot : output vector of output gate’s dense layer 

𝑊 : weight matrix of the xt 

𝑈 : weight matrix of the ht-1 
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𝑏 : bias vector 

𝜎𝑠 : sigmoid function 

𝜎ℎ𝑡 : hyperbolic tangent function 

The output functions of hidden state and cell state 
are given below [15]: 

𝑐𝑡 = 𝑓𝑡  ∘  𝑐𝑡−1 + 𝑖𝑡  ∘  𝑖𝑖𝑡  (5) 

ℎ𝑡 = 𝑜𝑡  ∘  𝜎ℎ𝑡(𝑐𝑡) (6) 

The LSTM-based fault classification model 
developed for bearing fault diagnosis in this study is 
given in Figure 6. The suggested model comprises 
an input layer, LSTM layer, batch normalization, 
fully connected layer, and classification layer. The 
input layer comprises two-dimensional grayscale 
images of size 100x200. After the input layer, a 
single LSTM block with an input shape of 100x200 
and 8 units is used. In order to enhance the 
performance and generalization capacity of the 
network, the data derived from the LSTM layer are 
normalized within a specific range in the batch 
normalization layer. In the full connected layer, 
revealing which class the failure characteristic is 
related to, 512 neurons are used with a dropout rate 
of 0.3 and LeakyRelu is chosen as the activation 
function. In the classification layer, four neurons are 
used to classify the four states of the bearing 
(healthy, ball fault, outer race fault and inner race 
fault). In this layer, softmax is selected as the 
activation function. 

 

Figure 6. The proposed LSTM-based fault 
classification model 

The proposed LSTM-based fault classification 
model is developed in Python 3.11 platform using 
tensorflow, keras and scikit-learn libraries. During 
the training of the model, the number of epochs is 
set as 5, batch size as 1, loss function as categorical 
cross entropy, optimization algorithm as Stochastic 
Gradient Descent (SGD), learning rate as 1e-4 and 
momentum as 0.99. The model is trained with 
training and validation data and tested with test 
data. 

3 Performance evaluation 

The performance of the proposed fault 
classification model is assessed using accuracy, 
precision, recall and f1-score metrics. The 
formulations of these metrics for multiple 
classifications are given in Table 3. Where i is the 
class number, tpi, tni, fpi, fni are the true positive, 
true negative, false positive and false negative 
values of class i respectively. In addition, the indices 
avr, µ, M denote the mean, micro and macro, 
respectively. In the study, calculations are made 
with β = 1. 

The confusion matrix obtained by testing the LSTM-
based fault classification model with test data is 
given in Figure 7. Looking at the Figure, the 
proposed model is able to classify all classes 
correctly.  

The values of the performance metrics of the 
proposed model after testing with test data are 
given in Table 4. When the table is examined, it is 
seen that 100% success is achieved in all metrics. At 
the same time, the performance obtained by the loss 
function is 1.1585e-04. This is a remarkably 
successful result for a model trained with only 
limited data. In addition, the training of the 
proposed model only takes about 8 seconds. Both 
the very short training time and the success 
obtained on test data reveal the superiority of the 
proposed model compared to other fault diagnosis 
models. 

Table 3. Performance metrics [17] 

Metrics Formulation 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑣𝑟  
∑

𝑡𝑝𝑖 + 𝑡𝑛𝑖

𝑡𝑝𝑖 + 𝑡𝑛𝑖 + 𝑓𝑝𝑖 + 𝑓𝑛𝑖

𝑙
𝑖=1

𝑙
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛µ 
∑ 𝑡𝑝𝑖

𝑙
𝑖=1

∑ 𝑡𝑝𝑖 + 𝑓𝑝𝑖
𝑙
𝑖=1

 

𝑅𝑒𝑐𝑎𝑙𝑙µ 
∑ 𝑡𝑝𝑖

𝑙
𝑖=1

∑ 𝑡𝑝𝑖 + 𝑓𝑛𝑖
𝑙
𝑖=1

 

𝐹𝑠𝑐𝑜𝑟𝑒µ 
(𝛽2 + 1)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛µ𝑅𝑒𝑐𝑎𝑙𝑙µ

𝛽2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛µ + 𝑅𝑒𝑐𝑎𝑙𝑙µ
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀 
∑

𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑝𝑖

𝑙
𝑖=1

𝑙
 

𝑅𝑒𝑐𝑎𝑙𝑙𝑀 
∑

𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑛𝑖

𝑙
𝑖=1

𝑙
 

𝐹𝑠𝑐𝑜𝑟𝑒𝑀 
(𝛽2 + 1)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝑅𝑒𝑐𝑎𝑙𝑙𝑀

𝛽2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑀
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Figure 7. Confusion matrix obtained by testing the 
proposed LSTM-based fault classification model 

Table 4. Performances obtained by testing the 
model 

 Precision Recall F-score Sample 

Healthy 1.0000 1.0000 1.0000 1152 

Inner Race 
Faults 

1.0000 1.0000 1.0000 1152 

Outer Race 
Faults 

1.0000 1.0000 1.0000 1152 

Ball Faults 1.0000 1.0000 1.0000 1152 

Accuracyavr   1.0000 4608 

Microavr  1.0000 1.0000 1.0000 4608 

Macroavr 1.0000 1.0000 1.0000 4608 

The training-validation loss and performance 
graphs obtained according to the accuracy criterion 
of the proposed model during training are given in 
Figure 8. In the graphs, the proposed model 
performs a very stable training process. The 
validation performances quickly converged to the 
training performances and reached a steady state. 
These results show that the LSTM-based fault 
classification model can learn the characteristics of 
the health condition of the bearing with high 
performance. 

 

Figure 8. Training-validation results according to 
the accuracy metric of the proposed LSTM-based 
fault classification model (a) Training-validation 

loss (b) Training-validation performance 

4 Results and discussion 

In this research article, an LSTM-based deep 
learning model using signal to image mapping 
technique is proposed to diagnose bearing fault in 
rotating machines operating under variable speed 
conditions. In the model, one-dimensional vibration 
signals are converted into two-dimensional 
greyscale images with the signal to image mapping 
technique, and the LSTM-based model is created to 
extract the fault characteristics from the obtained 
images. In the training and testing phases of the 
model, OTTAWA dataset containing vibration 
signals obtained from bearings operating under 
variable speed conditions is used. The proposed 
model is trained with very limited data, 
corresponding to 4% of the data, and tested with 
96% of the data.  Accuracy, precision, f1-score and 
recall is used as performance metrics in the test 
phase and 100% success is achieved in all metrics. 
During the training of the model, the loss and 
performance graphs obtained according to the 
accuracy metric showed a very stable structure, 
which showed that the model is able to learn the 
fault characteristics and that memorization did not 
occur. Without the need for expert knowledge, the 
proposed model was able to classify the fault 
characteristic effectively and quickly with its 
feature extraction capability that does not require 
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complex computational operations in the 
background. 
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