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Abstract. In this article, we delve into the intricate concepts of ∆mI -convergence and ∆mI -Cauchy
sequences within neutrosophic n-normed linear spaces, unveiling several intriguing properties. Our find-

ings establish that every neutrosophic n-normed linear space is ∆mI -complete. We also thoroughly

investigate the ∆mI -limit and ∆mI -cluster points of sequences in relation to the neutrosophic n-norm,
proving that the set of all ∆mI -cluster points forms a closed set under the topology induced by the

neutrosophic n-norm. Additionally, we demonstrate that a linear operator preserves ∆mI -convergence

if and only if it remains continuous with respect to the neutrosophic n-norm.
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1. Introduction

Zadeh [51] stands as the pioneering figure behind the groundbreaking introduction of fuzzy set the-
ory, extending the boundaries of classical set theory. Since its inception, it has been continually refined
and integrated across various fields of engineering and science. An intriguing extension of fuzzy sets,
introduced by Atanassov [1], is known as intuitionistic fuzzy sets, which enhance the traditional fuzzy
sets by incorporating a non-membership function alongside the membership function. Over time, the
concept of fuzzy set has been fascinatingly expanded into new and innovative notions and the evolution
of fuzzy sets has sparked the growth of numerous concepts in mathematical analysis. As a comprehen-
sive generalization of these concepts, Smarandache [45] defined a new idea named as neutrosophic set
by introducing the indeterminacy function to the intuitionistic fuzzy sets, i.e., an element of a neutro-
sophic set is characterized by a triplet: the truth-membership function, the indeterminacy-membership
function, and the falsity-membership function. In a neutrosophic set, each element of the universe is
defined by its specific degrees of these notions. The concept of fuzzy normed spaces, introduced by Fel-
bin [6] in 1992, evolved over the years with Saadati and Park’s [40] introduction of intuitionistic fuzzy
normed spaces in 2006, followed by Karakus et al.’s exploration of statistical convergence [18] within
these spaces in 2008 and Kumar et al.’s [26] in 2009 generalization to ideal convergence. Recently, Kirişci
and Şimşek [21] introduced neutrosophic normed linear spaces and delved into the concept of statistical
convergence, sparking further research into different types of sequence convergence within these spaces.
The concept of 2-normed linear spaces, and its significant extension to n-normed linear spaces, was first
introduced by Gähler [7, 8], sparking considerable interest among researchers. This idea has since been
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further developed by mathematician such as Kim and Cho [20], Malceski [30], Misiak [32], Gunawan and
Mashadi [10], contributing to its rich evolution. Combining these two pivotal notions, in 2023, Murtaza et
al. [38] introduced the groundbreaking concept of neutrosophic 2-normed linear space, a significant exten-
sion of neutrosophic normed space, and explored its statistical convergence and statistical completeness.
Recently, Kumar et al. [27] introduced the innovative concept of neutrosophic n-normed linear spaces,
exploring their convergence structures and defining Cauchy sequences within this novel framework.

The concept of statistical convergence, a profound generalization of the traditional convergence of
real number sequences, was first independently studied by Fast [5], Steinhaus [46], and Schoenberg [43].
Statistical convergence is a generalized form of convergence that has gained significant attention in various
fields of mathematics and applied sciences. It is an extension of the classical notion of convergence and
is defined using density-based or probabilistic criteria rather than strict adherence to every term of a
sequence. It has wide-ranging applications in several fields: topology [29], approximation theory [49],
probability [48], measure theory [28] etc. A particularly fascinating extension, known as I -convergence,
was later introduced by Kostyrko et al. [25], where I represents an ideal-a collection of subsets of
natural numbers satisfying specific conditions. Since then, this pivotal concept has been explored in
various directions by numerous researchers, including [2, 14, 15, 19, 35–37], contributing to its ongoing
development. Also, readers seeking a deeper understanding of summability theory, sequence spaces, and
their related concepts are encouraged to explore [11,12,22,39,41,42,47,50].

1.1. Motivation. In 1981, Kizmaz [23] introduced the concept of difference sequence spaces, which was
later extended to the form of order second and m by Et and Çolak [3] and Malkowsky et al. [31], respec-
tively. Further developments by Hazarika [13], and Gumus and Nuray [9] explored generalized difference
sequence spaces of real numbers in the context of ideals. Since then, this intriguing concept has been
nurtured by various researchers in diverse frameworks such as ∆m-statistical convergence [4], difference
I -convergent sequences in IFnNS [19], intuitionistic fuzzy I -convergent difference sequence spaces [17],
some classes of ideal convergent sequences and generalized difference matrix operator [33], weighted sta-
tistical convergence through difference operator of sequences of fuzzy numbers [34]. Research on sequence
convergence in neutrosophic n-normed linear spaces is still in its early stages, with limited progress made
thus far. However, the studies conducted to date reveal a compelling similarity in the behavior of se-
quence convergence within these spaces. From the point of view, the study of generalized difference
I -convergence in neutrosophic n-normed linear spaces is very natural. So, keeping these facts in mind,
within this specific framwork we define and examine the notion of generalized difference I -convergent
sequences, linked with generalized difference I -Cauchy sequences, and present some compelling results
in relation to neutrosophic n-norm.

2. Preliminaries

In this section, we present an overview of key definitions and terminology essential for describing our
main results. Throughout the study, N will denote the set of all natural numbers.

Definition 1. [25] A family I of subsets of a non empty set X is said to be an ideal in X if the
following conditions hold:

(1) ∅ ∈ I ;
(2) A ,B ∈ I implies A ∪ B ∈ I ;
(3) A ∈ I and B ⊂ A implies B ∈ I .

An ideal I is called non trivial if X /∈ I and I ̸= ∅.

Definition 2. [25] A non trivial ideal I ⊂ 2X is called admissible if {{x} : x ∈ X} ⊂ I .

Definition 3. [25] A non empty family F of subsets of a non empty set X is called a filter in X if
the following properties hold:

(1) ∅ /∈ F ;
(2) A ,B ∈ F implies A ∩ B ∈ F ;
(3) A ∈ F and A ⊂ B implies B ∈ F .

If I ⊂ 2X is a non trivial ideal then the class F (I ) = {X \ A : A ∈ I } is a filter on X which is
called filter associated with the ideal I [25].
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Definition 4. [25] An admissible ideal I ⊂ 2N is said to satisfy the condition (AP ) if for every
countable family of mutually disjoint sets {A1,A2, . . .} belonging to I there exists a countable family of
sets {B1,B2, . . .} such that the symmetric difference Ai△Bi is finite for each i ∈ N and

⋃∞
i=1 Bi ∈ I .

Definition 5. Let K ⊂ N. Then, the natural density of K , denoted by δ(K ), is defined as

δ(K ) = lim
n→∞

1

n
|{k ≤ n : k ∈ K }|,

provided the limit exists, where the vertical bars denote the cardinality of the enclosed set.

Definition 6. [9] Let I ⊆ 2N be a non-trivial ideal. The sequence w = {wk} of real numbers is named
to be ∆mI -convergent to υ ∈ R if for each σ > 0 the set

{k ∈ N : |∆mwk − υ| ≥ σ}
belongs to I , where m ∈ N, ∆0w = (wk), ∆w = wk−wk+1, ∆

mw = (∆mwk) = (∆m−1wk−∆m−1wk+1)
and so that

∆mwk =

m∑
j=0

(−1)j
(
m

j

)
wk+j .

In this scenario, it is denoted as I − lim∆mwk = υ.

Definition 7. [9] Let I ⊆ 2N be a non-trivial ideal. If {k + 1 : k ∈ A } ∈ I , for any A ∈ I , then I
is named to be a translation invariant ideal.

If we take a non-trivial ideal I as the collection of all subsets of N whose natural density is zero, then
I becomes a translation invariant ideal [9].

Definition 8. [44] A binary operation � : J ×J → J , where J = [0, 1] is named to be a continuous
t-norm if for each ν1, ν2, ν3, ν4 ∈ J , the below conditions hold:

(1) � is associative and commutative;
(2) � is continuous;
(3) ν1 � 1 = ν1 for all ν1 ∈ J ;
(4) ν1 � ν2 ≤ ν3 � ν4 whenever ν1 ≤ ν3 and ν2 ≤ ν4.

Definition 9. [44] A binary operation � : J ×J → J , where J = [0, 1] is named to be a continuous
t-conorm if for each ν1, ν2, ν3, ν4 ∈ J , the below conditions hold:

(1) � is associative and commutative;
(2) � is continuous;
(3) ν1 � 0 = ν1 for all ν1 ∈ J ;
(4) ν1 � ν2 ≤ ν3 � ν4 whenever ν1 ≤ ν3 and ν2 ≤ ν4.

Example 1. [24] The continuous t-norms are ν1 �ν2 = min{ν1, ν2} and ν1 �ν2 = ν1.ν2. On the other
hand, continuous t-conorms are ν1 � ν2 = max{ν1, ν2} and ν1 � ν2 = ν1 + ν2 − ν1.ν2.

Definition 10. [10] Let n ∈ N and W be a real vector space having dimension d ≥ n (d is finite or
infinite). A real valued function ∥·, . . . , ·∥ on W ×W × . . .×W︸ ︷︷ ︸

n times

= Wn, gratifying the below four axioms:

(1) ∥κ1, κ2, . . . , κn∥ = 0 if and only if κ1, κ2, . . . , κn are linearly dependent;
(2) ∥κ1, κ2, . . . , κn∥ remains invariant under any permutation of κ1, κ2, . . . , κn;
(3) ∥κ1, κ2, . . . , κn−1, ακn∥ = |α| ∥κ1, κ2, . . . , κn−1, κn∥ for α ∈ R (set of real numbers);
(4) ∥κ1, κ2, . . . , κn−1, τ + ω∥ ≤ ∥κ1, κ2, . . . , κn−1, τ∥+ ∥κ1, κ2, . . . , κn−1, ω∥,

is called an n-norm on W and the pair (W, ∥·, . . . , ·∥) is named to be an n-normed linear space.

As an illustration of n-normed linear space we take W = Rn equipped with the Euclidean norm

∥w1, w2, . . . , wn∥ = abs


∣∣∣∣∣∣∣
w11 · · · w1n

...
. . .

...
wn1 · · · wnn

∣∣∣∣∣∣∣


where wi = (wi1, wi2, . . . , win) ∈ Rn. For instance, we get ∥w1, w2, . . . , wn∥ ≥ 0 in an n-normed linear
space.
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Definition 11. [27] Let W be a vector space over H and � and � be continuous t-norm and t-conorm
respectively. Let Υ,ℜ,Ψ be the functions from Wn× (0,∞) to [0, 1]. Then, a six tuple (W,Υ,ℜ,Ψ,�,�)
is named to be a neutrosophic n-normed linear space (in short Nn-NLS), (κ1, κ2, . . . , κn−1, wn; ζ) ∈
Wn × (0,∞) → [0, 1], if the below conditions hold:

(1) Υ(κ1, κ2, . . . , κn−1, wn; ζ) + ℜ(κ1, κ2, . . . , κn−1, wn; ζ) + Ψ(κ1, κ2, . . . , κn−1, wn; ζ) ≤ 3;
(2) Υ(κ1, κ2, . . . , κn−1, wn; ζ) > 0;
(3) Υ(κ1, κ2, . . . , κn−1, wn; ζ) = 1 if and only if wj are linearly dependent, 1 ≤ j ≤ n;
(4) Υ(κ1, κ2, . . . , κn−1, wn; ζ) is invariant under any permutation of κ1, κ2, . . . , wn;

(5) Υ(κ1, κ2, . . . , κn−1, κwn; ζ) = Υ(κ1, κ2, . . . , κn−1, wn;
ζ
|κ| ), κ ̸= 0 and κ ∈ F ;

(6) Υ(κ1, κ2, . . . , κn−1, wn + w
′

n; ζ + τ) ≥ Υ(κ1, κ2, . . . , κn−1, wn; ζ) � Υ(κ1, κ2, . . . , κn−1, w
′

n; τ);
(7) Υ(κ1, κ2, . . . , κn−1, wn; ζ) is non-decreasing continuous in ζ;
(8) limζ→∞ Υ(κ1, κ2, . . . , κn−1, wn; ζ) = 1 and limζ→0 Υ(κ1, κ2, . . . , κn−1, wn; ζ) = 0;
(9) ℜ(κ1, κ2, . . . , κn−1, wn; ζ) > 0;

(10) ℜ(κ1, κ2, . . . , κn−1, wn; ζ) = 0 if and only if wj are linearly dependent, 1 ≤ j ≤ n;
(11) ℜ(κ1, κ2, . . . , κn−1, wn; ζ) is invariant under any permutation of κ1, κ2, . . . , wn;

(12) ℜ(κ1, κ2, . . . , κn−1, κwn; ζ) = ℜ(κ1, κ2, . . . , κn−1, wn;
ζ
|κ| ), κ ̸= 0 and κ ∈ F ;

(13) ℜ(κ1, κ2, . . . , κn−1, wn + w
′

n; ζ + τ) ≤ ℜ(κ1, κ2, . . . , κn−1, wn; ζ) � ℜ(κ1, κ2, . . . , κn−1, w
′

n; τ);
(14) ℜ(κ1, κ2, . . . , κn−1, wn; ζ) is non-increasing continuous in ζ;
(15) limζ→∞ ℜ(κ1, κ2, . . . , κn−1, wn; ζ) = 0 and limζ→0 ℜ(κ1, κ2, . . . , κn−1, wn; ζ) = 1;
(16) Ψ(κ1, κ2, . . . , κn−1, wn; ζ) > 0;
(17) Ψ(κ1, κ2, . . . , κn−1, wn; ζ) = 0 if and only if wj are linearly dependent, 1 ≤ j ≤ n;
(18) Ψ(κ1, κ2, . . . , κn−1, wn; ζ) is invariant under any permutation of κ1, κ2, . . . , wn;

(19) Ψ(κ1, κ2, . . . , κn−1, κwn; ζ) = Ψ(κ1, κ2, . . . , κn−1, wn;
ζ
|κ| ), κ ̸= 0 and κ ∈ F ;

(20) Ψ(κ1, κ2, . . . , κn−1, wn + w
′

n; ζ + τ) ≤ Ψ(κ1, κ2, . . . , κn−1, wn; ζ) � Ψ(κ1, κ2, . . . , κn−1, w
′

n; τ);
(21) Ψ(κ1, κ2, . . . , κn−1, wn; ζ) is non-increasing continuous in ζ;
(22) limζ→∞ Ψ(κ1, κ2, . . . , κn−1, wn; ζ) = 0 and limζ→0 Ψ(κ1, κ2, . . . , κn−1, wn; ζ) = 1.

In the sequal, we shall use the notation X for neutrosophic n-normed linear space instead of
(W,Υ,ℜ,Ψ,�,�) and we denote Nn to mean neutrosophic n-norm on X .

Example 2. [27] Let (W, ∥·, . . . , ·∥) be an n-normed linear space. Also, let ν1 � ν2 = min(ν1, ν2) and
ν1 � ν2 = max(ν1, ν2) for every ν1, ν2 ∈ [0, 1]. If we define Υ,ℜ and Ψ as

Υ(κ1, κ2, . . . , κn−1, wn; ζ) =
ζ

ζ + ∥κ1, κ2, . . . , κn−1, wn∥

ℜ(κ1, κ2, . . . , κn−1, wn; ζ) =
∥κ1, κ2, . . . , κn−1, wn∥

ζ + ∥κ1, κ2, . . . , κn−1, wn∥

and Ψ(κ1, κ2, . . . , κn−1, wn; ζ) =
∥κ1, κ2, . . . , κn−1, wn∥

ζ
.

Then, (W,Υ,ℜ,Ψ,�,�) is a neutrosophic n-normed linear space.

Definition 12. [27] Let {wk} be a sequence in a Nn-NLS X . Then, {wk} is named to be convergent to
υ ∈ W with respect to Nn if for every σ > 0, ζ > 0 and κ1, κ2, . . . , κn−1 ∈ W there exists k0 ∈ N such that
Υ(κ1, κ2, . . . , κn−1, wk − υ; ζ) > 1 − σ and ℜ(κ1, κ2, . . . , κn−1, wk − υ; ζ) < σ, Ψ(κ1, κ2, . . . , κn−1, wk −
υ; ζ) < σ for all k ≥ k0. In this scenario, it is denoted as Nn − limwk = υ or wk

Nn−−→ υ.

Definition 13. [27] Let {wk} be a sequence in a Nn-NLS X . Then, {wk} is named to be Cauchy
sequence with respect to Nn if for every σ > 0, ζ > 0 there exists k0 ∈ N such that

Υ(κ1, κ2, . . . , κn−1, wk − wm; ζ) > 1− σ and ℜ(κ1, κ2, . . . , κn−1, wk − wm; ζ) < σ,

Ψ(κ1, κ2, . . . , κn−1, wk − wm; ζ) < σ for all k,m ≥ k0.

Theorem 1. [27] Let {wk} be a sequence in W. Then, {wk} is convergent in (W, ∥·, . . . , ·∥) iff {wk} is
convergent in X with respect to neutrosophic n-norm as defined in Example 2.
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3. ∆mI (Nn)-Convergence

In this section we define ∆mI -convergence and ∆mI -Cauchy sequence with respect to neutrosophic
n-norm and develop some of their interesting properties.

Definition 14. Let {wk} be a sequence in a Nn-NLS X . Then, {wk} is named to be ∆m-convergent to
υ ∈ W with respect to Nn if for every σ ∈ (0, 1), ζ > 0 and nonzero κ1, κ2, . . . , κn−1 ∈ W there exists
k0 ∈ N such that

Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) > 1− σ and ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) < σ,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) < σ for all k ≥ k0.

In this scenario, it is denoted as Nn − lim∆mwk = υ or wk
∆m(Nn)−−−−−−→ υ.

Definition 15. Let {wk} be a sequence in a Nn-NLS X . Then, {wk} is named to be ∆m-Cauchy sequence
with respect to Nn if for every σ ∈ (0, 1), ζ > 0 there exists k0 ∈ N such that

Υ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwi; ζ) > 1− σ and

ℜ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwi; ζ) < σ,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwi; ζ) < σ,

for all k, i ≥ k0.

Definition 16. Let {wk} be a sequence in a Nn-NLS X and I ⊆ 2N be a non-trivial ideal in N.
Then, {wk} is named to be generalized difference I -convergent to υ ∈ W with respect to Nn (named as
∆mI (Nn)-convergence) if for every σ ∈ (0, 1), ζ > 0 and nonzero κ1, κ2, . . . , κn−1 ∈ W such that

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≤ 1− σ or ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) ≥ σ and

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≥ σ} ∈ I .

In this scenario, it is denoted as I (Nn)−lim∆mwk = υ or wk
∆mI (Nn)−−−−−−−→ υ. And, υ is called ∆mI (Nn)-

limit of {wk}.

Example 3. Let W = Rn with

∥w1, w2, . . . , wn∥ = abs


∣∣∣∣∣∣∣
w11 · · · w1n

...
. . .

...
wn1 · · · wnn

∣∣∣∣∣∣∣


where wi = (wi1, wi2, . . . , win) ∈ Rn. We take continuous t-norm and t-conorm as ν1 � ν2 = min{ν1, ν2}
and ν1 � ν2 = max{ν1, ν2} for every ν1, ν2 ∈ [0, 1]. We take Nn-NLS as defined in Example 2. Let I
be a class of subsets of N such that natural density of each subset is zero. Then, I becomes a nontrivial
admissible ideal. Now, we define a sequence {wk} ∈ W by

∆mwk =

{
(1, 0, . . . , 0) = 1, if k = i2, i ∈ N
(0, 0, . . . , 0) = 0, otherwise

.

Then for any σ ∈ (0, 1) and ζ > 0, we have

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk; ζ) ≤ 1− σ or ℜ(κ1, κ2, . . . , κn−1,∆

mwk; ζ)

≥ σand Ψ(κ1, κ2, . . . , κn−1,∆
mwk; ζ) ≥ σ}

= {k ∈ N : ∥κ1, κ2, . . . , κn−1,∆
mwk∥ ≥ ζσ

1− σ
> 0 or ∥κ1, κ2, . . . , κn−1,∆

mwk∥

≥ ζσ > 0} ⊆ {k ∈ N : k = i2, i ∈ N}.

Since δ({k ∈ N : k = i2, i ∈ N}) = 0, I (Nn)− lim∆mwk = 0.

From Definition 16, we can easily prove the following lemma.

Lemma 1. Let {wk} be a sequence in a Nn-NLS X . Then, for every σ ∈ (0, 1), ζ > 0 and nonzero
κ1, κ2, . . . , κn−1 ∈ W, the below properties are gratified:
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(1) I (Nn)− lim∆mwk = υ;
(2) {k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) ≤ 1 − σ} ∈ I , {k ∈ N : ℜ(κ1, κ2, . . . , κn−1,∆
mwk −

υ; ζ) ≥ σ} ∈ I and {k ∈ N : Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≥ σ} ∈ I ;

(3) {k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) > 1 − σ and ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) <
σ,Ψ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) < σ} ∈ F (I );
(4) {k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆

mwk−υ; ζ) > 1−σ} ∈ F (I ), {k ∈ N : ℜ(κ1, κ2, . . . , κn−1,∆
mwk−

υ; ζ) < σ} ∈ F (I ) and {k ∈ N : Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) < σ} ∈ F (I );

(5) I − limΥ(κ1, κ2, . . . , κn−1,∆
mwk −υ; ζ) = 1, I − limℜ(κ1, κ2, . . . , κn−1,∆

mwk −υ; ζ) = 0 and
I − limΨ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) = 0.

Theorem 2. Let {wk} be a sequence in a Nn-NLS X . If {wk} is ∆mI (Nn)-convergent, ∆
mI (Nn)-limit

of {wk} is unique.

Proof. If possible, let I (Nn) − lim∆mwk = υ1 and I (Nn) − lim∆mwk = υ2 where υ1 ̸= υ2. Let
σ ∈ (0, 1) be given. Choose ϖ ∈ (0, 1) such that (1 − ϖ) � (1 − ϖ) > 1 − σ and ϖ � ϖ < σ. For any
ζ > 0 and nonzero κ1, κ2, . . . , κn−1 ∈ W, we define

MΥ,1(ϖ, ζ) =

{
k ∈ N : Υ

(
κ1, κ2, . . . , κn−1,∆

mwk − υ1;
ζ

2

)
≤ 1−ϖ

}
;

BΥ,2(ϖ, ζ) =

{
k ∈ N : Υ

(
κ1, κ2, . . . , κn−1,∆

mwk − υ2;
ζ

2

)
≤ 1−ϖ

}
;

Mℜ,1(ϖ, ζ) =

{
k ∈ N : ℜ

(
κ1, κ2, . . . , κn−1,∆

mwk − υ1;
ζ

2

)
≥ ϖ

}
;

Bℜ,2(ϖ, ζ) =

{
k ∈ N : ℜ

(
κ1, κ2, . . . , κn−1,∆

mwk − υ2;
ζ

2

)
≥ ϖ

}
;

MΨ,1(ϖ, ζ) =

{
k ∈ N : Ψ

(
κ1, κ2, . . . , κn−1,∆

mwk − υ1;
ζ

2

)
≥ ϖ

}
;

BΨ,2(ϖ, ζ) =

{
k ∈ N : Ψ

(
κ1, κ2, . . . , κn−1,∆

mwk − υ2;
ζ

2

)
≥ ϖ

}
.

Since I (Nn)− lim∆mwk = υ1, by Lemma 1,

MΥ,1(ϖ, ζ),Mℜ,1(ϖ, ζ) and MΨ,1(ϖ, ζ) ∈ I .

Again, as I (Nn)− lim∆mwk = υ2,

BΥ,2(ϖ, ζ),Bℜ,2(ϖ, ζ) and BΨ,2(ϖ, ζ) ∈ I .

Let A(Υ,ℜ,Ψ)(σ, ζ) = [MΥ,1(ϖ, ζ) ∪ BΥ,2(ϖ, ζ)] ∩ [Mℜ,1(ϖ, ζ) ∪ Bℜ,2(ϖ, ζ)]
∩ [MΨ,1(ϖ, ζ) ∪ BΨ,2(ϖ, ζ)]. Then A(Υ,ℜ,Ψ)(σ, ζ) ∈ I . Obviously N \ A(Υ,ℜ,Ψ)(σ, ζ) ∈ F (I ). So, let
k ∈ N \ A(Υ,ℜ,Ψ)(σ, ζ). So, there are three possible cases to be considered.
Case-1 : If k ∈ N \ (MΥ,1(ϖ, ζ) ∪ BΥ,2(ϖ, ζ)), then we have

Υ(κ1, κ2, . . . , κn−1, υ1 − υ2; ζ)

≥ Υ

(
κ1, κ2, . . . , κn−1,∆

mwk − υ1;
ζ

2

)
� Υ

(
κ1, κ2, . . . , κn−1,∆

mwk − υ2;
ζ

2

)
> (1−ϖ) � (1−ϖ) > 1− σ.

Since σ > 0 is arbitrary, Υ(κ1, κ2, . . . , κn−1, υ1 − υ2; ζ) = 1 for all ζ > 0. Hence υ1 = υ2.
Case-2 : If k ∈ N \ (Mℜ,1(ϖ, ζ) ∪ Bℜ,2(ϖ, ζ)), then we can have

ℜ(κ1, κ2, . . . , κn−1, υ1 − υ2; ζ)

≤ ℜ
(
κ1, κ2, . . . , κn−1,∆

mwk − υ1;
ζ

2

)
� ℜ

(
κ1, κ2, . . . , κn−1,∆

mwk − υ2;
ζ

2

)
< ϖ � ϖ < σ.

Since σ > 0 is arbitrary, ℜ(κ1, κ2, . . . , κn−1, υ1 − υ2; ζ) = 0 for all ζ > 0. Hence υ1 = υ2.
Case-3 : If k ∈ N \ (MΨ,1(ϖ, ζ) ∪ BΨ,2(ϖ, ζ)), then by similar technique as above we can arrive at
ℜ(κ1, κ2, . . . , κn−1, υ1 − υ2; ζ) = 0 i.e., υ1 = υ2.
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In all the above three cases, we get υ1 = υ2, which is a contradiction. Hence ∆mI (Nn)-limit of {wk} is
unique. □

Now, we give two interesting results based on the translation invariant ideal.

Proposition 1. Let {wk} be a sequence in a Nn-NLS X . Then, I (Nn)− lim∆mwk

= υ =⇒ I (Nn)− lim∆mwk+1 = υ under the condition I is a translation invariant ideal.

Proof. Let I (Nn)− lim∆mwk = υ. Then

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≤ 1− σ or ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) ≥ σ and

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≥ σ}.

Since I is a translation invariant ideal,

{k + 1 ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk+1 − υ; ζ) ≤ 1− σ or ℜ(κ1, κ2, . . . , κn−1,∆

mwk+1 − υ; ζ) ≥ σ and

Ψ(κ1, κ2, . . . , κn−1,∆
mwk+1 − υ; ζ) ≥ σ} ∈ I ,

i.e., I (Nn)− lim∆mwk+1 = υ. □

Proposition 2. Let {wk} be a sequence in a Nn-NLS X . Then I (Nn)− lim∆m−1wk

= υ =⇒ I (Nn)− lim∆mwk = υ under the condition I is an admissible translation invariant ideal.

Proof. Let I (Nn)− lim∆m−1wk = υ. Since I is a translation invariant ideal, by Proposition 1 we have
I (Nn)− lim∆m−1wk+1 = υ. Since (∆mwk) = (∆m−1wk−∆m−1wk+1), therefore I (Nn)− lim∆mwk =
υ. □

Theorem 3. Let {wk} be a sequence in a Nn-NLS X . If Nn− lim∆mwk = υ then I (Nn)− lim∆mwk =
υ.

Proof. Let Nn − lim∆mwk = υ. Then, for every σ ∈ (0, 1), ζ > 0 and nonzero κ1, κ2, . . . , κn−1 ∈ W
there exists k0 ∈ N such that

Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) > 1− σ and ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) < σ,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) < σ

for all k ≥ k0. Therefore, it is immediate that the set

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≤ 1− σ or ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) ≥ σ

and Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≥ σ}

is finite. Since I is an admissible ideal, hence

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≤ 1− σ or ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) ≥ σ

and Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≥ σ} ∈ I .

So, I (Nn)− lim∆mwk = υ. □

But, in general, the converse of the above theorem need not be true which can be illustrated as given
below.

Example 4. Let W = Rn with

∥w1, w2, . . . , wn∥ = abs


∣∣∣∣∣∣∣
w11 · · · w1n

...
. . .

...
wn1 · · · wnn

∣∣∣∣∣∣∣


where wi = (wi1, wi2, . . . , win) ∈ Rn. We take continuous t-norm and t-conorm as ν1 � ν2 = min{ν1, ν2}
and ν1 � ν2 = max{ν1, ν2} for every ν1, ν2 ∈ [0, 1]. We take Nn-NLS as defined in Example 2. Let I
be a class of subsets of N such that natural density of each subset is zero. Then, I becomes a nontrivial
admissible ideal. Now, we define a sequence {wk} ∈ W by

∆mwk =

{
(k, 0, . . . , 0), if k = i2, i ∈ N
(0, 0, . . . , 0) = 0, otherwise

.
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Then we obtain I (Nn) − lim∆mwk = 0, but wk ̸∆m(Nn)−−−−−−→ 0 as it is not convergent in Rn, so from
Theorem 1, we have it is not convergent in W with respect to Nn.

Theorem 4. Let W be a real vector space, {wk} and {lk} be two sequences in a Nn-NLS X . Then, the
below statements hold good:

(1) If I (Nn)− lim∆mwk = υ1 and I (Nn)− lim∆mlk = υ2, I (Nn)− lim∆m(wk + lk) = υ1 + υ2;
(2) If I (Nn)− lim∆mwk = υ, I (Nn)− lim∆m(κwk) = κυ, κ ̸= 0;
(3) If I (Nn)− lim∆mwk = υ1 and I (Nn)− lim∆mlk = υ2, I (Nn)− lim∆m(wk − lk) = υ1 − υ2.

Proof. It is straightforward. So, we omit details. □

Theorem 5. Let {wk} be a sequence in a Nn-NLS X . Then, I (Nn) − lim∆mwk = υ if and only if
there exists a C ⊆ N such that C ∈ F and

Nn − lim
k→∞
k∈C

∆mwk = υ.

Proof. First, suppose that I (Nn) − lim∆mwk = υ. Then, for any ζ > 0, q ∈ N and for all nonzero
κ1, κ2, . . . , κn−1 ∈ W,

YNn
(q, ζ) = {k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) > 1− 1

q
and ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) <
1

q
,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) <

1

q
} ∈ F (I )

and

TNn(q, ζ) = {k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≤ 1− 1

q
or ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) ≥ 1

q
,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≥ 1

q
} ∈ I .

We observe YNn
(q + 1, ζ) ⊆ YNn

(q, ζ). Now, we shall show that

for k ∈ YNn
(q, ζ), Nn − lim

k→∞
∆mwk = υ.

Suppose that wk ̸∆m(Nn)−−−−−−→ υ. Then for some σ ∈ (0, 1), Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≤ 1 − σ,

ℜ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≥ σ and Ψ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) ≥ σ holds good except at
most finite number of terms k ∈ YNn

(q, ζ). Let

DNn
(σ, ζ) = {k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) > 1− σ and ℜ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) < σ,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) < σ},

where σ > 1
q . Then DNn

(σ, ζ) ∈ I as I is an admissible. As, σ > 1
q , YNn

(q, ζ) ⊆ DNn
(σ, ζ) and hence

YNn
(q, ζ) ∈ I which contradicts YNn

(q, ζ) ∈ F (I ). Therefore, for k ∈ YNn
(q, ζ),

Nn − limk→∞ ∆mwk = υ.
Conversely suppose that there exists a C ⊆ N such that C ∈ F (I ) and

Nn − lim
k→∞
k∈C

∆mwk = υ.

Then for every σ ∈ (0, 1), ζ > 0 and nonzero κ1, κ2, . . . , κn−1 ∈ W there exists k0 ∈ N such that

Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) > 1− σ and ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) < σ,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) < σ for all k ≥ k0, k ∈ C .

Thus

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≤ 1− σ or ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) ≥ σ and

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≥ σ} ∈ I ,

since I is an admissible. Hence I (Nn)− lim∆mwk = υ. This completes the proof. □

Theorem 6. Let {wk} and {lk} be two sequences in a Nn-NLS X such that I (Nn)− lim∆mlk = υ and
{k ∈ N : ∆mlk ̸= ∆mwk} ∈ I . Then, I (Nn)− lim∆mwk = υ.
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Proof. Suppose I (Nn) − lim∆mlk = υ. Then, for every σ ∈ (0, 1), ζ > 0 and nonzero
κ1, κ2, . . . , κn−1 ∈ W, the set A ∈ I where

A = {k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mlk − υ; ζ) ≤ 1− σ or ℜ(κ1, κ2, . . . , κn−1,∆

mlk − υ; ζ) ≥ σ and

Ψ(κ1, κ2, . . . , κn−1,∆
mlk − υ; ζ) ≥ σ}.

It is clear that

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≤ 1− σ or ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) ≥ σ and

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≥ σ} ⊆ A ∪ {k ∈ N : ∆mlk ̸= ∆mwk}.

By the condition,

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≤ 1− σ or ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) ≥ σ and

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≥ σ} ∈ I ,

i.e., I (Nn)− lim∆mwk = υ. □

4. ∆mI ∗(Nn)-Convergence

Now, we proceed with the notion of ∆mI ∗-convergence in a neutrosophic n-normed linear space X .

Definition 17. Let {wk} be a sequence in a Nn-NLS X . Then, {wk} is named to be generalized difference
I ∗-convergent to υ ∈ W with regards to Nn (in short ∆mI ∗(Nn)-convergence) if there exists a set
K = {k1 < k2 < · · · < kp < · · · } ⊂ N such that K ∈ F (I ) and Nn − limp→∞ ∆mwkp

= υ. In this

case, we write I ∗(Nn)− lim∆mwk = υ or wk
∆mI ∗(Nn)−−−−−−−−→ υ and υ is called ∆mI ∗(Nn)-limit of {wk}.

We establish the connection between ∆mI ∗(Nn) and ∆mI (Nn)-convergence.

Theorem 7. Let {wk} be a sequence in a Nn-NLS X . If I ∗(Nn)−lim∆mwk = υ, I (Nn)−lim∆mwk =
υ.

Proof. Since I ∗(Nn) − lim∆mwk = υ, there exists a set K = {k1 < k2 < · · · < kp < · · · } ⊂ N
such that K ∈ F (I ) and Nn − limp→∞ ∆mwkp

= υ i.e., for every σ ∈ (0, 1), ζ > 0 and nonzero
κ1, κ2, . . . , κn−1 ∈ W there exists p0 ∈ N such that

Υ(κ1, κ2, . . . , κn−1,∆
mwkp

− υ; ζ) > 1− σ and ℜ(κ1, κ2, . . . , κn−1,∆
mwkp

− υ; ζ) < σ,

Ψ(κ1, κ2, . . . , κn−1,∆
mwkp

− υ; ζ) < σ for all p ≥ p0.

So,

{kp ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwkp − υ; ζ) ≤ 1− σ or ℜ(κ1, κ2, . . . , κn−1,∆

mwkp − υ; ζ) ≥ σ and

Ψ(κ1, κ2, . . . , κn−1,∆
mwkp − υ; ζ) ≥ σ} ⊆ {k1, k2, . . . , kp0−1}.

Let G = N \ K . Then,

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≤ 1− σ or ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) ≥ σ and

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≥ σ} ⊆ G ∪ {k1, k2, . . . , kp0−1}.

Since I is an admissible ideal,

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≤ 1− σ or ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) ≥ σ and

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≥ σ} ∈ I .

This shows that I (Nn)− lim∆mwk = υ. □

In general, the converse of the above Theorem need not be true which can illustrated by the following
example.

Example 5. Let W = Rn with

∥w1, w2, . . . , wn∥ = abs


∣∣∣∣∣∣∣
w11 · · · w1n

...
. . .

...
wn1 · · · wnn

∣∣∣∣∣∣∣

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where wi = (wi1, wi2, . . . , win) ∈ Rn. We take continuous t-norm and t-conorm as ν1 � ν2 = min{ν1, ν2}
and ν1 � ν2 = max{ν1, ν2} for every ν1, ν2 ∈ [0, 1]. We consider the neutrosophic n-normed linear space
defined as in Example 2. Let N =

⋃
i Di be a decomposition of N such that for any r ∈ N each Di contains

infinitely many i′s where i ≥ r and Di ∩ Dr = ∅ whenever i ̸= r. Let I be the class of all subsets of N
which intersects only a finite number of D ′

is. Then, I becomes a non trivial admissible ideal of N. Now
we define a sequence {wk} ∈ W by ∆mwk = ( 1k , 0, . . . , 0) ∈ Rn if k ∈ Dk. Let 0 = (0, 0, . . . , 0) ∈ Rn.
Then for ζ > 0 and nonzero κ1, κ2, . . . , κn−1 ∈ W, we have

Υ(κ1, κ2, . . . , κn−1,∆
mwk; ζ) =

ζ

ζ + ∥κ1, κ2, . . . , κn−1,∆mwk∥
→ 1,

ℜ(κ1, κ2, . . . , κn−1,∆
mwk; ζ) =

∥κ1, κ2, . . . , κn−1,∆
mwk∥

ζ + ∥κ1, κ2, . . . , κn−1,∆mwk∥
→ 0,

and Ψ(κ1, κ2, . . . , κn−1,∆
mwk; ζ) =

∥κ1, κ2, . . . , κn−1,∆
mwk∥

ζ
→ 0

as k → ∞. Since I is an admissible ideal, therefore I (Nn)− lim∆mwk = 0.
Now, if possible, let I ∗(Nn) − lim∆mwk = 0. Then, there exists a set K = {k1 < k2 < · · · < kp <

· · · } ⊂ N such that K ∈ F (I ) and Nn − limp→∞ ∆mwkp = 0. Since K ∈ F (I ), there is G ∈ I

such that N \ K = G . Now by the construction of I , there is j ∈ N such that G ⊂
⋃j

i=1 Di. But
then Dj+1 ⊂ K and therefore ∆mwkp = ( 1

j+1 , 0, . . . , 0) for infinitely many kp ∈ K which contradicts

Nn − limp→∞ ∆mwkp
= 0. Therefore {wk} is not ∆mI ∗(Nn)-convergent to 0 ∈ W.

Then, question normally arises that under what condition the converse of the above Theorem is true.
We investigate it in the following theorem.

Theorem 8. Let {wk} be a sequence in a Nn-NLS X . If I (Nn) − lim∆mwk = υ and I satisfies the
condition (AP) then I ∗(Nn)− lim∆mwk = υ.

Proof. Suppose that I satisfies the condition (AP ) and I (Nn) − lim∆mwk = υ. Then, for every
σ ∈ (0, 1), ζ > 0 and nonzero κ1, κ2, . . . , κn−1 ∈ W such that

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≤ 1− σ or ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) ≥ σ and

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≥ σ} ∈ I .

Define

Aj = {k ∈ N :1− 1

j
≤ Υ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) < 1− 1

j + 1
or

1

j + 1
< ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) ≤ 1

j
and

1

j + 1
< Ψ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) ≤ 1

j
}.

Clearly, {A1,A2, . . .} is countable and pairwise disjoint and each Aj ∈ I . Since I satisfies the condition
(AP ), there exists a countable family {B1,B2, . . .} of subsets of N belonging to I and Ai△Bi is finite
for each i and G = ∪iBi ∈ I . Now from the associated filter of I there is K ∈ F (I ) such that
K = N \ G . It is sufficient to prove the theorem that the subsequence {wk}k∈K is ∆m-convergent to υ
with regard to Nn. Let ϖ ∈ (0, 1). Choose k0 ∈ N such that 1

k0
< ϖ. Then, it is immediate that

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≤ 1−ϖ or ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) ≥ ϖ and

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≥ ϖ}

⊆ {k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≤ 1− 1

k0
or ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ) ≥ 1

k0
and

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) ≥ 1

k0
} ⊆

k0+1⋃
i=1

Ai.
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Since Ai△Bi, i = 1, 2, . . . , k0 + 1, are finite, there is p0 ∈ N such that(
k0+1⋃
i=1

Bi

)
∩ {k ∈ N : k ≥ p0} =

(
k0+1⋃
i=1

Ai

)
∩ {k ∈ N : k ≥ p0}. (1)

If k ≥ p0 and k ∈ K , k /∈
⋃k0+1

i=1 Bi. So, by (1), k /∈
⋃k0+1

i=1 Ai. Therefore, for every k ≥ p0 and k ∈ K
we get

Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) > 1−ϖ,

ℜ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) < ϖ,

and Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ) < ϖ.

Since ϖ ∈ (0, 1) is arbitrary, we have I ∗(Nn)− lim∆mwk = υ. Hence proved. □

5. ∆mI (Nn)-Completeness

Now, we proceed with the notion of generalized difference I -Cauchy sequence in neutrosophic n-
normed linear spaces.

Definition 18. Let {wk} be a sequence in a Nn-NLS X . Then, {wk} is named to be generalized difference
I -Cauchy sequence with regard to Nn (in short ∆mI (Nn)-Cauchy) if for every σ ∈ (0, 1), ζ > 0 and
nonzero κ1, κ2, . . . , κn−1 ∈ W there exists a natural number k0 = k0(σ) such that

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwk0

; ζ) ≤ 1− σ or ℜ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwk0

; ζ) ≥ σ

and Ψ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwk0 ; ζ) ≥ σ} ∈ I .

Now, we proceed with the investigations of relation ship between ∆mI (Nn)-Cauchy sequence and
∆mI (Nn)-convergence of a sequence.

Theorem 9. Let {wk} be a sequence in a Nn-NLS X . If {wk} is ∆mI (Nn)-convergent, it is ∆
mI (Nn)-

Cauchy sequence.

Proof. Let {wk} is ∆mI (Nn)-convergent to υ. For a given σ ∈ (0, 1), choose ϖ ∈ (0, 1) such that
(1−ϖ) � (1−ϖ) > 1− σ and ϖ � ϖ < σ. Then for any ζ > 0 and nonzero κ1, κ2, . . . , κn−1 ∈ W, each
of the following sets

A1 = {k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ;

ζ

2
) > 1−ϖ},

A2 = {k ∈ N : ℜ(κ1, κ2, . . . , κn−1,∆
mwk − υ;

ζ

2
) < ϖ}

and A3 = {k ∈ N : Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ;

ζ

2
) < ϖ}

belongs to F (I ). Let B = A1 ∩ A2 ∩ A3. Then B ∈ F (I ). So, let k ∈ B. Choose a fixed k0 ∈ B.
Then,

Υ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwk0

; ζ)

≥ Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ;

ζ

2
) � Υ(κ1, κ2, . . . , κn−1,∆

mwk0
− υ;

ζ

2
)

> (1−ϖ) � (1−ϖ)

> (1− σ)

and

ℜ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwk0

; ζ)

≤ ℜ(κ1, κ2, . . . , κn−1,∆
mwk − υ;

ζ

2
) � ℜ(κ1, κ2, . . . , κn−1,∆

mwk0 − υ;
ζ

2
)

< ϖ � ϖ

< σ.
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Similarly we have Ψ(κ1, κ2, . . . , κn−1,∆
mwk −∆m∆mwk0

; ζ) < σ. Therefore,

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwk0

; ζ) > 1− σ and ℜ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwk0

; ζ) < σ,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwk0 ; ζ) < σ} ∈ F (I ).

Hence, {wk} is ∆mI (Nn)-Cauchy sequence. □

Theorem 10. Let {wk} be a sequence in a Nn-NLS X . If {wk} is ∆mI (Nn)-Cauchy sequence, it is
∆mI (Nn)-convergent.

Proof. Let {wk} be ∆mI (Nn)-Cauchy sequence but not ∆mI (Nn)-convergent. Then for σ ∈ (0, 1), ζ >
0 and nonzero κ1, κ2, . . . , κn−1 ∈ W there exists k0 = k0(σ) ∈ N such that K ∈ I where

K = {k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwk0

; ζ) ≤ 1− σ or ℜ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwk0

; ζ) ≥ σ

and Ψ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwk0

; ζ) ≥ σ}.

And, M ∈ I where

M = {k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ;

ζ

2
) > 1− σ and ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ;
ζ

2
) < σ,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ;

ζ

2
) < σ}.

Consequently

Υ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwk0 ; ζ) ≥ 2Υ(κ1, κ2, . . . , κn−1,∆

mwk − υ;
ζ

2
) > 1− σ

and

ℜ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwk0

; ζ) ≤ 2ℜ(κ1, κ2, . . . , κn−1,∆
mwk − υ;

ζ

2
) < σ,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwk0 ; ζ) ≤ 2Ψ(κ1, κ2, . . . , κn−1,∆

mwk − υ;
ζ

2
) < σ,

if

Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ;

ζ

2
) >

1− σ

2
;

and ℜ(κ1, κ2, . . . , κn−1,∆
mwk − υ;

ζ

2
) <

σ

2
;Ψ(κ1, κ2, . . . , κn−1,∆

mwk − υ;
ζ

2
) <

σ

2

respectively. This yields

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwk0

; ζ) > 1− σ and ℜ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwk0

; ζ) < σ,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk −∆mwk0

; ζ) < σ} ∈ I ,

which means K c ∈ I that implies K ∈ F (I ) by which we arrive at a contradiction. Hence, {wk} is
∆mI (Nn)-convergent. □

Definition 19. A Nn-NLS is named to be ∆mI -complete with regard to Nn (in short ∆mI (Nn)-
complete) if every ∆mI (Nn)-Cauchy sequence is ∆mI (Nn)-convergent.

Remark 1. In the light of Theorem 10, we see every Nn-NLS is ∆mI (Nn)-complete.

Now, from Theorems 5, 9 and 10 we get the following result.

Theorem 11. Let {wk} be a sequence in a Nn-NLS X . Then, the below properties are gratified:

(1) {wk} is ∆mI (Nn)-convergent;
(2) {wk} is ∆mI (Nn)-Cauchy;
(3) There exists a C ⊆ N such that C ∈ F (I ) and the subsequence {wk}k∈C is an ∆m-Cauchy

sequence with regard to Nn.
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6. ∆mI (Nn)-Limit Point

First we recall some basic topological terminology from [16].

Definition 20. [16] For σ ∈ (0, 1), ζ > 0, α ∈ W and every κ1, κ2, . . . , κn−1 ∈ W, the open ball (also
named as Nn-open ball) centered at α and of radius σ with respect to ζ, denoted by B(α, σ; ζ), is defined
by

B(α, σ; ζ) = {w ∈ W : Υ(κ1, κ2, . . . , κn−1, α− w; ζ) > 1− σ and ℜ(κ1, κ2, . . . , κn−1, α− w; ζ) < σ,

Ψ(κ1, κ2, . . . , κn−1, α− w; ζ) < σ}.
Definition 21. A subset O of W is called open with respect to Nn (named as Nn-open set) if for each
α ∈ O there exists an Nn-open ball of some radius which is contained in O.

Let X be an Nn-NLS. If we take a collection TNn as TNn = {O ⊂ W : O is an Nn − open set}. Then
TNn

becomes a topology on X . A subset U of W is named to be bounded with respect to Nn (denoted as
Nn-bounded) if there exist ζ > 0 and σ ∈ (0, 1) such that for each α ∈ U , Υ(κ1, κ2, . . . , κn−1, α; ζ) > 1−σ
and ℜ(κ1, κ2, . . . , κn−1, α; ζ) < σ, Ψ(κ1, κ2, . . . , κn−1, α; ζ) < σ holds for every κ1, κ2, . . . , κn−1 ∈ W [16].

Here, we define some topological notions with regard to Nn which will be needed to develop our results.

Definition 22. Let Y ⊆ W and υ ∈ W. Then, υ is named to be a limit point of Y with respect to Nn

(Nn-limit point) if for every Nn-open ball centered at υ contains at least one point of Y different from
υ.

Y is named to be closed in W with regard to Nn (Nn-closed set) if it contains all of its Nn-limit

point. Throughout our discussion A denotes closure of A with respect to Nn.
Now, we define ∆m(Nn)-limit point, ∆mI (Nn)-limit point and ∆mI (Nn)-cluster point of a sequence

{wk}.
Definition 23. Let {wk} be a sequence in a Nn-NLS X . Then a point α ∈ W is named to be a ∆m-limit
point of {wk} with respect to Nn (in short ∆m(Nn)-limit point) if there is a subsequence of {wk} which
is ∆m-convergent to α with respect to Nn.

We denote ∆mL Nn(wk) to mean the set of all ∆m(Nn)-limit points of {wk}.
Definition 24. Let {wk} be a sequence in a Nn-NLS X . Then, a point α ∈ W is named to be a ∆mI -
limit point of {wk} with respect to Nn (in short ∆mI (Nn)-limit point) if there exists a M ⊆ N such
that M /∈ I and the subsequence {wk}k∈M is ∆m-convergent to υ with respect to Nn.

We denote ∆mΛNn(wk) to mean the set of all ∆mI (Nn)-limit points of {wk}.
Definition 25. Let {wk} be a sequence in a Nn-NLS X . A point α ∈ W is named to be ∆mI -cluster
point with respect to Nn of {wk} (in short ∆mI (Nn)-cluster point) if for every σ ∈ (0, 1), ζ > 0 and
nonzero κ1, κ2, . . . , κn−1 ∈ W,

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − α; ζ) > 1− σ and ℜ(κ1, κ2, . . . , κn−1,∆

mwk − α; ζ) < σ,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − α; ζ) < σ} /∈ I .

We denote ∆mΓNn(wk) to mean the set of all ∆mI (Nn)-cluster points of {wk}.
Theorem 12. Let {wk} be a sequence in a Nn-NLS X . Then, ∆mΛNn(wk) ⊆ ∆mΓNn(wk) holds good.

Proof. Let υ ∈ ∆mΛNn(wk). Then, there exists a M = {k1 < k2 < · · · < kn < · · · } ⊆ N such
that M /∈ I and the subsequence {wk}k∈M is ∆m-convergent to υ with respect to Nn, i.e., for every
σ ∈ (0, 1), ζ > 0 and nonzero κ1, κ2, . . . , κn−1 ∈ W there exists n0 ∈ N such that

Υ(κ1, κ2, . . . , κn−1,∆
mwkn

− υ; ζ) > 1− σ and ℜ(κ1, κ2, . . . , κn−1,∆
mwkn

− υ; ζ) < σ,

Ψ(κ1, κ2, . . . , κn−1,∆
mwkn

− υ; ζ) < σ

holds for all n ≥ n0. Let

A = {k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − α; ζ) > 1− σ and ℜ(κ1, κ2, . . . , κn−1,∆

mwk − α; ζ) < σ,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − α; ζ) < σ}.

Then, it is obvious that A ⊇ M \{k1, k2, . . . , kn0−1}. Since I is an admissible ideal, A /∈ I . Therefore,
υ ∈ ∆mΓNn(wk). Hence proved. □
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Theorem 13. Let {wk} be a sequence in a Nn-NLS X . Then, ∆mΓNn(wk) ⊆ ∆mL Nn(wk) holds good.

Proof. Let υ ∈ ∆mΓNn(wk). Then, for every σ ∈ (0, 1), ζ > 0 and nonzero κ1, κ2, . . . , κn−1 ∈ W the set

M = {k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − α; ζ) > 1− σ and ℜ(κ1, κ2, . . . , κn−1,∆

mwk − α; ζ) < σ,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − α; ζ) < σ} /∈ I .

Since I is an admissible ideal, M must be infinite. So, we can write M as {k1 < k2 < · · · < kn < · · · }.
Thus we have a subsequence {wk}k∈M of {wk} such that wkn

∆m(Nn)−−−−−−→ υ, i.e., υ ∈ ∆mL Nn(wk). Hence
proved. □

Theorem 14. Let {wk} be a sequence in a Nn-NLS X . Then, ∆mΓNn(wk) is a closed set in W with
respect to the topology induced by Nn-norm.

Proof. Let α ∈ ∆mΓNn(wk). Choose σ ∈ (0, 1) and ζ > 0. Then, we have an element µ ∈ ∆mΓNn(wk)∩
B(α, σ; ζ). We select ϑ ∈ (0, 1) such that B(µ, ϑ; ζ) ⊂ B(α, σ; ζ). Then for every nonzero
κ1, κ2, . . . , κn−1 ∈ W, it follows that

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − µ; ζ) > 1− ϑ and ℜ(κ1, κ2, . . . , κn−1,∆

mwk − µ; ζ) < ϑ,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − µ; ζ) < ϑ}

⊆ {k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − α; ζ) > 1− σ and ℜ(κ1, κ2, . . . , κn−1,∆

mwk − α; ζ) < σ,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − α; ζ) < σ}.

Since µ ∈ ∆mΓNn(wk),

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − α; ζ) > 1− σ and ℜ(κ1, κ2, . . . , κn−1,∆

mwk − α; ζ) < σ,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − α; ζ) < σ} /∈ I .

Therefore α ∈ ∆mΓNn(wk). Hence the result is proved. □

Theorem 15. Let {wk} be a sequence in a Nn-NLS X . If I (Nn) − lim∆mwk = υ, ∆mΛNn(wk) =
∆mΓNn(wk) = {υ}.

Proof. It is omitted. □

7. Continuous Linear Operators Preserving ∆mI (Nn)-Convergence

In this section, we explore the notion of continuous mapping and prove that a linear operator preserves
∆mI (Nn)-convergence iff it is continuous on W. Throughout this section we denote G (κ1) = z1,
G (κ2) = z2, . . . ,G (κn−1) = zn−1.

Definition 26. A mapping G : W → W is named to be continuous at υ ∈ W with regard to Nn (in short
Nn-continuous) if for σ ∈ (0, 1) and ζ > 0 and nonzero κ1, κ2, . . . , κn−1 ∈ W and z1, z2, . . . , zn−1 ∈ W
there exist σ1 = σ1(σ, ζ, υ) ∈ (0, 1) and ζ1 = (σ, ζ, υ) > 0 such that for all w ∈ W such that

Υ(κ1, κ2, . . . , κn−1, w − υ; ζ1) > 1− σ1 and ℜ(κ1, κ2, . . . , κn−1, w − υ; ζ1) < σ1,

Ψ(κ1, κ2, . . . , κn−1, w − υ; ζ1) < σ1

implies

Υ(z1, z2, . . . , zn−1,G (w)− G (υ); ζ) > 1− σ and ℜ(z1, z2, . . . , zn−1,G (w)− G (υ); ζ) < σ,

Ψ(z1, z2, . . . , zn−1,G (w)− G (υ); ζ) < σ.

If G is Nn-continuous at each point of W, then G is called Nn-continuous on W.
Now, we define sequential continuity of a mapping for the generalized difference sequence with regard

to Nn.

Definition 27. A mapping G : W → W is named to be sequentially continuous at υ ∈ W with regard to
Nn if for any sequence {wk} ∈ W, Nn − limG (∆mwk) = G (υ) whenever Nn − lim∆mwk = υ.

Theorem 16. A mapping G : W → W is Nn-continuous if and only if it is sequentially continuous with
regard to Nn.
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Proof. It is straightforward. So, we omit details. □

Definition 28. A mapping G : W → W is named to preserve ∆mI (Nn)-convergence in W if I (Nn)−
lim∆mwk = υ implies I (Nn)− limG (∆mwk) = G (υ) for any sequence {wk} ∈ W.

Theorem 17. A linear operator G : W → W preserves ∆mI (Nn)-convergence in W if and only if G
is Nn-continuous on W.

Proof. Let {wk} be a sequence in W such that I (Nn) − lim∆mwk = υ. Let G is Nn-continuous on
W. So, for σ ∈ (0, 1) and ζ > 0 and nonzero κ1, κ2, . . . , κn−1 ∈ W and z1, z2, . . . , zn−1 ∈ W there exist
σ1 = σ1(σ, ζ, υ) ∈ (0, 1) and ζ1 = (σ, ζ, υ) > 0 such that for all w ∈ W such that

Υ(κ1, κ2, . . . , κn−1, w − υ; ζ1) > 1− σ1 and ℜ(κ1, κ2, . . . , κn−1, w − υ; ζ1) < σ1,

Ψ(κ1, κ2, . . . , κn−1, w − υ; ζ1) < σ1

implies

Υ(z1, z2, . . . , zn−1,G (w)− G (υ); ζ) > 1− σ and ℜ(z1, z2, . . . , zn−1,G (w)− G (υ); ζ) < σ,

Ψ(z1, z2, . . . , zn−1,G (w)− G (υ); ζ) < σ.

Since I (Nn)− lim∆mwk = υ,

M = {k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ1) > 1− σ1 and ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ1) < σ1,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ1) < σ1} ∈ F (I ).

Now, consider the open balls

B(υ, σ1, ζ1) = {w ∈ W : Υ(κ1, κ2, . . . , κn−1, w − υ; ζ1) > 1− σ1 and ℜ(κ1, κ2, . . . , κn−1, w − υ; ζ1) < σ1,

Ψ(κ1, κ2, . . . , κn−1, w − υ; ζ1) < σ1}

and

B(G (υ), σ, ζ) = {G (w) ∈ W : Υ(z1, z2, . . . , zn−1,G (w)− G (υ); ζ) > 1− σ and

ℜ(z1, z2, . . . , zn−1,G (w)− G (υ); ζ) < σ, Ψ(z1, z2, . . . , zn−1,G (w)− G (υ); ζ) < σ}

centered at υ and G (υ) respectively. From the above fact, it follows that if w ∈ B(υ, σ1, ζ1) then
G (w) ∈ B(G (υ), σ, ζ). Hence, we can have

M ⊆ {k ∈ N : Υ(z1, z2, . . . , zn−1,G (∆mwk)− G (υ); ζ) > 1− σ and

ℜ(z1, z2, . . . , zn−1,G (∆mwk)− G (υ); ζ) < σ,Ψ(z1, z2, . . . , zn−1,G (∆mwk)− G (υ); ζ) < σ} ∈ F (I ),

as M ∈ F (I ). Therefore I (Nn)− limG (∆mwk) = G (υ), i.e., G preserves ∆mI (Nn)-convergence.
Conversely, suppose that G preserves ∆mI (Nn)-convergence. We shall show that G is Nn-continuous

on W. If possible, let G is not Nn-continuous at some point υ of W. Then there are some σ ∈ (0, 1)
and ζ > 0 such that w ∈ B(υ, σ1, ζ1) but G (w) /∈ B(G (υ), σ, ζ) for all σ1 = σ1(σ, ζ, υ) ∈ (0, 1). Since
G is not sequentially continuous, there is a sequence {wk} ∈ W such that Nn − lim∆mwk = υ but
Nn − limG (∆mwk) ̸= G (υ). Since Nn − lim∆mwk = υ,

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ1) > 1− σ1 and ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ1) < σ1,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ1) < σ1} ∈ F (I ).

In fact

{k ∈ N : Υ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ1) > 1− σ1 and ℜ(κ1, κ2, . . . , κn−1,∆

mwk − υ; ζ1) < σ1,

Ψ(κ1, κ2, . . . , κn−1,∆
mwk − υ; ζ1) < σ1}

⊆ {k ∈ N : Υ(z1, z2, . . . , zn−1,G (∆mwk)− G (υ); ζ) ≤ 1− σ or

ℜ(z1, z2, . . . , zn−1,G (∆mwk)− G (υ); ζ) ≥ σ and Ψ(z1, z2, . . . , zn−1,G (∆mwk)− G (υ); ζ) ≥ σ},

therefore

{k ∈ N : Υ(z1, z2, . . . , zn−1,G (∆mwk)− G (υ); ζ) ≤ 1− σ or ℜ(z1, z2, . . . , zn−1,G (∆mwk)− G (υ); ζ) ≥ σ

and Ψ(z1, z2, . . . , zn−1,G (∆mwk)− G (υ); ζ) ≥ σ} ∈ F (I ).
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This gives I (Nn) − limG (∆mwk) ̸= G (υ), which contradicts the fact that G preserves ∆mI (Nn)-
convergence. So, our assumption G is not Nn-continuous at some point υ of W is wrong. Therefore G is
Nn-continuous on W. This completes the proof. □

8. Conclusion and Future Developments

Incorporating the latest advancements, this paper has unveiled the innovative concepts of ∆mI (Nn)
and ∆mI ∗(Nn)-convergence, presenting a groundbreaking generalization of generalized difference sta-
tistical convergence within summability theory. We have delved into the key properties and revealed
the intricate relationship between these two pioneering concepts using the condition (AP ). In this work,
we have explored the concept of ∆mI (Nn)-Cauchy sequences, highlighting the interrelationship with
∆mI (Nn)-convergent sequences. Furthermore, we have established the completeness of every Nn-NLS
within this generalized difference ideal-driven framework. We have conducted an in-depth exploration of
∆mI (Nn)-limit and ∆mI (Nn)-cluster points of sequences within the framework of the neutrosophic n-
norm. Our results have shown that the set of all ∆mI (Nn)-cluster points constitutes a closed set under
the topology induced by this norm. Furthermore, we have established that a linear operator preserves
∆mI (Nn)-convergence if, and only if, it remains continuous in relation to the neutrosophic n-norm.
Research on sequence convergence in neutrosophic n-normed linear spaces is still in its early stages, with
limited progress made thus far. Building upon the insights gained from this research, future studies may
extend this notion to encompass compact operator, further exploring its connections to double sequences
within the framework of Nn. This concept can also be applied to convergence-related challenges across
various branches of science and engineering, offering valuable insights and solutions.
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[9] Gok Gumus, H., Nuray, F., ∆m-ideal convergence, Selçuk J. Appl. Math., 12(2) (2011), 101–110.
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[42] Savaş, E., Gürdal, M., Ideal convergent function sequences in random 2-normed spaces, Filomat, 30(3) (2016), 557–567.

http://dx.doi.org/10.2298/FIL1603557S.

[43] Schoenberg, I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly,
66(5) (1959), 361–375.

[44] Schweizer, B., Sklar, A., Statistical metric spaces, Pacific J. Math., 10(1) (1960), 313–334.

[45] Smarandache, F., Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure. Appl. Math., 24
(2005), 287-–297.

[46] Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2(1) (1951), 73–74.
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