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Abstract
We obtain a complete classification of a finite group G in which every maximal subgroup
of order divisible by p is p-decomposable for a given prime divisor p of |G| and our results
generalize a recent result of Shi and Tian.
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1. Introduction
In this paper, all groups are assumed to be finite. It is known that if a group G can be

written as the direct product of a Sylow p-subgroup of G and a Hall p′-subgroup of G, then
G is called a p-decomposable group. A group G is not p-decomposable but all of its proper
subgroups are p-decomposable, then group G is called inner p-decomposable. A group G
is called inner-nilpotent group, if G is non-nilpotent but all of its proper subgroups are
nilpotent. A group G is called p-closed, if its Sylow p-subgroup is normal in G. Specially,
if p ∤ |G|, G is p-closed. Inner-nilpotent group G is a group whose order is pαqβ, where p, q
are distinct prime number. There is a normal Sylow subgroup and a non-normal Sylow
subgroup in G, the non-normal Sylow subgroup is a cyclic group. If the Sylow q-subgroup
of G is normal, we call inner-nilpotent group G as a q-fundamental group [2]. In this
paper, the symbol P : Q represents the semidirect product of P and Q, where P is normal
in G. Shi and Tian [5, Theorem 1.1], characterized the structure of a group in which
every maximal subgroup of order divisible by p is nilpotent (or abelian). In this paper,
considering any fixed prime divisor p of the order of a group G, we obtain the following
result in Theorem 1.1 whose proof is given in Section 3. The symbols appearing in this
paper can be found in [3]. In this paper, Pi stands for the Sylow-i subgroup of G.

Theorem 1.1 Suppose that G is a group and p is a given prime divisor of |G|. Then
every maximal subgroup of G of order divisible by p is p-decomposable if and only if one
of the following statements holds:

(1) G is a p-decomposable group.
(2) G is not a p-decomposable group, and the following statements are true.
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(2.1) G = P : Q is an inner p-decomposable group, where P is a Sylow p-subgroup
of G and Q is a cyclic Sylow q-subgroup, p ̸= q, and Q has only one maximal subgroup;

(2.2) G = Q : P is an inner nilpotent group, where P is a Sylow p-subgroup of G
and where Q is a Sylow q-subgroup of G.

By Theorem 1.1, the following corollary emerges.
Corollary 1.2 ([5, Theorem 1.1]) Suppose that G is a group and p is any fixed prime

divisor of |G|, then every maximal subgroup of G of order divisible by p is nilpotent if and
only if one of the following statements holds:

(a) G is a nilpotent group;
(b) G = P : Q is an inner-nilpotent group, where P ∈ Sylp(G) and Q ∈ Sylq(G), P is

normal in G, p ̸= q;
(c) G = Q : P is an inner-nilpotent group, where Q ∈ Sylq(G) and P ∈ Sylp(G), Q is

normal in G, q ̸= p;
(d) G = Zp : K, where K is an inner-nilpotent group and (p, |K|)= 1.

2. A lemma
Lemma 2.1 ([2, Theorem 1]) Inner-p-closed group has the following two forms (1)

G/Φ(G) is a simple group of complex order; (2) G is a q-fundamental group whose order
is pαqβ.

3. Proof of Theorem 1.1
Proof. The sufficiency part is evident, we only need to prove the necessity part. For a
finite group G, it is either p-decomposable or non-p-decomposable. If G is p-decomposable,
the conclusion (1) is obviously correct. In the following discussion we suppose G is not
p-decomposable.

Now we choose any maximal subgroup H of G. If p | |H|, then H is p-decomposable; if
p ∤ |H|, then H is also evidently p-decomposable. Hence, every maximal subgroup of G is
p-decomposable. So, G is inner p-decomposable.

In the following we divide our arguments into two cases.

Case 1. G is a p-closed group.

Let P be a Sylow p-subgroup of G, we have P � G. By Schur-Zassenhaus theorem, G
has a p-complement Q. Then G = P : Q. Choose any maximal subgroup K1 of Q, we can
get PK1 is a maximal subgroup of G, then PK1 is p-decomposable. Thus PK1 = P × K1.
If Q has at least two different maximal subgroups K1 and K2. Then PKi = P ×Ki, where
i=1, 2. Since Q = ⟨K1, K2⟩, we have PQ = P × Q, a contradiction. Hence, Q has the
unique maximal subgroup K1, then Q is a cyclic Sylow q-subgroup, where q is a prime
number and p ̸= q. Thus, (2.1) is proved.

Case 2. G is not a p-closed group.

Since G is inner p-decomposable, G is inner p-closed. By Lemma 2.1, we can get (a)
G/Φ(G) is a non-abelian simple group; (b) G is a q-fundamental group.

Assume that the case(a) occurs. Let G = G/Φ(G). By G is a non-abelian simple group,
we get G is a non-abelian simple group if Φ(G) = 1. By classification of finite simple
groups, there are three types of non-abelian simple groups. They are alternating groups,
sporadic simple groups and simple groups of Lie type, respectively. In the following we
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divide our arguments into three cases.

Case 2.1. G is an alternating group, G ∼= An. Suppose p ∤ n and n ≥ 6. An−1 is
the maximal subgroup of An, evidently, p | |An−1|. However, An−1 is a simple group and
it’s not p-decomposable, a contradiction. So p | n and p > n − 1, thus p = n, now we
have An = Ap, and we can select the maximal subgroup NG(P ) of G, where P is a Sylow
p-subgroup of G. We can get NG(P ) = P : C p−1

2
, it’s clearly that it is not p-decomposable.

Hence it’s a contradiction. If n = 5, A5 has three prime factors, they are 2, 3, 5 respec-
tively. We consider the maximal subgroup S3 if p = 3, since 3 | |S3|, NG(P ) = P : C2 is
non-decomposable, a contradiction. We consider the maximal subgroup D10 if p=2 or 5,
p | |D10|, D10 = C5 : C2 is non-decomposable, a contradiction.

Case 2.2. G is a sporadic simple group.
Suppose G ∼= M11, then π(G) = {2, 3, 5, 11}. By [3], We get the maximal subgroup

L2(11) of G whose prime factors are also p = 2, 3, 5 or 11. Since p | |L2(11)|, L2(11) =
P2 × H, it contradicts that L2(11) is a simple group.

Suppose G ∼= Suz, then π(G) = {2, 3, 5, 7, 11, 13}. By [3], if p = 2, 3, 5, 11, we consider
the maximal subgroup M12 : 2 of G. p | |M12 : 2|, but M12 : 2 is not p-decomposable,
a contradiction. If p = 7, we consider the maximal subgroup A7 of G. 7 | |A7|, then
A7 = P7 × H, it contradicts that A7 is a simple group. If p = 13, we consider the
maximal subgroup L3(3) : 2 of G. 13 | |L3(3) : 2|, but L3(3) : 2 is not p-decomposable, a
contradiction.

Suppose G ∼= Fi23, then π(G) = {2, 3, 5, 7, 11, 13, 17, 23}. By [3], if p = 2, 3, 5, 7, 17,
we consider the maximal subgroup S8(2) of G. Since p | |S8(2)|, S8(2) = Pi × H, where
i = 2, 3, 5, 7, 17, a contradiction. If p = 13, we consider the maximal subgroup O+

8 (3) : S3
of G. Since 13 | |O+

8 (3) : S3|, O+
8 (3) : S3 is not p-decomposable, a contradiction. If

p = 11, 23, we consider the maximal subgroup 211 · M23 of G. Since p | |211 · M23|,
211 · M23 = Pi × H, where i = 11, 13. Then M23 is p-decomposable, it contradicts that
M23 is a non-abelian simple group.

Suppose G ∼= J4, then π(G) = {2, 3, 5, 7, 11, 23, 29, 31, 37, 43}. By [3], if p = 2, 3, 5, 11, 37,
we consider the maximal subgroup U3(11) : 2 of G. Since p | |U3(11) : 2|, U3(11) : 2 is not
p-decomposable, a contradiction. If p = 23, we consider the maximal subgroup L2(23) : 5
of G. Since 23 | |L2(23) : 5|, L2(23) : 5 is not p-decomposable, a contradiction. If p = 7,
we consider the maximal subgroup 21+12

+ · M22 : 2 of G. Since 7 | |21+12
+ · M22 : 2|,

21+12
+ · M22 : 2 is not p-decomposable, a contradiction. If p = 29, we consider the maximal

subgroup 29 : 28 of G. Since 29 | |29 : 28|, 29 : 28 is not p-decomposable, a contradiction.
If p = 43, we consider the maximal subgroup 43 : 14. Since 43 | |43 : 14|, 43 : 14 is not
p-decomposable, a contradiction.

We can also get a contradiction when G is an other sporadic group according to the
Atlas form [3].

Case 2.3. G is a simple group of Lie type.

Let G be a classical group.
Suppose G ∼= Ln(q), q = rt, where r is a prime. If p = r or p ∤ (qn − 1), by [1, Tables]

and [6, Proposition 4.1.17], G has a subgroup PGLn−1(q), p | |PGLn−1(q)|, so PGLn−1(q)
is p-decomposable, a contradiction. If p | (qn − 1) but p ∤ (qi − 1), where i < n, G has a
subgroup NG(P ) = qn−1

q−1 : Cn [4]. It is not p-decomposable, so it is a contradiction.
Suppose G ∼= PSU2n(q). If p | q

∏2n−1
i=1 (qi − (−1)i) but p ∤ (q2n − 1), by [1, Tables] and

[6, Proposition 4.1.17], G has a subgroup PGU2n−1(q), p | |PGU2n−1(q)|, so PGU2n−1(q)
is p-decomposable, a contradiction. If p | (q2n − 1), then by [1, Tables] and [6, Proposition
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4.1.17], G has a subgroup PSLn(q2).(q − 1).2. So p | |PSLn(q2).(q − 1).2|, and thus
SLn(q2).(q − 1).2 is p-decomposable, a contradiction.

Suppose G ∼= PSU2n+1(q). If p | q
∏2n

i=1(qi − (−1)i) but p ∤ (q2n+1 + 1), by [1, Tables]
and [6, Proposition 4.1.17], G has a subgroup PGU2n(q), p | |PGU2n(q)|, so PGU2n(q)
is p-decomposable, a contradiction. If p | (q2n+1 + 1), by [1, Tables] and [6, Proposition
4.1.17], G has a subgroup q2n+1+1

q+1 : (2n + 1), p | |( q2n+1+1
q+1 : (2n + 1))|, so q2n+1+1

q+1 : (2n + 1)
is p-decomposable, a contradiction.

Suppose G ∼= PSp2n(q). If p | q
∏n−1

i=1 (q2i − 1) but p ∤ (q2n − 1), by [1, Tables] and [6,
Proposition 4.1.17], G has a subgroup E

1+(2n−2)
q : ((q − 1) × PSP2n−2(q)), p | |E1+(2n−2)

q :
((q − 1) × PSP2n−2(q))|, so E

1+(2n−2)
q : ((q − 1) × PSP2n−2(q)) is p-decomposable, a

contradiction. If p | (q2n −1) but p ∤
∏n−1

i=1 (q2i −1), then by [1, Tables] and [6, Proposition
4.1.17], G has a subgroup PSO−

2n(q), p | |PSO−
2n(q)|, so PSO−

2n(q) is p-decomposable, a
contradiction.

Suppose G ∼= PΩ2n+1(q). If p | q(qn−1)
∏n−1

i=1 (q2i−1), by [1, Tables] and [6, Proposition
4.1.17], G has a subgroup PΩ+

2n(q).2, p | |PΩ+
2n(q).2|, so PΩ+

2n(q).2 is p-decomposable, a
contradiction. If p | (qn +1)

∏n−1
i=1 (q2i −1), by [1, Tables] and [6, Proposition 4.1.17], G has

a subgroup PΩ−
2n(q).2, p | |PΩ−

2n(q).2|, so PΩ−
2n(q).2 is p-decomposable, a contradiction.

Suppose G ∼= PΩ+
2n(q). If p | q

∏n−1
i=1 (q2i − 1), but p ∤ (qn − 1), by [1, Tables] and [6,

Proposition 4.1.17]], G has a subgroup PSp2n−2(q), p | |PSp2n−2(q)|, so PSp2n−2(q) is p-
decomposable, a contradiction. If p | qn −1, let the prime factor q of |Ω+

2n(q)| be of power t,

then by [1, Tables] and [6, Proposition 4.1.17], we can find a subgroup E
t− n(n−1)

2
q : GLn(q),

p | |Et− n(n−1)
2

q : GLn(q)|, so E
t− n(n−1)

2
q : GLn(q) is p-decomposable, a contradiction.

Suppose G ∼= PΩ−
2n(q). If p | q

∏n−1
i=1 (q2i − 1), but p ∤ (qn + 1), by [1, Tables] and

[6, Proposition 4.1.17], G has a subgroup PSp2n−2(q). Since p | |PSp2n−2(q)|, PSp2n−2(q)
is p-decomposable, a contradiction. Suppose p | (qn + 1) and n is an odd number. By
[1, Tables] and [6, Proposition 4.1.17], G has a subgroup GUn(q). Since p | |GUn(q)|,
GUn(q) is p-decomposable, a contradiction. Suppose p | (qn +1) and n is an even number.
G has a subgroup PΩ−

n (q2).2. Since p | |PΩ−
n (q2).2|, PΩ−

n (q2).2 is p-decomposable, a
contradiction.

Let G be an exceptional group.
Suppose G ∼= G2(q), |G2(q)| = q6(q6 −1)(q2 −1). If p | q6(q3 −1)(q2 −1), but p ∤ (q3 +1),

by [7, Table 4.1], G has a maximal subgroup SL3(q) : 2. Since p | |SL3(q) : 2|, SL3(q) : 2
is p-decomposable, a contradiction. If p | q3 + 1, G has a maximal subgroup SU3(q) : 2.
Since p | |SU3(q) : 2|, SU3(q) : 2 is p-decomposable, a contradiction.

Suppose G ∼=3 D4(q), |3D4(q)| = q12(q8 +q4 +1)(q6 −1)(q2 −1). If p | q12(q6 −1)(q2 −1),
by [7, Theorem 4.3.], G has a maximal subgroup G2(q). Since p | |G2(q)|, then G2(q) is
p-decomposable, a contradiction. If p | (q2 + q + 1), by [7, Theorem 4.3.], G has a
maximal subgroup (Cq2+q+1 ×Cq2+q+1) : SL2(3). Since p | |(Cq2+q+1 ×Cq2+q+1) : SL2(3)|,
(Cq2+q+1 × Cq2+q+1) : SL2(3) is p-decomposable, a contradiction. If p | (q2 − q + 1),
by [7, Theorem 4.3.], G has a maximal subgroup (Cq2−q+1 × Cq2−q+1) : SL2(3). Since
p | |(Cq2−q+1 × Cq2−q+1) : SL2(3)|, (Cq2−q+1 × Cq2−q+1) : SL2(3) is p-decomposable, a
contradiction. If p | (q4 − q2 + 1), by [7, Theorem 4.3.], G has a maximal subgroup
Cq4−q2+1 : 4. Since p | |Cq4−q2+1 : 4|, Cq4−q2+1 : 4 is p-decomposable, a contradiction.

We can also get a contradiction when G is an other exceptional group.

From (b) of [2], we have G = Q : P , where G is an inner nilpotent group, P is a Sylow
p-subgroup of G and where Q is a Sylow q-subgroup of G. (2.2) is proved.

□
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4. Proof of Corollary 1.2
Proof. It is obviously that (b) and (c) are true from (2.1) and (2.2) of Theorem 1.1.
From 1 of Theorem 1.1, if G is p-decomposable, then G = P × K, where P is the Sylow
p-subgroup of G, and K is the Hall p

′-subgroup of G. Suppose K is nilpotent, then G is
nilpotent, (a) is proved. Suppose K is not nilpotent. Let N < K. Then P × N < G, so
p | |P × N |. So, N is nilpotent, and we can get K is inner-nilpotent. If P is not a group
of order p. Let H < P and |H| = p. Then p | |H × K|. So H × K is nilpotent, and we get
K is nilpotent, a contradiction. Hence, P is a group of order p, (d) is proved. □
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