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where o, B, are positive fuzzy number sequences, parameters Tj,7, and the initial values
o_;,B_i,i €{0,1,...,m}, are positive fuzzy numbers. Firstly, we show the existence and unique-
ness of the positive fuzzy solution to the mentioned system. Furthermore, we are searching for the
boundedness, persistence and convergence of the positive solution to the given system. Finally, we
give some numerical examples to show the efficiency of our results.

1. Introduction

Difference equations has many applications in the real world to many areas such as economics, biology, psychology, sociology,
computer sciences etc. That’s why, much more attention is given to this area. There are many data in our natural world.
Collecting and establishing discrete mathematical models to figure out their behaviors is crucial. A discrete dynamical models
of systems are generally established by using difference equations approach. These difference equation models can be seen
simple. But, it is really important to comprehend the behaviors of their solutions in the cases generating general solution
expressions is difficult.

DeVault et al., in [1], showed that every positive solution of the equation

A 1
Xptel = — —+ 5 ne NO,
Xn  Xn-2
where the parameter A € (0,0), converges to a period of two solutions. Later, Abu-Saris et al., in [2], studied the global
asymptotic stability of the unique equilibrium point § = 1 4 A of the following equation

Yar1 =A+ 2 neN,

Yn—k

where the parameter A and the initial conditions yg,y_1,...,y_x, are positive real numbers.

Papaschinopoulos and Schinas, in [3], studied the oscillatory behavior, the boundedness of the solutions and global asymptotic
stability of the positive equilibrium point of the difference equations system
Xn

xn+1:A+y7n7yn+1:A+ ) n€N07
Xn—p Yn—q
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where p, g are positive integers, the parameter A and the initial conditions x_,...,X0,y—g,- .-, Y0, are positive real numbers.
Also, Zhang et al., in [4], investigated the boundedness, persistence, and global asymptotic behavior of positive solution for the
rational difference equations system

X
a1 = At o Y1 = B+ o, neN, (1.1)

ji=1Yn—i Z 1 Xn—i
where the parameters A, B and the initial conditions x_;,y_;,i € {0,1,...,k}, are positive real numbers. For more information,

see [5, 6, 7]. Further studies about difference equations or difference equation systems can be found in [1, 2, 3, 8,9, 10, 11, 12,
13] and references therein.

Fuzzy set theory is a mathematical paradigm that deals with sets with indefinite or uncertain bounds. It provides for partial
membership of an element in a set. This ambiguous or uncertain data idea is important in modern analytics. The data is
frequently incomplete, unclear, or subject to change. Fuzzy set theory allows analysts to model and manipulate such data
effectively. It leads to more educated decision-making and improved analytics outcomes.

Zadeh, in [14], introduced the concept of fuzzy sets as a technique of dealing with unclear or imprecise data in engineering and
computer science in 1965. Since then, the fuzzy set theory has grown significantly, and its applications have spread across a
variety of disciplines such as decision-making, pattern recognition, image processing, natural language processing, and control
systems. There are more information about fuzzy set theory at [7, 15, 16, 17].

Deeba et al., in [18], studied fuzzy analog of the first order difference equation
Xnr1 =wXp+q, n€ Ny,
where x,, is a fuzzy number sequence and the initials w, g, xo are fuzzy numbers. Deeba and Korvin [19] considered a model
Cit1=GC,—c1Ch—1 +c2, n €Ny,

where c1,cy, are the fuzzy parameters, Cy,Cy, are the fuzzy initial conditions which determines the level of CO, in blood.
There are also many researches which study qualitative behaviors of positive solutions of fuzzy difference equations and FDE:s.
For example, Papaschinopoulos and Papadopoulos, in [20], investigated the existence, boundedness, oscillatory and asymptotic
behaviors of the positive solutions of the fuzzy difference equation

B
Xap1 =A+—, neN,
Xn
with positive fuzzy parameters A, B and positive fuzzy initial condition xy. They also studied the fuzzy difference equation

X,
Xnp1 =A+——, neN,

Xn—m

where x,, is a positive fuzzy number sequence and A, xp,x_1,...,X_,, are positive fuzzy numbers. Yalcinkaya et al., in [21],
investigated qualitative behavior of the fuzzy difference equation

Az
Il = ————5—> NENp
n+ B"‘CHZ OZn la )
with positive integer s, positive parameters A, B, C and positive initial conditions z_;,i € {0,1,...,s}. Zhang et al., in [22],

investigated dynamical behavior of the second-order exponential type fuzzy difference equation

A+ Be™*n

——, neNp,
C+xpq 0

X+l =
with positive fuzzy parameters A, B,C and positive fuzzy initial conditions x_1,xp. Moreover, Atpinar and Yazlik, in [23],
analyzed the existence, uniqueness and the qualitative behavior of the two-dimensional exponential FDEs

051 + 1€_X"71 a2 + He Yn—1
p = BEPET BB e,
N+Yn Yo+ Xxn

where the parameters o, 0, B1, 2,71, 7 and the initial conditions x_1,xg,y_1,yo are positive fuzzy numbers. There are
more studies about fuzzy difference equations [22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] and references therein. The fuzzy
difference equations and fuzzy difference equations system, briefly FDEs, have not been studied extensively, yet. Inspired by
the aforementioned studies, we concentrate on the FDEs

B
Q1 =T+ g Bl = 7, n € No, (1.2)
=1 5n i i=1 On—
where a,, B, are positive fuzzy number sequences, the parameters 7, 7, and the initial values o_;,f_;,i € {0,1,...,m}, are

positive fuzzy numbers.
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2. Preliminaries

In this section, we briefly give some definitions, lemmas and theorems which are used throughout the paper. For more
information and details can be found in [7, 15, 16, 34].

Let R, represent the space of all fuzzy numbers and w € Ry. For all y € (0,1] [w]? = {x € R: w(x) > v} and W]’ =
Uyeo,yw]" = {x € R:w(x) > 0}. Here, we say that [w]? is the support of the fuzzy number w and show it by supp(w). w
is called a positive fuzzy number if supp(w) C (0,00). R]f denotes the space of all fuzzy numbers. Let x,y € Ry, A € R and

WY =LY, ,RL ], ¥]” = [L},,R},]. For v € (0, 1] the operations scalar multiplication, addition, multiplication and division on
fuzzy numbers are defined as follows:

[Ax]" = A[x]7,
ety = B+ DI,
[xy]” = [min{L}LY, LYRY,RYLY , RYR} ,max{LYLY , LYRY,RYLY , R'R]}] ,
97— [ming 2, £ R Ry g 2 B BT o
y LRI LI’ RY LU'RI'LI'RY ’

respectively.

Definition 2.1. Consider a fuzzy subset of the real line w : R — (0,1] and suppose that the following properties hold:

(a) wis normal, i. e., there exists xo € R such that w(xp) = 1,

(b) wis convex, i. e., VA € (0,1] and x1,x € R, w(Ax1 + (1 —A)x2) > min{w(x1),w(x2)}
(c) w is upper semi-continuous on R,

(d) wis compactly supported, i. e., Uye(o,1[w]" = {x € R:w(x) > 0} is compact,

we say that w is a fuzzy number.

Lemma 2.2. Letx € R}r and [x]" = [LY,RY] for y € (0,1]. Then, for [LY,RY] the following conditions hold:

1. LY is non-decreasing and left continuous,
2. R! is non-increasing and right continuous,
3. LY<RL

Lemma 2.3. Let f be a continuous function from RT x RT x Rt x RT into R*. For any x,y,z,t € R}T andy € (0,1],

[f e,y z )] = f(]7, DI L], 1)
Definition 2.4. Let {x,} be a positive fuzzy number sequence. If there exist positive real numbers m,M such that supp(x,) C

[m,M], then we say that positive fuzzy sequence (x,) is bounded and persistent.

Theorem 2.5. Let [x]” € R} be a fuzzy number. Then,

1. [x]" is a closed interval ¥y € (0,1],

2. For v,y € (0,1], if i <P, then x”? Cx",

3. For any sequence %, converging to 'y € (0,1] from below, N77_ x% = x¥,
4. For any sequence %, converging to 0 from above, U_, [x]" = [x]°.

Definition 2.6. Let x,y be fuzzy numbers with [x]Y = [LY,RY] and [y]Y = [L},R}] for y € (0,1]. Then, the metric on fuzzy
number space is defined as follows:

D(x,y) = sup max{|LY—LY|,|R]—RJ|}. 2.1
v€(0,1]

Moreover, the norm on fuzzy number space is defined by

|IXI| = sup max{|L]],|RY|}.
v€(0,1]

3. Main Results

In this section, we study FDEs (1.2) for positive initial fuzzy numbers. Firstly, we investigate the existence and uniqueness of
positive solutions of (1.2) in the following theorem.
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Theorem 3.1. Consider the system (1.2) for positive fuzzy numbers T|,Ty. Then, for given any positive fuzzy numbers
o_;,B_i,i €{0,1,...,m}, the system has a unique positive solution.

Proof. Let the parameters 7, T, and the initial conditions a_;, B_;,i € {0, 1,...,m}, be positive fuzzy numbers. Suppose that
there exist fuzzy number sequences which satisfy (1.2). Consider their y-cuts for y € (0, 1];

[(an/ = [L£H7Rén:|7 [ﬁn]y = [LZ}angnL
[an*i]y = [Léﬂfi’Rgnff]’ [ﬁn*i]y = [Lgnfi’R%n—i]’ (3.1)
[Tl]y :[ 17’17117’}’]7[12]72[»5277[’1;}]'

By using (1.2), (3.1) and Lemma (2.3),

[an+1]7 = [Lé,Prl 7R3;n+1}7

o, 4
Z?n:lﬁn—i] ’
[oa]”
— Yo t/nl
[Tl] + lm:l[ﬁn—i]y’ (32)

[Lgn ) R’}O/‘n]

= [Tl+

and similarly

[ﬁn+1]y = [Lz;nJrl’RErHrl]’
Y
= |:”L'2+mﬁn] 5

i=1 Op—i

1B
= |T y+7,
S
L5, Rp,)
;":1 [Lgn—i’RZ‘nfi}
Y Y
LBn Y Rﬁn

m Y2 + m Y ] :
i=1 Ran—i i=1 Lan—i

(3.3)

= [T%/,l’ Tg,r] +

= [Tg +
So, we obtained the following equations system:

¥ Y L Y v RY,
J— Ul —_ ul
Loy =Tt S pr o Ko =T o7
i=1 ﬁnfi i=1 ﬁnfi

yo_o "
_ n
) Rﬁn+1 =17,+ m 1L£ .
1= n—i

3

(3.4)
Y
Lg,

Ll =1+
b T TR
Let0 <y <7 < 1. From Lemma (2.2),

N V2 Y2 N
0<t, <7 <7, <7, (35
o<t <t <t <1l '

20 ST ST, ST

0< Lgn—i S Lézn—i S Rgn—i S Rg‘ln—i’

N "2 )] N
O < Lﬁn—i S L n—i S Rﬁn—i S Rﬁn—i’

(3.6)

fori e {0,1,...,m} and

0 < Lgcln S Lz;zn S Rgn S Réln’

0<Lg1 <L

3.7
n oo p (3.7)

Y2 "
B , SR

B B’
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where n € Ny. By using inequalities in (3.5), (3.6) and (3.7) and keeping in mind that y; < 7,

b4l
N _ N On
Lo =Tt sw pr S

i=1 ﬁn—i

R?’Z

§2) O
<+
l:1 ﬁ)l i

and

LYI
N N ¢
Burt — 21T g pTi
=1 an i

1¢) Bn
A o <

= "2 m V2
l=lLan i

2]
72 Qn "2
< TlJ + RVZ Q41
Bn—i
N
<R72 <,L-71 + Op _ph
Gt Lr YL J3L Oy
ﬁ)l l
Bl
n
V2
’6'2 1T RZ,' Bnt1
n—i
RYz < ,L.Vl + ﬁn _ pn
Bus1 = 21 :n—lLch . But1”
- n—i

Next, by using induction, we will show positive fuzzy solution of the FDEs (1.2) exists. For n =0,

[Lél 7RZC1] = TK[ +
Y Y )4
(L, Re ] = |72, +

Since, 71, T and o, B fori € {0,1,...

,m} are positive fuzzy numbers, for y € (0,1], [L}, ,RY, ] and [L% ,RE

¥ y
_La oy Re
m RY ' m LY ?
B-i =1=p_;
¥ Y
b o, P
%) .
i1 Réﬂ, M Y Lgu

] are y-cuts of

7
o = Tf/—l— Z’” By and f3; = sz—l— ,,,ﬁ 7 . Moreover, 7,71, T2, T2, and for i € {0,1,...,m} LZLI.,RQ”Lg R% are left
i=1Y—i i
continuous, then so are LOC1 7Roc1 ,L}; ,R};l
Now, assume that for j € {1,2,...,k}, [ng,Rz;j] and [L% ,R% | are the y-cuts of of; = 7 + W and Bj = mﬁ%.
i=1Fj—i—1 i=1"j—i—1
Forn =k+1, we have
L, R}, o |7
[Qi1]" = 7717:1"‘ Rfy aT}ir ka = T1+m7ﬁk_ 5
ﬁk Br-—i =117
RY Y
ﬁk Y Bx Bx
PN FE S, S B S
! tm=1 Rg‘k—i i ?121 Lgk,,- :n:l Olg—j
Therefore, [Lék " ,Rak ) and [L%k+l ng ] are the y-cuts of the fuzzy numbers oy = 7] + W and By =T+ oG P o

Hence, for Vn € N and Vy € (0,1], [L}, R}, ] and [L} Rg ] are the y-cuts of the fuzzy numbers o, and f,, by induction.

B ’

Now, we claim that supports of both @, and S, supp@, = Uyc(o,1] (LY, ,RY, ] and suppf, = Uye(o,1] [Lgn ,Rgﬂ] are compact by

induction. For n = 1, since 7, 7, and Oc,l,ﬁ »1€{0,1,...

,m} are positive fuzzy numbers, there exist

Mz, Ny ;Mzy,Nyy, Mg, ,No_;,Mp ,Ng . € {0,1,...,m} such that for all y € (0, 1],
[Tﬁl,fﬁr] C Uye(o,l][ﬁyl,f ,r] C [Mz, Ny ]
[r{,,r{,] c Uy <(0,1] [szpfz r] - [MfzvNTz]
[LENRZQ] - UYG(O 1] [LEI,R ] - [MOH ’Nal]
Y Y Y
[LﬁNRﬁl] - Uye(o,l] [LﬁlyR[; ] - [MB1 »Nﬁl]«

By using induction, we obtain Uy (o 1) [a! A Oc,{,] and Uye(o,1) [ﬁ;Zl’ [ﬂr] are compact and Uye o, [ay
(0,+e0) for n € No. Hence, o, = [0,)" = [LY, , R, ] and B, = [B,]7 = [L} ,R:

'n,l> a’Zr] and Uye(o,l] [ﬁ,zlv ﬁrzr] <

8, R, ] are also positive fuzzy number sequences.

Finally, we will show uniqueness of positive solutions of FDEs (1.2) by using contradiction method. Assume that there exist

other solutions ¢, and f3, to the given system (1.2) with the same initial initial values 7j, 7> and @_;, B_;,i € {0,1,...

Then, for o € (0,1];

(o] = [01,)7, [Ba)”

=[B)".

Hence, there exists a unique solution of (1.2) for given initial conditions 71,7 and a_;,f_;,i € {0,1,...

desired.

,m}.

,m}, which is
O



Fundamental Journal of Mathematics and Applications 93
Now, we will investigate boundedness and persistence of positive solutions of (1.2).
Let u,, v, wy, t,, represent Lg,n ,Rgcn , Lg ,R% respectively. Then, from (3.4), we can write the following system as
Lo, ., =unt1= M+ ):;n:uln,ﬂﬂ.a
Ray,, = Vni1 = Ao+ sri—
Oyt 1 n+ Zi:lww" i ne NO, (38)
Lpr =wnr1 =M+ z;’;l'i,m-v
Rﬁn+l = tn+l 14 + Z[ Iu,, i
where the parameters A1, A,, A3, A4 are positive real numbers.
Theorem 3.2. Consider system (3.8) and suppose that
1
— < min{ﬂ,l,lz,l37),4}. (3.9
m
If (3.9) is satisfied, then for every positive solutions (uy, vy, Wy, ty) of (3.8) for n > m the following inequalities hold.:
1 mA; Ag mA Ag
A <u, < —
L=t = gy < " da—1)  mAs—1’
12 S " S 1 _ mlz)t3 mlz)t3 ’
(m2,3)"_m mAz — 1 mAz — 1
(3.10)
22 < < 1 mlzﬂg mlzzg
w _
== )\ man—1)  ma -1
1 MA MA
A<ty < i — ) A
(mkl)"fm mi —1 mi —1
which shows the boundedness and persistence of (ty, Vi, Wn, ty).
Proof. Let (uy,vn,wn,t,) be positive solution of system (3.8). Since, uy, vy, wy,1,, for all n > 1, are positive,
M<uy, M<ve, B<w, A<t (3.11)
Furthermore, by (3.8) and (3.11), we get
un—ll"' m+1t z’l—'_%un—l;
, 2 In—i
Vn—7Lz+W <A+ ,M3Vn 15 3.12)
va =Rt gt S At ety
In —7L4+W Sl4+m7}’1tnfla

for n > m. On this part of the proof, we just show boundedness for u,. Since, proofs for v,, wy,t, are similar, we omit them.

Define i, = A; + ﬁﬁn,l for n > mand @, = u, forn=1,2,...,m. Our claim is

Uy < iiy,n € N.

(3.13)

We show satisfying the inequality in (3.13) by induction. It is obvious that u,, < i, for n € {1,2,...,m}. Suppose that (3.13)

holds for any k = n > m+ 1. Then, from (3.12), we have

1
Upp1 < Al +——uy, < 2fl +— Mg iy = lpt1-

1
mAs

Therefore, u, < i, for n € N, by induction. Then,

U, = )’1 + mu -1
1 1
iy =M+ m <Al + 1 un2>

o 1 . m?Ll7L4 mlll4
tn = (mAg)=m \"" mAq—1 mhs—1°

Hence, u,, is bounded. So proof for u, is finished. Similarly, it can be shown that v,, wy,,t, are also bounded.

(3.14)
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Theorem 3.3. Consider system (3.8). If the condition (3.10) holds, then (3.8) has a unique equilibrium point (ii,v,w,f) given
by

2 - 2 _ 2 _ 2 _
mad =1 miads =l o omhl =L A=l (3.15)

- m(mAq —1)’ m(mAz —1)’ m(mAy — 1)’ m(mA —1)’

<

and every positive solution tends to given equilibrium point as n — oo,

Proof. From equilibrium point definition, we can simply obtain the equilibrium point given as

(3.16)

= m2112,4 —1 mzﬂ,zﬂg —1 mzﬂ,zﬂg —1 mz}h?u —1
- \m(mAy — 1) m(mAz — 1) m(may — 1) m(mA; — 1)

Since every positive solution of system (3.8) is bounded and persistent from Theorem (3.2), it can be written that

lim infu, =1, hm 0 SUp Uy = Ly,
n—yo0

lim infv, = b, hrn 0 SUp Vv, = Ly,

e (3.17)

lim infw, = I3, hm 0 Supw, = L3,
n—oo

lim inft, = Iy, hm supt,, =Ly,
n—yoo
where [;, L; € (0,0), for i € {1,2,3,4}. Then, by using Theorem (3.2) and (3.17),
A +l— <h,L <A +—
v+, S h 1 l4

153
Ao+ —— <1y, L2§7Lz+*>
mL; ml3

I3 Ls
Mt —— <l L3 < M3+ —,
ml, mly’

n Ly
Mt —— <y, Ly < Mg+ —-.
mLq mly

Next, after arranging the inequalities, we obtain
mAsLy +14 < < mAily + Ly
m m
mMAzLy, + 13 < < mAyls + Ly

m - m
3.18
mALs+ 1 < ( )

from which it follows that

(3.19)

It is obvious from hypothesis of the Theorem (3.2) that 1 < mA; for i € {1,2,3,4}. Multiplying the first and the fourth
inequalities in (3.19) and the second and the third inequalities in (3.19) gives

LiLy <hly, LyLz<Dbls. (3.20)
So,

LiLy =hLls, LiLsy=hls. (3.21)
Our claim is

Li=hL, Ly=bh, Li=h, Li=1.
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Assume that I} < Ly, < Ly,l3 < L3,ls < L4. Then by using (3.21), we get
LiLy =11 < l1L47
LiLy =111y < Lily,
L)Lz =bls < bLs,
IhLz = hl3 < Ly,

gives us
L < lla
Ly <D,
Lz <3,
Ly < ly,
which is a contradiction. Therefore,
h=L,L=L l3=L3, Iy =Ly. (3.22)

Hence, by using (3.8) and (3.22), it follows that

limu, =i, limv, =7, limw, =w, lims, =1.
n—soo

n—o0 n—o0 Nn—o0
Thus, proof is completed. O
Theorem 3.4. Consider system (3.8). If both (3.9) and the following inequalities
2 _ 2 _ 2 _ 2 _
m 1114 1 m 1114 1 <1, m 2,213 1 m /1213 1 < 17 (3‘23)
mll—l mM—l m)l,z—l m)u3—1

are satisfied, then the unique positive equilibrium point given in (3.15) is locally asymptotically stable.

Proof. From Theorem (3.3), the system (3.8) has a unique equilibrium point (3.15). The linearized equation of system (3.8)
about the equilibrium point is

QnJrl ::PQn
where Q,, = (”na”nflw"aunfm»vmvnflw-'avnfmawnawnflm'“aanm,[natnflwu;tnfm)T and P = (pij);l <i,j<4m+4is
a (4m+4) x (4m+-4) matrix such that
P Py Py Py

Po Ps Pa Po
Po Py Pr Po ’
Pys Py Po Pa

(3.24)

(4m+4)x (4m+4)

where Pz, Ps, P, Pr, Po, Py, Pa, P3, Py are (m+ 1) x (m+ 1) matrices are defined as follows:

r1
Lo ... 00 Lo .00 L0 - 00
1 0 --- 00 1 0 - 00 1 0 - 00
Pa=1. . P= 0 = ]
(0 0 -~ 1 0 0 0 - 10 0 0 - 10
L0 - 00 00 - 00 0 -4 . - -
1 0 - 00 00 - 00 o 0 - 0 0
?f: aTOZ . 79)1: )
(0 0 10 0 0 0 0 0 0 0 0
0 —2n R 0 -5 “wE e
0 0 0 0 0 0 0 0
i]:)2: . . . . . ;:]33: . . . . . )
0 0 0 0 0 0 0
[ - mzt_‘2 mz_li2 - mZ_IZ2
0 0 0
Py= .
0 0 0 0
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Let 01,02, ..,04n+4 be the eigenvalues of the matrix P and D be the diagonal matrix (dy,d,...,dam+4) such that d; =
dni2 = domys = dymra =l and dj = dipy 1) = domioyj = d3mysrj = 1 — je, for j € {2,3,...,m+ 1}, where

a4+t a4+t V+w V+w
)a(l_mﬂ)v(l_ )7(1_

1 .
O<e< mmm{(l— )} (3.25)

mit? mi? mw?

It is obvious that D is invertible. Computing DPD~! gives us the matrix

O
o — [Ty Pul T Py : (3.26)
DA
3)4 TO UDO :Pﬁ (4m+4)x (4m-+4)
where
r i 0o ... 0 0 % 0 --- 0 0
?(1)_ d3m+5d3*ml+4 0o - 0 0 33(1)— d2m+4d5rri+3 0o ... 0 0
in - . . . . . bl vV - . . . . . b
.0 0 - dimrady, 5 O 0 0 - dsyuiady,, O
- 1 1
mr_ O 0 0 w000
P _ | dni3dia O 0 of o |&d' 0 - 0 0
wo : . Yr T . . . : : )
. 0 0 damiadyy., O 0 0 dni1d,' 0
0o 0 - 0
0o 0 - 0 0
j)(()l): . ;
0 0 0 0
[0 hdids,,s o osdidy, s osdidy,
.:P(l)_ 0 .. 0
1 ’
i 0 0 0
I m%gzdm+2d£rr:+4 e #dmﬂd;niﬂ m%v;dmﬂd;ni%
:P(l) 0 O ce 0 0
2 = ’
i 0 0 0
[ m‘z—”;dzm+3d,;i3 e m%gzdzm%d{,,:H m%?zdzmﬁd{,,iﬂ
i])(l) 0 0 ce O 0
3 = )
i 0 0 0
[ m%f;zd3m+4d£ b m%f;zd3m+4d,; ! ﬁd3m+4d,;ll
0 0 0 0
7 = . :
0 0 0 0

are (m—+ 1) x (m+ 1) matrices. Also,

0<dpi <dn<---<d,

0 <doppin <dops1 < -+ <dpta,
0 <dym+3 <dzmiz <+ < dom+3,
0 <damya <damy3 <--- <damyia,
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implies that
dd; ' < 1,
ddy ' < 1,

derldn_q1 < 17
dpi3dyy iy <1,

—1
d2m+2d2m+1 <1 ’

and

1
domiady, 3 <1,

-1
d3m+3d3m+2 <1,

-1
d3m+5d3m+4 <1,

damradp 5 < 1.
Moreover, by using (3.9), (3.23) and (3.25), we obtain
1 i i 1 1 7]
— 4 —=did;) A+ —=didy) = —
mi R mes T am g mt+(1—28+ +1—(m+1)8)m2172
< 1 n 1 i
mi - 1—(m+1)e m?
1 1 i
<——(=+—
lf(m+1)8(mt+mt_2)
<1,

1 v v 1 1 1 v

-1 -1
nsadyniact 4 iy = opt (g + 0 T e v
< 1 n 1 v
mv 11— (m+1)e mw?
1 1 v
T s e o 2

<1,

mw  m2w? m2w?

<

1 P P 1 1 1 P

+#dz’"”d';h+"'+#d2"’+3d55+2 =ttt 1—(m+l)£)m2}\72
1 1 W

< m7\7+ 1—(m+1)e mi?

1 1w

T et

<1

mv

and

17 B 7 L 1 1 7
+Wd3m+4d2 +..-+Wd3m+4dm+l:ﬁ+(1_28+... >
< 1 + 1 17
mi 1 —(m+1)e mi?
1 1 i
< (=4 —
1—(m+1)£(mt+mﬁ2)

<1

mi
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Since P and DPD~! has the same eigenvalues, for j € {1,2,...,4m+4}, we can write the following inequality as

-1 -1 -1 -1
drd; o dmidy dmiady s, domiady)

d2m+4d{,,i+3, e 7d3m+3d3:,:+27d3m+5d37n1+4a e ,d4m+4d4f,,:+37
1 1 1 7

;t'—’—(l—Zs e 1—(m+1)£)m2f2’

~1 _ 1 1 1 v
max |P;| <[|DPD™" || max %4—(1—28 ot o 1)s)m2w2’

1 1 1 w

m7\7+(1—28 et 17(m+1)8)m2\72’
1 1 1 f

%—'_(1—284_”'—'_ 1—(m—|—1)8)m2122

<1
Therefore, the equilibrium point given in (3.15) is locally asymptotically stable. O

Theorem 3.5. If the conditions (3.9) and (3.23) are satisfied, then the unique equilibrium point given in (3.15) of the system
(3.8) is globally asymptotically stable.

Theorem 3.6. Consider the FDEs (1.2) for all vy € (0,1]. If
1 .
—< min{ 7y, T1r, T2, T2 } (3.27)

then every positive solution (0, B,) of the FDEs (1.2) is bounded and persistent.

Proof. Let (o, B,) be a solution of (1.2) and satisfy (3.27). Then, we have

v _gY pY y_1Y Ry
(o] [L;IxanyOCn]v [Bx] [I;B"J;B"]’ (3.28)
[m]" =7, (=)=,

From (3.4) and Theorem (3.2), we have

1 mT T, mtT .,
Ty <Lg < ——— | Lo, — ’ + 7 ’
10 > Loy > (mTz’r)nfm ( O mu , — 1> mty,—1
1 mTy T m7T ;T
T, <Ry, < ——— (Re,, — ——— 7
Lr = foy = (mty )= ( Om mTy;—1 * mty; —1
i . , . . ; . (3.29)
mTy T2 mty 12,
Ty <Lg < ———— (Lp, — —— R ——
2,0 > LB, > (m,rl,r)nfm ( B mry , — 1) mTy , 1
mTy T mTy T r
Ty <Rp, < ——— (Rp, — = | +——.
N T T < P ey — 1) mt =1
Also, for all y € (0, 1], the support sets of 71,7, are
[Ty 71_7 ] - [Mr Nt ]7
L g (3.30)

[127717 Tg,r] C [Ml'zvN‘Cz]-

Moreover, left and right components of y - cuts of Mz, Nz, ,My,, Ny, are positive real numbers. So, by using (3.29) and (3.30),
for v € (0,1], we obtain

3

[Lg ,Ré ] C Mﬁ, 1 Mam _ mMTl.INTZ‘r mMTl,szz,r
N (mer,)”*'" mNz, , — 1 mNz,, — 1

s RE1C [Ny, R VA mMe Ney, \ M Ney, |
n n (mMTL,[ )n—m mNrZJ, _ l mMrLl — 1

(3.31)

. : : 1 mMy Noy mMz, N, .
from which along with there exist my,m, M, M, such that m; < Mg my < Nfz’W Mgy, — N 1 + N, 1 <
Q.r 2. 2.r

<M.

M and 1 Ne — mel,szz,r mMT],INfzj
b (mMz )= B mNz,  —1

mMTlJfl
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Therefore,
[LZ‘”*[ 7R£"~’] g U [Lz;n,l 7Rén,r] g [ml ;Ml ]7
v€(0,1]
[L)[;nl?R%n,r] g U [L[’yinJ’RZ;n‘r] g [mZaMZ]-
’ re(01] '
Hence, every positive solution of FDEs system (1.2) is persistent and bounded. This completes proof. 0

Theorem 3.7. Let us consider the FDEs (1.2). If (3.27) holds, then the positive solution (o, Bn) of (1.2) converges to a
unique equilibrium point (&, ) as n — oo, where

(_x:

M, =1 W, =17 o [mPr,n -1 mnn, -1
— (3.32)

m(mty,—1)’ m(mty; —1) m(mt,—1)" m(mt;—1)

Proof. Since (3.2) and (3.3) hold and also from Theorem (3.3), we can write

2 2
m T —1 . m-T ;T — 1
lim La =lg, = —F"""—~ d , lim Rgcn =rq, = —_—
n—eo m(mv , — 1) n—eo m(mty;—1)
m>T , T — m2Ty T, — 1
thﬁ lg, = —————— hmRﬁ rg, = ——————.
—oo Pn " om(mTy— ) —veo P " m(mt;—1)

Thus, we get

lim D((xn, )= lim D(ay, — [lo, 7)) = 11m supmax{|La" lo,|, |R2;n —re,|} =0,

n—oo Nn—yo0
: RY — 1; _ _ Y _ Y o_ —
lim D (B, B) = lim D(B, — [lg,,rg,]) = lim supmax{|L}, ~ 1|, R} ~7p,|} =0.

So, limy, e @, = & and lim,, e 3, = B means that every positive solution of equation (1.2) converges to equilibrium point
(a,B) as n — oo. O

4. Numerical Results
In this section we will give some numerical examples in order to verify the efficiency of the results.
Example 4.1. Consider following system when m = 4 for system (1.2):

Oy ﬁn
7ﬁ 1=T+ .
ﬁn—l + ﬁn—Z + ﬁn—3 + ﬁn—4 " Op—1+ 02+ 0,3+ 0y—4g

(Xn+1 =T +

Also the parameters 7|, T, and the initial conditions a_;,B_;, for i = {0,1,2,3,4}, are triangular fuzzy numbers, respectively,

5x 10x

2 04<x<0.8 = — 03<x<0.6

T(x) =19 %5, == L= Son =r=r 4.1)
—3+3, 08<x<12 =43, 06<x<09

5x—— 13<x<1.5 Sx—2 13<x<15
o-i(x) = o, B = PP (4.2)
g, <x<17 “Se+ 0 15<x<17

By using (4.1) and (4.2), the bounded support sets for y € (0, 1] are as follows

{supprl [0.4,1.2], suppts C[0.3,0.9], 43)

suppa_; C[1.3,1.7), suppf_; C[1.3,1.7].

This example shows persistence and boundedness of FDEs system (1.2) if condition % <min{7, T, T2, T2} is satisfied.

Moreover, note that as n — oo, every positive solution of FDEs system (1.2) converges to a unique equilibrium point (@, B) in
given (3.32) as it can be seen in Figure (1). Figure (2) shows the attractors of system (1.2) for y=0.2, y=0.5, y=0.8 and

y=1
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081 | A
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Figure 1: The solution of FDEs system (1.2) at y=0.2, y=0.5,y=0.8, y=1.
y=0.2 y=0.5
2.0
304 — uf? wh? — uls, wps
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w08, 108 //
1.0 4
0.8
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Figure 2: The attractors of FDEs system (1.2) at y=0.2, y=0.5,y=0.8, y=1.

Example 4.2. Consider following system when m = 3 for (1.2).

Cn

Oy =171+
" ﬁnfl + ﬁn72 + ﬁn73

By =m+

Pn

Op—1+ -2+ 03 )

4.4)
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Also the parameters Ty, T and the initial conditions a_;,B_;, for i ={0,1,2,3}, are triangular fuzzy numbers, respectively,

S5x—3, 0.6<x<0.8 Sx—2, 04<x<0.6
T (.X) = TZ('X) = ) (45)
—5x+5, 08<x<1 —5x+4, 0.6<x<0.8
5x—3,  03<x<0.5 5x—32, 03<x<05
oi(x) = Y o Bl = : PP (4.6)
—Sx+5, 05<x<0.7 —S5x+5, 05<x<0
By using (4.5) and (4.6), the bounded support sets for y € (0, 1] are as follows
suppT c [067 1]7 suppt c [04708]5 (4 7)
suppa_; € [0.3,0.7), suppB_; € [0.3,0.7]. ’

This example shows persistence and boundedness of FDEs system (1.2) if condition % < min{‘L‘Ll7 T, T, Tor} is satisfied.

Moreover, note that as n — oo, every positive solution of FDEs system (1.2) converges to a unique equilibrium point (@, B) in
given (3.32) as it can be seen in Figure (3). Figure (3) shows the attractors of system (1.2) for y=0.2, y=0.5, y=0.8 and
y=1

y=02 y=05
3.0 o
— 2 2.0 —
W2 W05
25 ’ 18 y
WDZ wﬂ 5
n I Q
102 164 | s
2.0
| L ||
I (
{ 1.2 4
15 |
| I
| 1.0
|
104 | 0.8 4
0.6 4
0.5 4
\ 0ad
0 25 50 75 100 125 150 175 200 [ 25 50 75 100 125 150 175 200
n n
y=038 y=1
164 | —— up® 1.6 — u}
v v
1.4 4 wié 1.4 4 wl
| — — &
124 | [ 124
1.0 1.0
0.8 4 05
06 0.6
T T T T T T T T T T T T T T T T T T
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
n n

Figure 3: The solution of FDEs system (1.2) at y=0.2, y=0.5,y=0.8, y=1.
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Figure 4: The attractors of FDEs system (1.2) at y=0.2, y=0.5,y=0.8, y=1.
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