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According to the Frenet Frame Spherical Indicators and Results on E3
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Abstract: In this study, we showed that the spherical indicator curve frames can correspond to a Bishop

frame according to the Serret-Frenet frame of a regular curve.
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1. Introduction and Preliminaries

Curves are one of the critical areas of differential geometry. Space curves were defined as the

intersection of two surfaces by Clairaut in the first quarter of the 18th century [9]. Frenet (1847)

and Serret, without knowing each other, defined a frame using the derivatives of a regular curve.

This frame was called the Serret-Frenet frame, referring to the two. Sometimes it is simply called

the Frenet frame. The Frenet frame [7] in Euclidean space E3 is a frame obtained using the velocity

and acceleration vectors of a regular curve. Let the velocity and acceleration vectors of the curve

π � I Ð� E3 be π� and π�� , respectively. Accordingly, the orthonormal frame �t, n, b� obtained
as

t �
π�

Yπ�Y , b �
π�

, π��

Yπ�
, π��Y , n � b , t

is the Frenet frame. Here, the vector fields t , n and b are called the tangent vector field, the

principal normal vector field and the binormal vector field of the curve π , respectively. If the curve

π is unit speed ( Yπ�Y � 1), then

t � π�, n �
π��

Yπ��Y , b � t , n.
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Derivative changes of the frame �t, n, b�are

t�
� κn,

n�
� �κt � τb,

b�
� �τn.

Here κ and τ are called the first and second curvatures of the curve π , respectively, such that

κ �
Yπ�

, π��YYπ��Y3 and τ �
det �π�, π��, π����Yπ�

, π��Y2 � (1)

The quintet �t, n, b, κ, τ� are called Frenet apparatus. Many studies have been done on this frame

in geometry, physics and engineering. These studies have also been advanced in non-Euclidean

spaces. Some of these studies are spherical indicators of curves. If Xπ�s� �X�π �s�� > Tππ �s� the

unit vector field X is said to be constrained to the curve π . If we take X �
Ð�

PQ , while the point

P flows on the curve π , the curve drawn by the unit sphere of the point Q is called the spherical

indicator on the unite vector field X . Bilici [3] obtained spherical indicators of involute evolute

curves with the help of the Frenet frame. Şenyurt and Çalışkan [10] studied the spherical indicators

of timelike Bertrand curve pairs. Şenyurt and Demet [11] calculated the geodesic curvatures and

natural lifts of the spherical indicators of timelike-spacelike Mannheim curve pairs. Ateş et al.

[1] gave tubular surfaces obtained with spherical indicators. Çapın [5] calculated the arc lengths

and geodesic curvatures of the spherical indices of curves in the Minkowski space E3
1 . Kula and

Yaylı [8] examined slant helices and their spherical indicators. Erkan and Yüce [6] studied the

roles of Bézier curves in E2 and E3 with the help of Serret-Frenet and curvatures, both using and

not using algorithms used in applied mathematics and computer engineering. Frenet frames on

Riemannian manifolds have been also investigated, [1, 12].

Many frames can be obtained from one curve. One of them is the Bishop frame. A Bishop

frame [4] �t, n1, n2� on the curve π that rotates about the tangent vector t by an angle x is

t � t,

n � n1 cosx � n2 sinx,

b � �n1 sinx � n2 cosx.
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The derivative change of this frame is

t�
� k1n1 � k2n2,

n�

1 � �k1t,

n�

2 � �k2t,

k1 � κ cosx,

k2 � κ sinx,

τ � x�.

Here, the quintet �t, n1, n2, k1, k2� are called Bishop apparatus.

In this study, we examined the spherical indicator curve frames using angles according to the

Serret-Frenet frame of a regular curve. We showed that these frames can correspond to a Bishop

frame. We expressed and proved the results. We reinforced the study with an example.

2. According to the Frenet Frame Spherical Indicators and Results

Let �t, n, b, κ x 0, τ x 0� be the Frenet apparatus of a unit speed curve

π � J z� E3

s z� π �s� .
The Darboux vector and the pol vector of this curve are

w � τt � κb,

c �
1YwYw � t sinϕ � b cosϕ,

respectively. Here

cosϕ �
κº

κ2
� τ2

, (2)

sinϕ �
τº

κ2
� τ2

(3)

and ϕ are the angles between the pole vector c and the binormal vector b .

From now on, unless we state otherwise, we will consider a curve π as a curve with a unit

speed and curvatures κ x 0, τ x 0 .

Theorem 2.1 Let the Frenet apparatuses of a curve π � J Ð� E3 be �t, n, b, κ, τ� and the

125



Abdullah Yıldırım and Ali Toktimur / FCMS

tangents indicator curve πt � t be the Frenet apparatuses �tt,nt,bt,κt, τt� . Therefore

tt � n,

nt � �t cosϕ � b sinϕ,

bt � t sinϕ � b cosϕ,

κt � secϕ,

τt �
ϕ�

κ
�

Here, ϕ�
�

dϕ
ds

.

Proof On condition that dπt

ds
�

dt
ds

� π�

t ,

π�

t � κn,

π��

t � �κ2t � κ�n�κτb,

π���

t � �3κκ�t � �κ��
� κ3

� κτ2�n�2 �κ�τ � κτ ��κτb.
Using Equation (1), we obtain the first and second curvatures of the curve πt � t is

κt �
Yπ�

t , π��

t YYπ��

t Y3 � secϕ

and

τt �
det �π�

t, π
��

t , π
���

t �Yπ�

t , π��

t Y2 �
ϕ�

κ
,

respectively. If we take the derivative of the curve πt � t with respect to its arc parameter st ,

dπt

dst
�

dt
dst

�
dt
ds

ds
dst

�
ds
dst

κn.

If so,

dπt

dst
� tt � n

and
ds
dst

�
1

κ
� (4)

On the other hand, if we use (2), (3) and (4), we have

nt �

dtt
dst
\dtt

dst
\ � �t cosϕ � b sinϕ,
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and
bt � tt , nt � t sinϕ � b cosϕ.

According to these, the proof ends. j

Corollary 2.2 On the tangent indicator curve πt � t , there is a Bishop frame �n,�t,b� that

rotates about the tangent vector tt � n by an angle ϕ and the following equations exist

dn
dst

� a1 ��t� � a2b,

d ��t�
dst

� �a1n,

db
dst

� �a2n,

a1 � 1,

a2 � tanϕ,

where a1and a2 are the first and second curvatures of the Bishop frame�n,�t,b� , respectively.

Proof It is seen from Theorem 2.1 that the frame �n,�t,b� is a Bishop frame. We have

dn
dst

�
dn

ds

ds

dst
� ��κt � τb� 1

κ

� �t � � τ
κ
�b,

d ��t�
dst

�
d ��t�

ds
ds
dst

� �κn
1

κ
� �n,

db
dst

�
db
ds

ds
dst

� �

τ

κ
n.

Therefore

a1 � �1,

a2 �
τ

κ
� tanϕ.

If so, the proof ends. j

Theorem 2.3 For a curve π � J Ð� E3 , let apparatuses of the tangents indicator curve πt � t

be �tt,nt,bt,κt, τt� and let apparatuses of the principal normal indicator curve πt � t be
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�tn, nn, bn, κn, τn� . There are the following equations

tn � nt,

nn � bt cosω � tt sinω,

bn � bt sinω � tt cosω,

κn �

¿ÁÁÀ1 � � ϕ�

YwY�
2

,

τn � �

ω�

YwY ,

where cosω �

»
κ2
n � 1

κn
, sinω �

1

κn
and the angle ω is the angle between vectors bt and nn .

Proof On condition that dπn

ds
�

dn
ds

� π�

n ,

π�

n � �κt�τb,

π��

n � �κ�t � �κ2
� τ2�n�τ �b,

π���

n � ��κ��
� �κ2

� τ2�κ� t � 3 �κ�τ � κτ ��n � �τ ��
� �κ2

� τ2�κ�b.
Using Equation (1), the first and second curvatures of the curve πn � n are obtained as

κn �
Yπ�

n , π��

nYYπ��

nY3 �

¿ÁÁÀ1 � � x�

YwY�
2

(5)

and

τn �
det �π�

n, π
��

n, π
���

n �Yπ�

n , π��

nY2 � �

ω�

YwY , (6)

respectively. If we take the derivative of the curve πn � n with respect to its arc parameter sn ,

dπn

dsn
�

dn

dsn
�

dn
ds

ds
dsn

�
ds
dsn

��κt � τb�
and

ds
dsn

�
1º

κ2
� τ2

�
1YwY . (7)

If so,

dπn

dsn
� tn � �t cosϕ � b sinϕ � nt.
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On the other hand, if we use (5), (6) and (7), we have

nn �

dtn
dsn
\dtn

dsn
\ �

»
κ2
n � 1

κn
�t sinϕ � b cosϕ� � 1

κn
n.

If we say cosω �

»
κ2
n � 1

κn
, sinω �

1

κn
, we get

nn � bt cosω � tt sinω,

and
bn � tn , nn � bt sinω � tt cosω.

j

Corollary 2.4 The frame �tt, nt, bt� is a Bishop frame rotating about the tangent vector tn � nt

by an angle �ω on the principal normals indicator curve πn � n . We have the following equations

dnt

dsn
� b1bt � b2tt,

dbt

dsn
� �b1nt,

dtt
dsn

� b2nt,

b1 �
ϕ�

YwY ,
b2 � �1,

where b1and b2 , �tt, nt, bt� are the first and second Bishop curvatures of the Bishop frame,

respectively.

Proof It is seen from Theorem 2.3 that the frame �tt, nt, bt� is a Bishop frame. We have

dnt

dsn
�

dtn
dsn

� κnnn

� κn �bt cosω � tt sinω�
� κnbt cosω � κntt sinω,

dbt

dsn
�

d �t sinϕ � b cosϕ�
ds

ds
dsn

� �

ϕ�

YwYnt,

dtt
dsn

�
dn
ds

ds
dsn

� nt.
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Therefore

b1 � κn cos �ω� � κn

»
κ2
n � 1

κn
�

ϕ�

YwY ,
b2 � �κn sin �ω� � �κn

1

κn
� �1.

Thus, the proof is completed. j

Theorem 2.5 Let the Frenet apparatuses of a curve π � J Ð� E3 be �t, n, b, κ, τ� and the

Frenet apparatuses of the binormal indicator curve πb � b be �tb, nb, bb, κb, τb� . We have

tb � �n,

nb � t cosϕ � b sinϕ,

bb � t sinϕ � b cosϕ,

κb � cscϕ,

τb � �

ϕ�

τ
�

Here, the angle ϕ is the angle between vectors t and nb .

Proof If we take the derivative of the curve πb � b with respect to its arc parameter sb ,

dπb

dsb
�

db
ds

ds
dsb

� �τn
ds
dsb

�

For this reason

tb � �n ve ds
dsb

�
1

τ
� (8)

Accordingly

κb � cscϕ,

and
nb � t cosϕ � b sinϕ.

On the other hand, we obtain

bb � tb , nb � t sinϕ � b cosϕ.

Also, if we consider Equation (8),

τb �
d ��ϕ�

dsc
�

d ��ϕ�
ds

ds
dsc

� �

ϕ�

τ
�

j
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Corollary 2.6 The frame � t, � n, b� is a Bishop frame rotating about the tangent vector πb � b

by an angle �ϕ on the binormals indicator curve πn � n . We have the following equations

d ��n�
dsb

� c1t � c2b,

dt
dsb

� �c1 ��n� ,
db
dsb

� c2 ��n� ,
c1 � cotϕ,

c2 � �1,

where c1and c2 , � t, � n, b� are the first and second Bishop curvatures of the Bishop frame,

respectively.

Proof It is seen from Theorem 2.5 that the frame � t, � n, b� is a Bishop frame. We have

d ��n�
dsb

�
d ��n�

ds
ds
dsb

� �κt � τb� 1
τ
,

� �κ
τ
� t � b,

dt
dsb

�
dt
ds

ds
dsb

� � ��n� cotϕ,

db
dsb

�
db
ds

ds
dsb

� �n.

If so,

c1 �
κ

τ
� cotϕ,

c2 � �1.

On the other hand, if we consider (8),

τb �
dϕ
dsb

�
dϕ
ds

ds
dsb

� ϕ�
1

τ
�

j

Theorem 2.7 Let the Frenet apparatuses of a curve π � J Ð� E3 be �t, n, b, κ, τ� and let the

Frenet apparatuses of the spherical indicator curve of the pol vector πc � c be �tc, nc, bc, κc, τc� .
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We have

tc � t cosϕ � b sinϕ,

nc � n cos θ � �t sinϕ � b cosϕ� sin θ,
bc � n sin θ � �t sinϕ � b cosϕ� cos θ,
κc �

¿ÁÁÀ1 � �YwY
ϕ�

�2,
τc � �

θ�

ϕ�
, ϕ x 0.

Here, the angle θ is the angle between vectors n and nc, and cos θ �
YwY¼�ϕ��2 � YwY2 , sin θ �

ϕ�¼�ϕ��2 � YwY2 �

Proof If we take the derivative of the curve πc � c � t sinϕ � b cosϕ with respect to its arc

parameter sc ,

dπc

dsc
�

dc
ds

ds
dsc

� ϕ� �t cosϕ � b sinϕ� ds
dsc

and provided that ϕ�
x 0 ,

tc � t cosϕ � b sinϕ ve ds
dsc

�
1

ϕ�
� (9)

Since

dtc
dsc

� κcnc � �

d �t cosϕ � b sinϕ�
ds

ds
dsb

� � �t sinϕ � b cosϕ� � YwY
ϕ�

n,

κc �

¿ÁÁÀ1 � �YwY
ϕ�

�2,
nc � n cos θ � �t sinϕ � b cosϕ� sin θ, (10)

and

bc � tc , nc � n sin θ � �t sinϕ � b cosϕ� cos θ. (11)

On the other hand, if we consider (9),

τc �
d ��θ�

dsc
�

d ��θ�
ds

ds
dsc

� �

θ�

ϕ�
�

j
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Corollary 2.8 The frame

v1 � t cosϕ � b sinϕ,

v2 � n,

v3 � t sinϕ � b cosϕ

is the pol vector field indicator curve πc � c , a Bishop frame rotating about the tangent vector

v1 � t cosϕ � b sinϕ by an angle �θ . We have

dv1

dsc
� d1v2 � d2v3,

dv2

dsc
� �d1v1,

dv3

dsc
� d2v1,

d1 �
YwY
ϕ�

,

d2 � �1,

where d1and d2 are the first and second Bishop curvatures of the Bishop frame �v1,v2,v3� ,

respectively.

Proof If we use the following equations

v1 � t cosϕ � b sinϕ,

v2 � n,

v3 � t sinϕ � b cosϕ,

with (9), (10) and (11), we obtain

tc � v1,

nc � v2 cos θ � v3 sin θ,

bc � v2 sin θ � v3 cos θ.
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This shows that �v1,v2,v3� is a Bishop frame. Accordingly,

dv1

dsc
�

dv1

ds
ds
dsc

�
d �t cosϕ � b sinϕ�

ds
1

ϕ�

�
YwY
ϕ�

n � �t sinϕ � b cosϕ�
�

YwY
ϕ�

v2 � v3,

dv2

dsc
�

dn
ds

ds
dsc

� �

YwY
ϕ�

v1,

dv3

dsc
�

dv3

ds
ds
dsc

� v1.

Therefore

d1 �
YwY
ϕ�

,

d2 � �1.

j

Example 2.9 Let a curve π be defined as

π � J z� E3

t z� π �t� � �2t3
3

, t2, t�
in E3 . The Frenet apparatuses of the curve π are

t �
1

2t2 � 1
�2t2,2t,1� ,

n �
1

2 �2t2 � 1�2 �8t3 � 4t,�8t4 � 2,�8t3 � 4t� ,
b �

1

2 �2t2 � 1� ��2,4t,�4t2� ,
κ �

2�2t2 � 1�2 ,
τ �

�2�2t2 � 1�2 �
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From (2) and (3), it is obtained that

cosϕ �
κº

κ2
� τ2

�
1º
2
,

sinϕ �
τº

κ2
� τ2

� �

1º
2
.

Accordingly, we can easily calculate the following apparatuses:

If the Frenet apparatuses of the tangent indicator curve πt � t are �tt,nt,bt,κt, τt� , then

from Theorem 2.1

tt � n �
1

2 �2t2 � 1�2 �8t3 � 4t,�8t4 � 2,�8t3 � 4t� ,
nt � �t cosϕ � b sinϕ � �

1

2
º
2 �2t2 � 1� �4t2 � 2,8t,�4t2 � 2� ,

bt � t sinϕ � b cosϕ � �� 1º
2
,0,�

1º
2
� ,

κt � secϕ �

º
2,

τt �
ϕ�

κ
� 0.

If the Frenet apparatuses of the tangent indicator curve πn � n are �tn, nn, bn, κn, τn� ,

then from Theorem 2.3

tn � nt � �

1

2
º
2 �2t2 � 1� �4t2 � 2,8t,�4t2 � 2� ,

nn � bt cosω � tt sinω � �

1

2 �2t2 � 1�2 �8t3 � 4t,�8t4 � 2,�8t3 � 4t� ,

bn � bt sinω � tt cosω � �� 1º
2
,0,�

1º
2
� ,

κn �

¿ÁÁÀ1 � � ϕ�

YwY�
2

� 1,

τn � �

ω�

YwY � 0.

If the Frenet apparatuses of the tangent indicator curve πb � b are �tb, nb, bb, κb, τb� ,
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then from Theorem 2.5

tb � �n � �

1

2 �2t2 � 1�2 �8t3 � 4t,�8t4 � 2,�8t3 � 4t� ,
nb � t cosϕ � b sinϕ �

1

2
º
2 �2t2 � 1� �4t2 � 2,8t,�4t2 � 2� ,

bb � t sinϕ � b cosϕ � �� 1º
2
,0,�

1º
2
� ,

κb � cscϕ � �

º
2,

τb � 0.

Since πc � c � t sinϕ � b cosϕ � �� 1º
2
,0,� 1º

2
� , the spherical indicator of the pole vector πc � c is

a point.

�50
0

50 0
10

20

�5

0

5

Figure 1: The curve π

Conclusion
Curves are a subject that is used in many fields such as science, engineering, computer design,

astronomy studies, and geography. Examining curves means examining the changes in curves.

These changes are called the differential geometry of curves. The characterization of curves can be

examined with the differential of curves. A lot of work has been done on this subject so far. We

have given the sources related to these in the previous sections. Sometimes it is easier to give an

idea about a curve with the help of spherical indicators. In this way, spherical indicators of curves

are also important. In the studies so far, spherical indicators have been examined with the help

of the curvatures of their curves. In this study, we examined spherical indicators depending on

the angle between the tangent vector field of a curve and the Darboux vector field. We saw that

with this technique, operations and calculations become simpler. In addition, in this study, we

showed that spherical indicators (tangent spherical indicators, primary normal spherical indicators,

binormal spherical indicators) correspond to a Bishop frame according to the Frenet frame of a
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�1

0

1�1
�0.5

0
0.5

1

�1

0

1

Unit Sphere
Tangents indicator curve πt � t

Principal normal indicator curve πn � n

Binormal indicator curve πb � b

Figure 2: Spherical indicators

regular curve. We could not fully achieve our goals with this study due to lack of time. We could

not examine the indicators of a regular curve according to the Darboux frame and the Sabban

conflict. These will be addressed in other studies later.
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