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Properties of Gaussian Generalized Leonardo Numbers

Gaussian Genellestirilmis Leonardo Sayilarinin Ozellikleri

Can Murat Dikmen*

Zonguldak Bilent Ecevit University, Faculty of Science, Zonguldak, Turkiye

Abstract

In this research, we introduce and thoroughly examine Gaussian generalized Leonardo numbers, focusing on three distinct cases:
Gaussian modified Leonardo numbers, Gaussian Leonardo-Lucas numbers, and Gaussian Leonardo numbers. Our aim is to offer a
comprehensive understanding of the behaviour and properties of these sequences.

To this end, we perform a detailed analysis, deriving various identities and matrices associated with these sequences. We also explore
key mathematical tools such as recurrence relations, Binet’s formulas, generating functions, Simpson’s formula, Honsberger’s identity,
and several summation formulas. This multifaceted approach provides valuable insights into the structure and behaviour of these
Gaussian-based sequences. The results we present not only extend existing knowledge but also open the door for future studies that
could explore further generalizations and applications of Gaussian generalized Leonardo numbers.

Keywords: Gaussian generalized Leonardo numbers, Gaussian Leonardo-Lucas numbers, Gaussian modified Leonardo numbers,
Gaussian Leonardo numbers.

Oz

Bu aragtirmada, Gaussian genellestirilmis Leonardo sayilarini tanitiyor ve kapsamli bir sekilde inceliyoruz ve tg farkli duruma
odaklaniyoruz: Gaussian modifiye Leonardo sayilari, Gaussian Leonardo-Lucas sayilari ve Gaussian Leonardo sayilari. Amacimiz, bu
dizilerin davranisi ve 6zellikleri hakkinda kapsamli bir anlayis sunmaktir.

Bu amacgla, bu dizilerle iligkili ¢esitli 6zdeslikler ve matrisler tiireterek derinlemesine bir analiz gergeklestiriyoruz. Ayrica, yineleme
bagintilar:, Binet formiilleri, treteg fonksiyonlar, Simpson formiilii, Honsberger 6zdesligi ve ¢esitli toplam formulleri gibi temel
matematiksel araglari da aragtirtyoruz. Bu ¢ok yonli yaklagim, bu Gaussian tabanli dizilerin yapisi ve davramgi hakkinda degerli
i¢goriler saglar. Sundugumuz sonuglar yalmizca mevcut bilgiyi genisletmekle kalmiyor, ayni zamanda Gaussian genellestirilmis
Leonardo sayilarinin daha fazla genellestirilmesini ve uygulamasini aragtirabilecek gelecekteki caligmalar icin de kapi agiyor.

Anahtar Kelimeler: Gaussian genellestirilmis Leonardo sayilari, Gaussian Leonardo-Lucas sayilari, Gaussian modifiye Leonardo
sayilari, Gaussian Leonardo sayilari.

1. Introduction the Fibonacci sequence. It’s called Leonardo sequence de-

noted by Le, defined by the following recurrence relation

Sequences are important in mathematics especially in num- p
or

n=2

ber theory. Additionally, sequences can be seen everywhere,
including in economics, physics, cryptography, biology, en-

gineering, and computer science. One of the most widely
studied sequence of numbers is the Fibonacci sequence.
There is another sequence which has similar properties to
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with the initial conditions Le, = Le, = 1.'This sequence cor-
responds to the sequence A001595 in the on-line encyclo-
pedia of integers sequences in (Sloane 1964). Also, there is a
third-order recurrence relation following between Leonardo
numbers for n > 2

Le,.,=2Le,— Le, .

Leonardo numbers are introduced and given some prop-
erties by Catarino and Borges in (Catarino and Borges
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2020a). Two dimensional recurrences relations of Leonardo
numbers from its one-dimensional model is investigated in
(Vieira et al. 2019). The matrix representation of Leonardo
numbers is given and obtained new identities of Leonardo
numbers in (Alp and Kocer 2021). The incomplete Leon-
ardo numbers are defined, and some properties of incom-
plete Leonardo numbers are given in (Catarino and Borges
2020b). Shannon has defined generalized Leonardo num-
bers which are considered Asveld’s extension and Horad-
am’s generalized sequence in (Shannon 2019). Shannon
and Deveci consider some real and complex extensions and
generalizations of the Leonardo sequence in (Shannon and
Deveci 2022). Tan and Leung introduce Leonardo p-num-
bers and investigate some basic properties of these numbers.
They also define incomplete Leonardo p-numbers which
generalize the incomplete Leonardo numbers in (Tan and
Leung 2023). Bednarz and Wolowiec-Musial prove some
identities for generalized Fibonacci-Leonardo numbers,
also define matrix generators for these numbers in (Bednarz

and Wolowiec-Musial 2023).

A generalized Leonardo sequence
{W.},oo = {W.(Wo, W,,W,)},_, is defined by the third-or-

der recurrence relation
Wn = 2Wn71 - an.? (11)

using the initial values Wy = co, W, = ¢, W, = ¢, not all
being zero.

The sequence {W.,}., can be extended to negative sub-
scripts. To do this, for n = 1,2,3,..., we define

W =2W 0 — Wy,
Recurrence (1.1) is therefore true for all integers n.

Binet’s formula for generalized Leonardo numbers can be
obtained using (1.1). Binet’s formula for generalized Leon-
ardo number is as follows:

"=t ;él)?a ~7) " (ﬂ—;fﬁ— n —;3)7(/}’ -B)
Z%:Zﬂzﬁ—a (1.2)

where

z2=Wo—= Q2 -0 W+ (1 —o0) W, (1.3)

2=W,—Q2-=-BW,+1—-BW,, (1.4)

=W, —W,—W,. (1.5)

Here, a, 8 and 7y are the roots of the cubic equation
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=2 +1=0-x—1Dkx-1)=0.

Moreover
ool +25

>

ﬁzl_z

y=1.
Note that
oa+B+y=2,
of+ay+pBy =0,
oy =—1,or
o+B=108=—1.

Table 1 shows the first several generalized Leonardo num-
bers, with positive and negative subscripts.

Table 1. A few generalized Leonardo numbers.

S
=
3

n -n

0 Wy

1 W, 2W-W,

2 w, 20y W,

3 2W-W, AW W20,

4 AW, -W,2W, AW AW AW,

5 TW,2W,-4W, W -4, -4,

6 L2W,-4W,-TW, W, -12WW,+4 17,
7 20W,-7TW,-12W, 2W-12W,-9W,
8 33W,-12W,-20, 22W,-33W+1207,
9 54W,-20W,-33W, 56W,-33W,-22W,
10 | 88W,-33W,-54W, 567,-88 1, +33 17,

It is possible to specify three specific cases of the sequence
{W.}. These are, Modified Leonardo sequence {G,}

n=0?

Leonardo-Lucas sequence {H,}

n=0

and Leonardo sequence
{1.},., characterized by the third-order recurrence relations

G.=2G,.1—G,5,Go=0,G1=1,G, =2, (1.6)
H,l=2Hn71_Hn73, Ho=3,H1=2, H2=4, (17)
ln=21”—1_ln—3,lo= 1,11 = l,lzz 3, (18)
respectively.
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Table 2. The first few values of the special generalized Leonardo numbers

G, 0 1 2 4 7 12 20 33 54 88 143

G, 0 -1 0 -2 1 -4 4 -9 12 -22

H, 3 2 4 5 8 12 19 30 48 77 124

H 0 4 -3 8 -10 19 -28 48 -75 124

A 1 1 3 5 9 15 25 41 67 109 177

’, -1 1 -3 3 -7 9 -17 25 -43 67
The sequences {G.},.,{H.},., and {L.},., can be expanded ~ » = 2Fui — 1. (1.11)

to include negative subscripts by establishing

G = 2G- (=2 — G-y
H_,, = 2H_(n—2) - H—(n—3)
Ln = 2l*(n72) - L(n%)

for n=1,2,3,..., respectively. Therefore, recurrences (1.6)-
(1.8) are satisfied for all integers 7.

'The sequences G,, H, and [, are given by AO00071,A001612,
A001595 in (Sloane 1964) respectively.

We present the initial values of the modified Leonardo G,
Leonardo-Lucas H,, and Leonardo numbers /, with posi-
tive and negative subscripts in Table 2.

Binet’s formulas can be used to express modified Leonardo,
Leonardo-Lucas, and Leonardo numbers for all integer ,
employing equations in (1.3) -(1.5)

Zlan-H _ Zzﬁn-H 3 an+2 _ﬂn+2

o—p oa—p

H=0"+p'+y" =a"+B"+1,

Gn

-1,

3 =

2(an+l _ﬁn+]) 1
a-p

respectively. Since, Binet’s formulas of the Fibonacci and

L, =

)

Lucas numbers are given by

ﬁn B an_ﬁn

oG g B-a" a-p

and

L=a"+p",

respectively, we easily see that

G.=F..—1, (1.9
H,=L,+1, (1.10)
136

Next, the ordinary generating function of the generalized
Leonardo sequence is given.

LEMMA 1.1. Suppose that fw,(x) = z::o W.x" is the ordi-
nary generating function of the generalized Leonardo sequence

{W”}nzo' Then, Z:C:O W.x" is given by

~ WoH (Wi —2Wo)x + (W, — 2W,)x?
B 1—2x+x° :

zw: W.x"
n=0

Proof. Take r=2,5 =0,f=—1in Lemma 1 in (Soykan
2021).

'The above lemma produces the following findings as specific
examples.

COROLLARY 1.2. Generating functions of modified Leon-

ardo, Leonardo-Lucas and Leonardo numbers can be given re-

spectively as
N 0 x
;G"" T 1-2x+x
N . 3—dx
’;an 1= 2x 4
Zm:lx”= 1 —x+x°

! 1—2x+x°"

Now, we give the definition of Gaussian numbers before
) g
giving literature-based information on Gaussian sequences.

Gaussian numbers, or Gaussian integers, are a subset of com-
plex numbers. A complex number is expressed as z=a + ib
where a and 4 are arbitrary real integers and i is the imag-
inary unit with 7 = -1. Gaussian integers are a special type
of complex number. In other words, z is a Gaussian integer,
denoted by z = a + ib, where 4 and 4 are random integers.

Next, we provide some literature-based information on
Gaussian sequences. First, we show some Gaussian numbers
with second-order recurrence relations.

Karaelmas Fen Miih. Derg., 2025; 15(1):134-145
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(1984)
and Gaussian Lucas numbers which are defined by
GF,.» = GF,., + GF, and GL,.» = GL,.+GL, where
GF,=F,+iF,., and GL,=L,+iL.,., with n=>0 (in
fact, he defined these numbers as CF, = F, + iF,,, and
he called them as complex Fibonacci numbers.).

e Horadam introduced Gaussian Fibonacci

* Pethe and Horadam (1986) introduced Gaussian gen-
eralized Fibonacci numbers by GF, = F, + iF,-,, where
Elen71+Fn72,F0:O,F1: 1.

e Halict and Oz (2016) studied Gaussian Pell and Pell

Lucas numbers written by
* GP,= P,+iP,-\, respectively, where
P,=2P, 1+P, >, Ph=0,Pi=1 and
Qn = 2Qn—1 + Qn—z, Qo = 2, Ql =2.
* Agc and Girel (2013) presented Gaussian Jacobsthal
and Gaussian Jacobsthal Lucas numbers given by

Gl,=J,+ i,
Gjo=Jntiju-r,
respectively, where J, = J,-1+2J,,,Jo=0,J, =1 and
Jn=Jn1t 2unjo=2, ji=1.

* Tage1 (2021) presented and studied Gaussian Mersenne
numbers defined by GM, = M, + iM, .,
where M, = 3M, 1 —2M, >, Mo = 0, M, = 1.

* Tage1 (2018b) introduced and examined the Gaussian

Lucas Balancing and Gaussian balancing numbers, de-
noted by

GB, =B, +iB,-,
GC,=C,+iC,-,
respectively, where B, = 6B,-1 —B,-», By=0,B,=1
and C,=6C,-, —C,-,,Co=1,C, = 3.

* Yimaz and Ertag (2023) studied Gaussian Oresme
numbers and defined them as GS, =S, +iS.-
where Oresme numbers are given by
§1= Si— 4 Si2 8= 0,5 = 3.
We now introduce a few Gaussian numbers that have
recurrence relations of the third order.

* Soykan et al. (2018) presented Gaussian generalized
Tribonacci numbers given by GW, = W, +iW,,

where W, = W,_, + W,_, + W,_; with the initial condi-
tion Wo, Wl, W,.

* Tage1 (2018a) studied Gaussian Padovan and Gaussian
Pell-Padovan numbers written by
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GPrL = P/x+ l‘Pnfly
GRn = Rn + l’Rnfl
respectively, where

P,=P+P s Ph=1P =1P,=1and
R,=2R,.2+R,.5,Ry=1,Ri=1,R,= 1.
e Cerda-Morales (2022) defined Gaussian third-order
Jacobsthal numbers as GJ, = J, + i/,
where J, =J,o1 +Ju2+2J,5,J0=0,Ji=1,/,= 1.
 Karatag (2022) introduced the complex Leonardo num-
bers as CLe, = Le, + iLe,-1,and give some of their prop-
erties including Binet’s formula, generating function,
Cassini, d’Ocagne’s identities and calculated some sum-
mation formulas.

2. Gaussian Generalized Leonardo Numbers

This section introduces Gaussian generalized Leonardo
numbers and examines their features, including Binet’s for-
mula and the generating function.

Gaussian generalized Leonardo numbers

{GW.},., = GW..(GW,,GW,,GW,)},_, are defined by
GW,=2GW,., —GW,_s, (2.1)

with the starting assumptions

GWo =W, +i((2W, = W,)),GW, = W, + iW,, GW, = W, +iW,

not all being zero. The negative subscripts of the sequences

{GW.,} can be given by
GWﬂl = 2GW7(n72) - GW7(n73) (22)

for n=1,2,3,.... Thus, recurrence (2.1) holds for every in-
teger 7.

Keep in mind that for every integer 7, we get
GW,=W,+iW,_,. (2.3)

The first few generalized Gaussian Leonardo numbers with
positive and negative subscripts are presented in Table 3.

There are three specific cases of generalized Gaussian Leon-
ardo numbers. Firstly, Gaussian modified Leonardo num-
bers, GW.(0,1,2, + 1) = GG,, are given by

GG, =2GG,-, — GG, 2.4)
with the starting values GG, = 0, GG, = 1,GG, = 2 + 1.

Secondly, Gaussian Leonardo-Lucas numbers,
GW.(3,2, + 3i,4 + 2i) = GH,, are given by

GHn = ZGanl - GHVI*3 (2'5)
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Table 3. First ten generalized Gaussian Leonardo numbers.

n GW, GW,

0 WA 2i Wi, W+ 20W,-iW,

1 iW+W, 2iW+Q2-))W-W,

2 iAW, Qi) W-(1-40) W24,

3 QR+ W W, (4-4) W -(1-4) W -(2-) W,

4 (4420 W - W -2+) W, (4-4) W-(4-90) W -(1-40) W,

5 (T+4) W-(2+1) W -(4+20) W, (9-120) W, ~(4-90) W ~(4-4i) W,

6 (12+70) W,~(4+20) W ~(T+40) W, (9-12)) W -(12-220) W,-(4-90) W,
7 (20+12)) W~(7+4i) W -(12+70) W, (22-33) W -(12-22iW~(9-120) W,
8 (33+200) W,-(12+70) W,~(20+124) W, (22-339) W~(33-56i) W ~(12-220) W,
9 (54+330) W,~(20+121) W,-(33+204) W, (56-881) W,~(33-56i) W -(22-331) W,
10 (88+544) W,~(33+201) W -(54+330) W, (56-884) W,~(88-1451) W,-(33-561) W,

Table 4. Some values of the special cases of Gaussian generalized Leonardo numbers.

n 0 1 2 3 4 5 6 7 8
GG, 0 1 2+ 4421 7+41 12+71 20+12i 33+201 54+33i1
GG. 0 -i -1 -2i -2+ 1-4i -4+4; 4-9i -9+12i
GH, 3 2+3i 4+2i 5+4i 8+51 12+8i 19+121 30+19i 48+301
GH 3 4 4-3i -3+8i 8-10i -10+19i 19-28i -28+48i 48-751
Gl 1-i 1+ 3+ 5+3i 9+5i 15+9i 25+15i1 414251 67+41i
G/, 1-i -1+ 1-3i -3+3i 3-7i -7+91 9-171 -17+251 25-43i
with the starting values GG, =G, +1iG,-,
GH,=3,GH, =2+ 3i,GH, = 4 + 2i. GH,=H,+ it
Gl,=1,+il. .

Thirdly, Gaussian Leonardo numbers,
GW.(1,1 +1i,3 +1) = Gl,, are given by
Gln = 2Gln—l - Gln—3 (26)
with the starting values Glo = 3,Gl, = 1 +i,Gl, =3 +i.

The negative subscripts of the sequences {GG.},. ,{GH.} .,
and {Gl,},., is defined by

GG-, = 2GG -2 — GG (-3,

GH.,=2GH_ -5 — GH_,-3,,

Gl = 2Gl -2 — Gl_-3),

for n = 1,2,3,... respectively. As a result, recurrences (2.4)-

(2.6) are satisfied for every integer 7.

Keep in mind that for every integer 7, we have
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'The first eight values of Gaussian modified Leonardo num-
bers, Gaussian Leonardo-Lucas numbers and Gaussian
Leonardo numbers with positive and negative subscripts are

given in Table 4.

Next, we present Binet’s formula for Gaussian generalized
Leonardo numbers.

THEOREM 2.1. Binet’s formula of Gaussian generalized

Leonardo numbers can be presented as follows:

Zlanﬂ_Zzﬁn+1 . Zlan_Zzﬁn
Tap el e

where 21,22, and Zs are given as

GW, =

Karaelmas Fen Miih. Derg., 2025; 15(1):134-145
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2=W—Q2-0)W,+(1—-0)W,
= WZ_(2_ﬁ)W1+(1_ﬁ)W0,
zz=W,—W,—W,.

Binet’s formulas of the Gaussian generalized Leonardo
numbers GW, have three specific cases which gives the Bi-
net’s formulas of the Modified Leonardo sequence {GG., } .,
, the Leonardo-Lucas sequence {GH,},,, and the Gauss-

ian Leonardo sequence {Gl,},., respectively as follows:

n=0?

Y (Sl R Y (e Sid B
GG,,—( o= B 1)+l( o= B 1), 2.7)
GH,=(a""'+ B+ 1)+i(a"+ B +1),

_ 2an+l_2ﬁn+l B ) 2an_2ﬁn_
Gln—(—a_ﬂ 1)+1<—a_ﬁ 1). (2.8)

To describe the generating function of Gaussian generalized
Leonardo numbers we give the following theorem.

THEOREM 2.2. Let fow,(x) = Z:C:O GW.,.x" denote the gen-
erating function of Gaussian generalized Leonardo numbers.

Then,

fcwn (x) = Z,T:o GW,x"

_ GWo + (GW, = 2GWy)x + (GW, — 2GW,) x*
1—2x+x’ :

Proof. Considering the definition of Gaussian general-

(2.9)

ized Leonardo numbers, and subtracting 2xfew,(x) and
—xfow,(x) from fow,(x) we obtain

(1=2x—=x3)fow, () = 2% GW,x" = 2x D" GW,.x"
-x° Z:’:O GW..x",

=2 GWx"=227" GW.x"' =2~ GW.x"",
=27 GWx"=227" GW,ix"=2." GW,x",

= GW() + GW1X + C;W/zx2 - 2GWOX + 2GW1X2

+> (GW,—2GW,-, — GW,3)x",

= GWo+ GW.x + GWax? — 2GWox + 2GW, 1%,

= GW,+ (GW,—2GWy)x + (GW, — 2GW)) x>,

and dividing both sides with 1 — 2x —x’ above equation, we
get (2.9).

Theorem 2.2 gives following results as special cases,

_ o x+ixt _ 34+ (=4+3)x—3ix’
Soa,(x) = - 2x+x3’fGH”(X) = 1= 2x +x° ’

1 —i+(=143)x+(1—Dx ’
fa(x) = 1= 2x+x° .

Karaelmas Fen Miih. Derg., 2025; 15(1):134-145

3. Some Identities About Recurrence Relations of
Gaussian Generalized Leonardo Numbers

'This section introduces the identities for Gaussian modified
Leonardo, Gaussian Leonardo-Lucas, and Gaussian Leon-
ardo numbers.

THEOREM 3.1. For every integer n, the following equations

are valid.

GH, = 4GG,.; — 8GG,., + 3GG,.., (3.1)
5GG, = 8GH,.;— TGH,.» — 6GH,.., (3.2)
2GG, =—Glois+ Gl + 2Gl,.1, (3.3)
Gl, = GG,i3—3GG1r+ 3GG,11, (3.4)
2GH, = Glous + 2Glosr — 5Glou1, (3.5)
5Gl, = 7GH,.;— 3GH,.,— 9GH,.,. (3.6)

Proof. To prove identity (3.1), we can write

GH, = aGG,.s+ bGG,:» + ¢GG,., and solve the system of
equations we get,

GH, = aGG;+ bGG, + ¢GG;

GH, = aGG4+ bGG; + c¢GGy;

GH, = aGGs + bGG, + ¢GGs.

Then, we obtain a = 4, b =—38, ¢ = 3. The other identities
can be found similarly.

LEMMA 3.2. (See (Frontczak 2018)) Let f(x) = 2:10 ax"
be the generating function of the sequence {a.},. ,. Then the gen-

erating functions of the sequences {aZn} and {aan} L, can

n=0 ;
be given as
PN S B ey
and

ASx)+A=Vx)
2Vx

ﬁzml(x) = z Aop+1¥" =
n=0

respectively.

The following theorem provides the generating functions
for even and odd-indexed generalized Leonardo sequences.

THEOREM 3.3. The sequence GWo, and GWa,.1 have the
Jfollowing generating functions:

GW() + (_ 4GWO + GWz)X + (2GW{) - GWl)X2

—x’+4x*—4x+ 1 ’
3.7)

fGWz” (%) =
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fGWzm (x)
_ GW,— (GWo+ 4GW, — 2GW,)x + (2GW, — GW,)x*
B —x'+4x’ —4dx + 1

(3.8)
Proof. We only prove (3.7). From Theorem 2.2 we can ob-

tain following identities:

(+ ]_2
(V5 = GW,+(GW th/o)& ’
1—2Vx +x2

Fon(—dx) = GV —(GW, — 2GW0)/;+(%GW2 —2GW)x.

1+2Vx —x
‘Thereby, using Lemma 3.2 identity (3.7) can be proved. The

other identity can be proved similarly.

'The following is a consequence of Theorem 3.3.

COROLLARY 3.4.

(@) foou(x) = —xgitblczx—_élfc; [ and
Jo @) = 33 3&4}2?4; i 1

®) fno) = 2 __ii)f L A
o

(©) for(x) = (1= 3_1.3:362_}__4(}612: Zgiﬁi b= and
Fon () = —1=-Dx*+(A—Dx+1+i

—x’+4x*—4x+1

From Corollary 3.4 we can obtain the following corollary which
describes the identities on Gaussian generalized Leonardo se-
quences.

COROLLARY 3.5.

(2): (241)Gloy> — Glos = ((1 — 1)) GG,
_(1 - Si)GGzn—z + (1 - 3i)GG2n—4

(b). (2 + l.)GHz,lfz - GHZn—z] = 3GG2n
+(=8+4+21)GGyrr + (4 —30) GGryes

(©): (4 = 30)Glay-s + (=8 + 20) Glon_r + 3GLs,
= (1 - l)GHzn - (1 - Sl')GHz,,fz + (1 - 31')GH2,,74

(d): —iGH,,—s + 2iGH,,  + GHypir = (2 + 3i) GG
—(3+8) GGy + 4iGGy,—s

(C)Z (_1 + i)GGz,,—3 + (1 - i)GGzn—1 + (1 + l.)GGzn-H -
_iGl2n73 + 2iGlZ;t*l + GlZn+1

140

(f)' 4iGlz,,-3 - (3 + 81) Glzn—l + (2 + 31) GlZn+1
= (_1 + l.)GHz;k} +'(1 - l.)GHznfl + (1 + i)GH2n+1.

Proof. From Corollary 3.4 we obtain
(=" + 2+ Dx)fon (x) = (1 = 30)x°
—(1=5D)x~+1—1i)fce.(x).

'The first part is equal to

(=’ + (24 )x) Y Glox" ==, Glox™’
n=0

n=0

+2 4D Glx™

n=0

= Q4D Gl ox” =Y Gl i
n=1 n=2
= 2+ )Glox+ X (2 + ) Glors — Gloy )X
n=2

= B=D)x+ 2 (2 +)Glors — Gl )X
n=2
whereas the second part is equal to

(1=3)x = (1= 5Dx+ 1= 1) GGox”

n=0

= (1= GCox’ — (1= 503 GGox™!
n=0 n=0

+(1-30) GG
n=0

= (1= GGax’ — (1= 50> GGy 2"
n=0 n=1
+(1-30) GGayax”
n=2

= (1= )GGox + 3 (1 = ) GG — (1= 5) GGy

+(1=3)GG-s)x"
= B=Dx+ 2 (1= )GGa— (1 = 5)GGar2
+(1 = 3)GGapo)x”

Comparing the coefficients and the proof of the first identi-
ty (a) is done. We can present other identities similarly.

We can get Honsberger’s identity related to generalised
Leonardo numbers and modified Leonardo numbers given
below.

THEOREM 3.6. For all integers m, n the following identity

holds:
GWm+n = Gm+] GWn - GWH*I Gmfl - GWrﬁZ Gm .

Proof. First, we assume that m,n = 0. We prove Theorem
3.6 by mathematical induction on m.If m = 0 we get

GW,=GGW,=GW,..G-, — GW,-.G, = GW,
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since Gi =1,Go=0,G-, = 0. If m =1 we get
GW,1 = G,GW,— GW,-.Gy— GW,-,G, = 2GW, — GW,_,.

since G, =2,G,=1,G, = 0. We assume that the identity
given holds for m < k. For m = k + 1, we get

GWoinyin = 2GW,i — GWoiios

= 2(Ges GW, — GW,-1Gii — GW,2Gi)
—(Gie. GW,, = GW,-1Gios — GW, .G 2)

= GW, (2611 — Giot) = GW,-1 (26— — Gi)
—GW,.(2G— Gi-»)

=GW.,Gio = GW, o1 G — GW, 2 Gy

= GW,Gusns1 — GWoni Guryor — GW,ns Gy

Consequently, by mathematical induction on , this proves
Theorem 3.6.The case m,n < 0, can be proved similarly.

For all integers m,n taking GW, = GG, or GW, = GH, or
GW, = Gl., respectively, we get,

GGin= Gui1 GG, — GG,-1G ooy — GG, G,

GH,.,= Gw:GH,—G,-GH,-, — G, GH,-»,

Gluin = Gpe1Gly — G Glymy + G, Gls.

4. Simpson’s Formula

In this section, we present Simpson’s formula of general-
ized Gaussian Leonardo numbers. This is a special case of
(Soykan 2020, Theorem 4.1). We give the proof by calcu-
lating determinant and using Binet’s formula of Gaussian
generalized Leonardo numbers.

Theorem 4.1 (Simpson’s formula of generalized Gaussian
Leonardo numbers). For all integer n, we can write following

equality
GW,.o GW,eo GW, GW, GW, GW,
GW... GW, GW,., |=(1)"GW, GW, GW.

GW, GW,.. GW,., GW, GW-, GW_,
= (_ 1)”(3 + l)[W% - W% + W% - 2W(2)Wz - 2WOW%
+3W W\ W, + AW W, — 4W, W3].

Karaelmas Fen Miih. Derg., 2025; 15(1):134-145

Proof. Putting t =—1 in Theorem 3 in (Soykan 2021) we
can obtain

GWH+2 GWrHrl GWn
GW,.. GW, GW,.,
GWn GWn—l GWn—Z

Wia Warr W, w1 W W

=W W, Wo_|+ilW, W. W

W, W, Wi Wor Wio Wiss
GW, GW, GW,
=(—1)"GW, GW, GW.,
GW, GW., GW,

= (=1)"[-GW;+2GW,GW,GW_, + GW, W_,GW,
—~GWiGW_,— GW,GW?]

=(=D"G+DIW; = Wi+ W:=2W;W,—2W, Wi
+3W, W W+ 4Wi W, — 4W, Wa].

From Theorem 4.1 we get the following corollary.

Corollary 4.2. For all integer n, we get the following identi-

ties:
GGn +2 GGn +1 GGn
(@):|GG,.i GG, GG, |=(=1)"3+1),
GGn GGn—l GGn—Z
GHn+2 GHM+1 GHn
(b): |GH,.1 GH, GH,.|=5(=1)"(3+1),
GHn GHn—l GHII*Z
Gln+2 Gln+l Gln
(©):|Glii Gl, Gl |=4(=1)""(3+1).

Gln Gln—l Glnfl

5. Sum Formulas

In this section, we identify some sum formulas of general-
ized Gaussian Leonardo numbers.

THEOREM 5.1. For all integers n = 0, we have sum

formulas given below
(@): > GWi=(n+3)GW,— (n+2)GW,.o + (n+ 3)GW,.1,
k=0
+2GW,—=3GW,—=2GW,,
(b): > GWa= (n+ 1)GWa, + (n + 2) GW,.
k=0
—(l’l + 1)GW2,,+2 + GWz - 2GW1,

(©): > GWair = (n+ 1) GWari1 = nGWario + (n + 1) GW2,
k=0
-GW,.
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Proof. From (2.3) we can write the following sum formulas.

2 GWe=23 Witid)! Wi,
Z: o GWyu = Z::O W+ iz::o W,
Z" GWonr = z:zo W + iz::0 Wa.

Using sum formulas in (Soykan 2023 Theorem 48 (4)) we
can write

(a): z:jo GW. =
+2W, —3W,

(n+3)W,—
—2W,,

(n+2)Wo+(n+3)W,.,

(b):D" GWu=(n+1)Wa+(n+2)Wari = (n+ 1) Wair
+W,—2W,,

(c): Z::o GWasr = (l’l + 1)W2n+l + (l’l + 1)W2n — Wi
- Wo.
So that, the proof is done easily.

'The previous theorem gives the following corollaries.

COROLLARY 5.2.

> GGi=(n+3)GG,—
+(n+3)GGi + 1+ 2i,

o (n+2)GG..x

2.  GH.=(n+3)GH,—
+(n+3)GH,..— 4 — 5i,

o) (n+2)GH,.

> Gli=(n+3)Gl,—
+(n+3)Gl+ 1+

© (n+2)Gl,.»

Next, we give sum formulas which are given by even sub-
scripts.

COROLLARY 5.3.
@): D) GGu=(n+1)GGy+(n+2)GGo
_(f’l + 1)GG2,1+2 + i,

(b): " GHy=(n+1)GHy +(n+2)GH.
—(n+ 1) GHawr — 4i,

(©: 2. Glu=(n+1)Gloy+(n+2)Gla
_(}’l + 1)Glzn+2 +1-—1i

Next, we give sum formulas which are given by odd sub-
scripts.

COROLLARY 5.4.

(a): 2. GG = (n+1)GGoir + (n+ 1)GGo — nGGye,
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(b): > GHuei = (n+1)GHai +(n+1)GH.,,
—nGHz/,+2 - 3,

(C): Z::() Glzk+1 = (n + 1)Glzn+1 + (n + 1)Glz,,
_nGlz,,+2 -1+

5.1. Sums of Squares and other sum formulas.

THEOREM 5.5. For all integers n = 0, we have sum for-

mulas given below
@: Y GWi=(n+
k=0

+(n+ 5 )OWe = 2(n + 4)GW, s GW,
+2(n+5)GW,.. —2(n+4)GW,.. GW, .5
+6GW\GW. — 8GW,GW, + 6GW,GW: — 3 GW3 (1)

7 , 5
_ZGWI )

TVoWe+(n+5 )GW2.s

GWs.

(b) i GWkGWk+1 = (”l + 4)GW§+1 + (f’l + 5>GW5+2

15
2

~ 2+ ) GW,e1 W, — (20 + %) CWoisGW,s

9
2

+(n+3)GW2os +(2n+ 3 )GW, GW,.

_3GWi — - Low.ow +

11
T

4GWi —2GW;3 GW,GW,

GW,GW,;

(©: S GWiGWir = (n+3)GW-e, + (n + 4)GW2.,
k=0

H(n+2)GWias +(2n+ 5 )GW,es GW,

11 11
—(2n+ 5 )GW,: GWos = (201 + 25 ) GW,.GW,.

—~2GW3 — 3GW: — 5-GW,GW, + L GW,GW,

+5GW GW:;
As a result of Theorem 5.5, we can give the following cor-
ollary.
COROLLARY 5.6.

NS 2 — T\ 2 9

@: (266t = (n+5)GGia+(n+3)GGE

+<n + l)GGﬁ+1 —2(n+4)GG,1:GG,:s

2
+2(n+5)GG,:1GG,ir— 2(n+ 4)GG,1.GG s

+1—4i,
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(i)Y GH: = (n+ 5 )GH s +(n + 3 )G

+(n+ %)GHgH —2(n+4)GH,..GH, .

+2(n+5)GH,..GH,., — 2(n+ 4)GH,..GH,.,
+1-—22;;
(lll)z Gli = (n + 1 )Gl,zﬁs + (n +2 )le

+(n 2)Gl,l+1 2(n+4)Gl,.»Gl,.s
+2(n+5)Gl,s Gl —2(n+ 4)Gl, Gl,us — 5i,

(b): (z)ZGGkGGk+1—(n+4)GGn+1 (n+5)GG:.

+(n+3)GGr +(2n+5)GG, GG
~(2n+%5)66,1GG o~ (20+ )66, 2 GG
+1-3i,
(ii)zn: GH.GH... = (n+ 4)GH:., + (n+ 5)GH:..
+(n+3)GHr + (20 + 5 )GH, . GH, .
~(2n+ 5 )GH,HGHM (2n+5)GH, ~GH. .
+1-2i,

(m)z GlL.Gliwi = (n+4)GlL, +(n+ 5)Glk,

+(n+3)Gl+ (20 + 5 )Gl Gl

13 15

~(2n+5 2

+2—1i

)Gl Gl = (20 + 5 )Gloa Gl

(0): (z')i GGGGyor = (n+3)GG2, +(n + 4)GG..
15

+(n+2)GGis + (20 + 5 )GG,1 GG
11 11
~(2n+%5)GG,1 GG = (21 + 5 )GG2GGs
13,
(ii)zn: GH,GH.» =(n+3)GH;., +(n+ 4)GH;.,
k=0
+(n+2)GHr +(2n+ 12 \GH, .\ GH, .
11 11
~(2n+ 5 )GH,\GH,.. (20 + 5 |GH,..GH,
49 .
=
(m‘)z Gl.Gliw»=(n+3)Glii +(n+4)Gli.»

is
)61,1Gls = (20 4+ 5 )Gl Gl

+(n+2)Gl +(2n+

11
2

)Gl Gl
<2n +5-
+2—1
Karaelmas Fen Miih. Derg., 2025; 15(1):134-145

6. Matrix Formulation of GW,
Consider the sequence { W, } defined by the third-order re-

currence relation
W,=2W,.1— W3
with the starting values
Wo=0,W,=1,W,=2
We define the square matrix 4 of order 3 as
20 -1
A=[1 0 O
01 0
such that A =—1.Then we give the following lemma.

LEMMA 6.1. For n = 0 the following identity is true

GW.ia 20 —1Y(GW,
GW.|=11 0 0 |[GW]. (6.1)
GW, 01 0)(GW,

Proof. The identity (6.1) can be proved by mathematical in-
duction on n.If n = 0 we obtain

GW, 2 0 —1Y(GW,
GW, (=1 0 O [|GW,
GW, 01 0)\GW,

which is true. We assume that the identity given holds for
n = k.'Thus, the following identity is true:

GWiiz 2 0 —1)(GW,
GWkH = 1 0 O GWl .
GW, 01 0)IGW,

For n=k+1,we get

2.0 =1y (GW, 2.0 —1)2 0 —1)(GW.
10 0 GW,[={1 0 0 {10 0 [|GW,
01 0 GW, 01 0JN0O 1 0)\GW,
2 0 —1){GWisz 2GWiir — GWi GWiss
=1 0 0 ||GWi|= GWisa =|GWisa|.
01 0)lGW: GWin GWin

Consequently, by mathematical induction on n, the proof
is completed.

Note that

Gn+1 - Gn—l - Gn
An = Gn _G;rz _anl .
anl _Gn73 _anz

For the proof see (Soykan 2022).
We define
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GW, GW, GW,
Ncwz GW1 GWU GW-] 5
GW, GW., GW,,

GW;1+2 GWn+1 GWn
Eow=|GW,.. GW, GW,.|.
GW, GW,.., GW,-,

Now, we have the following theorem with Ny and Eoy
THEOREM 6.2. Using Now and Ecw, we get

A"Now = Egw.

Proof. Note that we get

Gn+1 - anl - Gn GW2 GWI GWO
A'Now=| G, —Guzs —Gui|[|GW: GW, GW_,
Gi-i =Gz —G)\GWy GW-, GW-,

(au an 013)

=|axn a» as},

as an as

where

an=GW,G,.i — GW,G,-, — GW,G,;
an,=GW,G,i — GW,G,-1 — GW.,G,,
as=GW,G,ei — GW_,G,oy — GW_, G,
an =GW,G,—GW,G,-. — GW,G,-1,
a»=GW,G,— GW,G,-,— GW_,G,_,,
ar=GW,G,— GW_ G — GW_,G,1,
as = GW,G,.i1 — GW,G,-3 — GW,G, 2,
an=GW,G,.,— GW,G,-s — GW_ G,
an=GW,G,-i1 —GW_ G5 — GW_,G, 2,
Using the Theorem 3.6 we see that

an dp as GW,.. GW.., GW,
(a;l an axn|=|GW,.. GW, GW,..,
as axn asn GW, GW.,.. GW,,

Hence, the proof is done.

By taking, GW,= GG, with GG,,GG,,GG, in (6.2) and
(6.3), GW,= GH, with GH,,GH,,GH, in (6.2) and (6.3),
GW, = Gl, with Gl,,Gl,,Gl, in (6.2) and (6.3) respectively,

we get:
2+i 1 0 GG, GG GG,
Ncg = 1 O _l s EGG = GG,H-] GGn GGn—1
0 —i -1 GG, GGy GG,es
144

(6.2)

(6.3)

Ney=12+3i 3 4i

NG1: +l1 1_1

4+2i 2+3i 3 GH,.. GH.., GH,
,Eoy =|GH,.,. GH, GH,
3 4 4-3i GH, GH,. GH,
3+i 1+i 1-i Glyi» Gl Gl
- 1 + l y EGZ = Gln+| Gln Gln—l

1—i —1+i 1-3i Gl, Gl.y Glia

From Theorem 6.2, we can write the following corollary.
COROLLARY 6.3. The following identities are hold.

(2): A"Noo = Eco.

(b): A"Noy = Ecu.

(c): A"Nai = Ea.

7. Conclusion

There have been several studies on numerical sequences in

the literature, and they have been widely employed in var-

ious scientific disciplines, including physics, engineering,

architecture, nature, and art. In this study, we describe the

Gaussian generalized Leonardo sequence and concentrate

on three distinct cases: Gaussian modified Leonardo num-

bers, Gaussian Leonardo-Lucas numbers, and Gaussian

Leonardo numbers.

In the first section, we provide some background infor-
mation about generalized Leonardo numbers and give
some information about Gaussian sequences from liter-
ature.

In the second section, we define Gaussian generalized
Leonardo numbers and give some properties such as
Binet’s formula and generating function.

In the third section, we present some identities, using
recurrence relation and generating function, on Gaussian
modified Leonardo, Gaussian Leonardo-Lucas, and
Gaussian Leonardo numbers.

In the fourth section, we find Simpson’s formula of the
Gaussian generalized Leonardo numbers.

In the fifth section, we identify some sum formulas of
Gaussian generalized Leonardo numbers.

In sixth section, we give the square matrix using tri-
angular sequence and introduce some identities about
Gaussian generalized Leonardo numbers.

Finally, we want to continue this study for the dual, hyper-

bolic and dual hyperbolic generalized Leonardo numbers.
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People who is willing to study on this subject, the results we
present would be a great help to them.
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