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Abstract: Stable phosphorus ylids are usually synthesized as a mixture of two E- and Z- isomeric forms 

with different percentages. Experimental methods and techniques cannot find a reason for the presence of 

these products in different proportions. Therefore, in this project, we are trying to find evidence for the 

preference of one of the E- and Z-structural isomers. For this purpose, the mechanism of the reaction between 

triphenylphosphine R1 and dimethyl acetylenedicarboxylate R2 was investigated in the presence of 2-

indolinone as NH-acid, based on quantum mechanical calculations. Theoretical studies were performed to 

evaluate the energy levels of all structures participating in the mechanism. All structures optimized at the 

B3LYP/6-311++g(d,p) levels. Two kinetic pathways I and II are predicted for the reaction. Based on the 

results, pathway I has a kinetic preference over pathway II. The first step of the reaction was recognized as 

a rate-determining step in the reaction mechanism. The results of the calculations well proven the preference 

of geometrical isomer P-E over P-Z, and the Z/E ratio was seen to be kinetically controlled. To investigate 

the solvent effect on the energy level of structures, condensed phase calculations in dichloromethane were 

carried out with the polarizable continuum model (PCM). The natural bond orbital (NBO) method is applied 

for a better understanding of molecular interaction. 
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1. Introduction 

Multicomponent reactions have attracted much 

attention due to their molecular diversity and ability 

to construct complex chemical and biological 

compounds in single operations [1-3]. These 

reactions have found increasing application in 

synthetic organic chemistry [4-6]. The surprising 

chemistry that results from the addition of 

nucleophiles to activated acetylene compounds has 

attracted considerable interest. Typically, addition 

of nucleophiles devoid of an acidic hydrogen atom 

results in a 1:1 zwitterionic intermediate that can 

undergo further transformations to produce a stable 

product [7]. Organophosphorus chemistry is an 

essential field of organic chemistry, which was used 

to develop new methods in organic synthesis and to 
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to their well-recognized chemical and biological 

properties [8]. Groups such as triphenylphosphine, 

pyridine, amines, and isocyanides can form 

zwitterions well [9-11]. MCRs are important 

systems in organic chemistry due to their 

application in the synthesis of organic products, 

such as phosphorus ylides and natural products with 

biological and pharmaceutical properties [12-18]. 

The reaction of electron-deficient acetylene esters 

with triphenylphosphine (TPP) in organic 

compounds containing acidic hydrogen produces 

phosphorus ylides [19,20]. Some phosphorus ylides 

exist as a mixture of two Z- and E-rotational 

isomers, and show a dynamic 1H NMR effect that 

is kinetically important [21-24]. Determining the 

product structure and the percentage of each 
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rotamer and also measurement of the conversion 

energy of rotamers are useful pieces of information 

that come from 1H, 13C and, 31P NMR spectroscopy. 

Despite the valuable information obtained from 

spectroscopic techniques in experimental studies, 

investigating the reasons for the quantitative 

majority of either E- or Z-rotamer over each other 

requires further theoretical study. After conducting 

numerous studies on the kinetics and mechanism of 

various reactions [25-38], a theoretical studies on 

the reaction between triphenylphosphine R1, 

dimethyl acetylene dicarboxylate R2 and 2-

indolinone R3 (as a NH-acid) for generation of 

phosphorus ylides P will be conducted. (Figure 1) 

[39]. In this project, possible kinetic pathways for 

the reaction will be predicted. All structures along 

the reaction pathway, including reactants, 

intermediates, transition states, and products, will 

be optimized. Then, the competitive pathways are 

investigated kinetically and thermodynamically, 

and the preferred kinetic pathway will be identified. 

The reason for the preference of one of the E- or Z-

rotamer will be determined. Finally, the rate-

determining step will be identified and the overall 

reaction rate equation will be obtained.  
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Figure 1. The reaction between triphenylphosphine R1, dimethyl acetylendicarboxylates R2 and 2-

indolinone R3 for generation of stable phosphorus ylides P(P-E or P-Z) 
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2. Computational Method 

All Geometrical structures were optimized at 

B3LYP/6-311++G(d,p) level of theory using 

Gaussian 09 [40]. The corresponding frequencies of 

the structures were estimated at the same level of 

theory to check the stationary points without 

imaginary frequencies and, the transition states 

with only one imaginary frequency. Also, the 

intrinsic reaction coordinate (IRC) approach 

[41,42] is performed to ensure that the given 

transition state connects with the corresponding 

reactants and products. Calculations have been 

carried out in the gas phase and consider solvent 

effects (dichloromethane) with the polarizable 

continuum model (PCM) [43-47]. Natural bond 

orbital (NBO) analysis was carried out at B3LYP/6-

311++G(d,p) level of theory using version 3.1 of 

the NBO package [48-50].  

 

3. Results and discussion 

3.1. Investigation of the mechanism and 

potential energy levels of the reactions in the gas 

phase  

According to the investigations, the reaction was 

initiated by the nucleophilic proximity of the P17 

atom of the triphenylphosphine (R1) to the C9 atom 

of the dimethyl acetylenedicarboxylate (R2). The 

proximity of the nucleophile P17 was studied in 

four different directions, and accordingly two 

different pathways I and II are predicted for the 

reaction. The pathway in which the 

triphenylphosphine (R1) is oriented in the opposite 

direction to the COMe group of dimethyl 

acetylenedicarboxylate (R2) and produces the E-

isomer is called I and the pathway in which the two 

groups are oriented in the same direction and 

produces the Z-isomer is called II. Optimized 

structures of all reaction components (including 

reactants, transition states, intermediates, and 

products) for pathways I and II in the presence of 

2-indolinone (R3) are shown in Figure 2. Also, 

relative zero point correction energy (∆E0), relative 

enthalpy (∆H), relative entropy (∆S), and relative 

Gibbs free energy (∆G) in the gas phase are 

reported in Table 1. The reaction proceeds by 

passing through the TS1-I and TS1-II transition 

states and creating I1-I and I1-II intermediates. At 

this step of the reaction, the P17-C9 bond formed. 

Structures I1-I and I1-II were converted to I1'-I 

and I1'-II to reduce the steric effect. This 

configuration change, by passing TS2-I and TS2-II 

transition states, leads to a decrease in the potential 

energy level of I1’ relative to that of I1. After the 

reaction, NH-acid approaches the C8 atom in the 

I1’ structure through the H51 atom. The transfer of 

H51 from the NH-acid to the C8 atom in the I1'-I 

and I1'-II intermediates, leading to the formation of 

I2-I and I2-II intermediates. Finally, by passing 

through the transition states TS3-I and TS3-II, it 

lead to the formation of products P-E and P-Z. The 

C8-H51 and N52-C8 bonds formed during this 

three-step reaction. 

 

Table. 1 Relative zero point correction energy 

H), Relative entropy ), relative enthalpy (0E(

(∆S), and relative Gibbs free energy (G) in the 

gas phase at standard temperature. 

∆G 

(kJ/mol ) 

∆H 

(kJ/mol) 
0∆E 

(kJ/mol) 
Structure 

51.55 111.70 51.84 Ts1-I 

48.37 112.11 48.60 I1-I 

40.11 100.21 40.25 I1'-I 

11.70 117.23 9.39 I2-I 

45.26 157.66 44.60 Ts3-I 

-84.06 40.52 -82.28 P-E 

67.35 127.90 67.74 Ts1-II 

63.57 125.98 63.55 I1-II 

51.13 109.69 50.88 I1'-II 

19.22 125.79 17.01 I2-II 

48.91 161.00 48.17 Ts3-II 

-87.63 37.46 -85.73 P-Z 

 

The relative enthalpy and relative Gibbs free energy 

of the overall reaction in pathways I and II in the 

presence of 2-indolinone (R3) with values of -

84.06(40.52) kJ/mol and -87.63(37.46) kJ/mol 

indicate exothermicity and spontaneity of the 

reaction. The values reported in parentheses belong 

to the results obtained in dichloromethane solvent. 

The potential energy diagrams for two paths I and 

II are shown in Figure 3.  

As mentioned, the overall reaction in each kinetic 

pathway consists of three steps. The first and 

second steps of the reaction mechanism (including 

all structures and all energy levels) are the same in 

the presence of reactant R3. 
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Figure 2. Optimized geometry of all structures in the presence of 2-indolinone R3 at B3LYP/6- 

311++g(d,p) level of theory. 
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Figure 3. The potential energy profile of the reaction in two paths I and II in the presence of 2-indolinone 

R3, both in the gas phase and in dichloromethane solvent (The values reported in parentheses belong to the 

results obtained in the presence of dichloromethane) 

 

With the presence of reactant R3 in the third step of 

the reaction, the energy levels of this step will 

change relative to each other. Comparison of the 

potential energy levels in Figure 3 shows that 

except for the product, all structures, including 

intermediates and transition states in pathway I are 

more stable than pathway II. The energy barrier of 

the first step in both paths of I and II is 51.84 

(52.14) and 67.74 (59.86) kJ/mol, respectively. The 

energy barrier in the second step in both paths of I 

and II is 5.93 (3.93) and 7.95 (9.94) kJ/mol. The 

energy barriers of the third step are 35.21 (31.45) 

and 31.16 (30.07) kJ/mol in pathways I and II, 

respectively. Comparison of energy barriers in all 

kinetic pathways shows that the first step of the 

reaction is known as the rate-determining step of 

the reaction, with a significant difference in energy 

barrier compared to other steps. Comparison of the 

results in paths I and II shows that path I is more 

kinetically preferable than path II with a lower 

energy barrier of 15.9 (7.72) kJ/mol. However, 

theoretical results show that the P-E resulting from 

the preferred kinetic path I is slightly more unstable 

than P-Z, as much as 3.45 (2.45) kJ/mol. In 

experimental research, the synthesis of stable 

phosphorus ylide in the presence of 2-indolinone 

(R3) also shows the majority of the product with an 

E-structural isomer (70%) [44]. To find out the 

reason for preference of P-E, it is necessary to 

investigate the reaction mechanism in details.  

The changes in energy levels of structures in two 

different kinetic pathways I and II are shown in 

Figure 3. Each of these two kinetic pathways results 

in a product with a different structural isomer. As 

can be seen from this figure, the first step of the 

mechanism has the highest energy barrier in both 

paths. The barrier height of the first step of pathway 

I is lower than pathway II, with a value of 15.90 

(7.72) kJ/mol. Due to the kinetic preference of path 

I, it is evident that the reaction often proceeds from 

path I to produce the product P-E. Furthermore, it 

is logical that all intermediates in the kinetic path II 

can move to kinetic path I. It is desirable that I1-II 

turns into I1-I or I1’-II turns into I1’-I as more 

stable structures, and this task is accomplished by 

passing through Ts4 and Ts5 structures with the 

potential energy barriers of 14.31 (11.19) and 15.81 

(19.84) kJ/mol, respectively (Figure 4). Also, I2-II 

is converted to the more stable intermediate I12-I 
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by crossing Ts6 with the barrier height of 20.57 

(23.16) kJ/mol. 

Therefore, the reaction precedes through pathway I 

to produce P-E as the main product. Although the 

energy diagram reported in Figure 3 clearly shows 

the reason for the preference of product P-E over P-

Z, there is still an issue. The issue is that the product 

P-Z is more stable than the P-E, and the unstable 

product P-E will likely change to the stable product 

P-Z by rotating around the O-C-C-P dihedral angle. 

The scanning results in Figure 4 show that 

transforming P-E to P-Z requires an energy barrier 

of 70.00(77.13) kJ/mol in passing from Ts7, which 

is relatively high. Thus, this configuration change is 

not desirable. Crossing a high energy barrier to 

achieve a low stability of 3.46 (2.45) kJ/mol does 

not appear to be favorable both kinetically and 

thermodynamically. Therefore, the thermodynamic 

instability of P-E compared to P-Z cannot affect the 

majority of the product P-E. 

 

 
Figure 4. Potential energy diagram (kJ/mol) for conversion of (𝐏 − 𝑬 → 𝐏 − 𝒁, 𝐈𝟏 − 𝐈𝐈 → 𝐈𝟏 − 𝐈, 𝐈𝟏′ − 𝐈𝐈
→ 𝐈𝟏′ − 𝐈 and 𝐈𝟐 − 𝐈𝐈 → 𝐈𝟐 − 𝐈) at the B3LYP/6-311++G(d,p) level of theory. 

 

Table 2. Dipole moment values (µ) related to the structures participating in the reaction mechanism in the gas 

phase and in the presence of dichloromethane in the presence of 2-indolinone 

dichloromethane gas structure dichloromethane gas structure 

8.10 4.58 P-E 1.88 1.39 R1 

5.13 11.63 TS1-II 3.19 2.72 R2 

8.20 8.78 I1-II 8.19 6.38 R3 

12.05 8.48 Ts2-II 5.13 3.36 Ts1-I 

8.33 9.83 I1'-II 8.20 5.68 I1-I 

10.82 10.95 I2-II 8.16 5.61 Ts2-I 

12.08 11.63 TS3-II 8.33 6.10 I1'-I 

10.15 7.89 P-Z 10.30 5.79 I2-I 

   12.05 7.58 TS3-I 

 

3.2 Investigation of potential energy levels in the 

solvent phase 

In order to investigate the effect of solvent on 

potential energy levels, comprehensive phase 

calculations were performed for dichloromethane 

solvent with dielectric constant of 9/00 using 

polarizable continuum model (PCM). The values 

reported in parentheses in Figures 3 and 4 are 

related to the calculations in the solution phase. The 

dipole moment (μ) of a molecule indicates its 

polarity and distribution of charges. The dipole 

moment values (μ) of the structures involved in the 

reaction mechanism in the gas phase and in the 

presence of the dichloromethane solvent are 

reported in Table 2. Results show that all structures 

in the gas phase have significant dipole moment and 

in all structures, dipole moment value increased in 

the presence of dichloromethane compared to the 

gas phase. These structures can have favorable 

interactions with polar solvent molecules and align 
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and stabilize the dipole moment of the molecule, 

thus increasing the dipole moment of the structures. 

The results also show that the dipole moment of all 

structures (intermediates, transition states and 

product) in kinetic path II has a higher value than 

kinetic path I in both gas and solution phases. Key 

factors that influence bipolar moments include: 

bond polarity, bond length, molecular geometry, 

molecular symmetry, and molecular size. Almost 

all of these parameters change with the 

configuration of the molecule. Therefore, it can be 

expected that the dipole moments of the structures 

in the two kinetic pathways 1 and 2 will be different 

from each other. 

The calculations in the solution phase show that in 

the presence of 2-indolinone R3, the energy level of 

all structures in kinetic pathways I and II, except 

Ts1-I and I2-I, are decreased compared to the gas 

phase. Studies conducted in the gas and solution 

phases show that the energy barrier of the first 

reaction step in pathways I and II is higher in both 

the gas phase and the solvent phase than in the 

second and third steps. 

3.3 Calculation of the reaction rate constant 

According to the results, the first step of the 

reaction was identified as the rate-determining step, 

thus, the mechanism of the reaction can be 

proposed in Figure 5 according to kinetic evidence. 
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Figure 5. The reaction mechanism between triphenylphosphine R1 and dimethyl acetylenedicarboxylate R2 

in the presence of 2-Indolinone R3. 

 

Using the approximation of the rate-determining 

step we will have: 

 

(1) 
𝑟𝑎𝑡𝑒 =

𝑑[𝑃]

𝑑𝑡
= 𝑘3[𝑁−][I2] 

(2) 

𝑑[I1]

𝑑𝑡
= 𝑘1[𝑅1][𝑅2]

= −𝑘2[I1][𝑅3] 

(3) 

𝑑[𝑁−]

𝑑𝑡
= 𝑘2[𝑅3][I1]

= −𝑘3[𝑁−][I2] 

(4) [𝑁−][I2] =
𝑘2[𝑅3][I1]

−𝑘3

 

(5) 𝑟𝑎𝑡𝑒 = 𝑘1[𝑅1][𝑅2] 

 

This rate equation well displays that the overall 

reaction rate constant is independent of the 

concentration of reactant R3 and depends only on 

the concentration of reactants R1 and R2. 

According to the conventional transition state 

theory (CTST), the values of the rate constant k(T) 
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for elementary bimolecular reactions in the gas 

phase are expressed by; 

𝑘 = 𝜅𝜎
𝑘𝐵𝑇

ℎ

𝑄𝑇𝑆

𝑄𝑅
𝑒𝑥𝑝 [

−(𝐸𝑇𝑆 − 𝐸𝑅
𝑅𝑇⁄ ]                                                                                          

(6) 

QTS and QR are the partition functions of the 

transition states and the reactants, kB is the 

Boltzmann constant, κ is the transmission 

coefficient. The ETS and ER are energies of the 

transition state and the reactants with zero-point 

energy correction involved. The tunneling 

corrections were expressed as the ratio of the 

quantum mechanical to classical barrier crossing 

rate, assuming an unsymmetrical, one-dimensional 

Eckart function barrier [51]. The overall reaction 

rate constant was calculated using equation (5). The 

rate constant of the first step of the reaction as the 

overall rate constant of the reaction at 298.15 K for 

the pathways I and II is 6.79×10-27 and, 9.86×10-30 

cm3.molecule-1.s-1, respectively. The results show 

that the energy required for the reaction (the sum of 

the energies of the first, second and third phase 

steps) in the presence of indoline-2-one in the gas 

phase and in the solution in paths I and II is 

92.98(87.52) kJ/mol and 106.85(99.87) kJ/mol, 

respectively (the values in parentheses are related 

to calculations in solvent phase). These results 

indicate that the reaction in the presence of 

indoline-2-one is more energy-efficient in path I, 

both in the gas phase and in solution. 

3.4 NBO analysis  

The electronic charge analysis of the atoms 

involved in the gas phase reaction was performed 

by NBO software at B3LYP/6-311++G(d,p) 

theoretical level and the results are reported in 

Table 3. The results show that the P17, C18, C29 

and C40 atoms have electronic charge of 0.847, -

0.329, -0.329 and -0.329 e, respectively. This result 

indicates that the P-C bonds are polarized in this 

reactant. In the TS1-I, the electronic charge of P17 

decreased to 1.057 e, indicating a charge transfer 

from P17 atom to the C9 atom. Although the 

electronic charge of atoms C18, C29 and, C40 in 

TS1-I increases slightly (-0.377, -0.367, -0.361), it 

does not appear to cause the electronic charge 

reduction of the P17 atom. The decrease in the 

electronic charge of the P17 atom is due to its 

transfer to the C9 atom due to the formation of a 

stronger C9-P17 bond. By forming the P17-C9 

bond in I1-I, the electronic charge of the P17 is 

further reduced to 1.493 e. 

 
Table 3. NBO data calculated at B3LYP/6-311 ++ G (d, p) level of theory 

I1-I R3’ R2 R1 

charge atom charge atom charge atom charge atom 

1.493 qP(17) 0.409 qH(51) -0.527 qO(5) 0.847 qP(17) 

-0.571 qO(5) -0.623 qN(52) 0.731 qC(6) -0.329 qC(18) 

0.664 qC(6) 0.613 qC(53) -0.549 qO(7) -0.329 qC(29) 

-0.665 qO(7) -0.531 qO(54) -0.008 qC(8) -0.329 qC(40) 

-0.084 qC(8) 0.479 qC(55) -0.036 qC(9)   

-0.512 qC(9) -0.480 qO(56)    

P-E TS1-II I1-II TS1-I 

0.262 qH(51) 1.271 qP(17) 1.500 qP(17) 1.057 qP(17) 

-0.551 qN(52) -0.204 qC(1) -0.571 qO(5) -0.204 qC(1) 

0.616 qC(53) -0.554 qO(5) 0.662 qC(6) -0.556 qO(5) 

-0.564 qO(54) -0.688 qC(6) -0.667 qO(7) -0.680 qC(6) 

0.336 qC(55) -0.634 qO(7) -0.077 qC(8) -0.629 qO(7) 

-0.516 qO(56) -0.074 qC(8) -0.535 qC(9) -0.344 qC(8) 

  -0.307 qC(9)   0.524 qC(9) 
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  0.764 qC(10)   0.477 qC(10) 

  -0.568 qO(11)   -0.632 qO(11) 

  -0.563 qO(12)   -0.532 qO(12) 

  -0.201 qC(13)   -0.205 qC(13) 

  -0.549 CT   -0.316 CT 

 

Investigation of the electronic charge of the C9 in 

the TS1-I shows that the charge of this atom not 

only did not increase compared to the dimethyl 

acetyl dicarboxylate (R2) (-0.036 e) but also 

decreased to 0.524 e. In contrast, the electronic 

charge of C8 increases from -0.008 a.u. in dimethyl 

acetylene dicarboxylate (R2) to -0.344 e in the 

TS1-I structure. This result shows that the 

electronic charge of the P17 atom was transferred 

to the C8 atom. It is expected that the electronic 

charge of the C8 will also be increased by further 

reducing the electronic charge of P17 due to the 

forming a P-C bond in the I1-I structure. However, 

the results show that the electronic charge of this 

atom not only does not increase but also decreases 

substantially (-0.084). Due to that, the electronic 

charge of the C8 atom substantially increased to -

0.512 e. This result is replicated in TS1-II and I1-

II structures and thus indicates that the C9-P17 

bond in structures I1-II and I1-I is also highly 

polarized. The overall result is that the reduction of 

the electronic charge of the P17 in the TS1-I and 

TS1-II structures is due to its transfer to the C8 

atom, but in the I1-I and I1-II structures, it is due 

to its transfer to the C9 atom. The charge transfer 

values in TS1-I and TS1-II structures are -0.316 e 

and -0.549 e, respectively, indicating an increase in 

the amount of charge transfer in TS1-II compared 

to that in TS1-I. This increase in charge transfer 

with the decrease in charge of the P17 atom in the 

TS1-II structure and the decrease in the C9-P17 

bond length in the TS1-II structure (2.202 Å) 

compared to that of the TS1-I structure (2.237 Å), 

confirms this claim. The results show that the 

charge amount of N52 in the structure of 2-

indolinone (R3) is -0.623 e, which decreases to -

0.551 e in the P-E and -0.498 e in the P-Z. 

Meanwhile, the N52 charge in R3 is -0.616 e, which 

decreases to -0.528 e in P-E and -0.486 e in P-Z. 

The results indicate the electron-withdrawing 

nature of the C=O group in the 2-indolinone (R3) 

structure.  

4. Conclusions 

A mechanistic investigation of the reaction between 

triphenylphosphine 1 and dimethyl 

acetylenedicarboxylate 2 in the presence of a 2-

indolinone as NH-acid 3 was investigated 

theoretically, with the results summarized as 

follows: 

1. Theoretical studies showed that the reaction 

proceeded via three steps. The first step of the 

proposed mechanism (k1) was recognized as 

the rate-determining step.  

2. The lower barrier height in the rate-

determining step, as well as the higher kinetic 

stability of path I compared to path II, well 

justified and established the preference for P-

E.  

3. Quantum calculations have shown well that 

due to the high energy barrier of converting P-

E to P-Z, thermodynamic stability is not the 

reason for preference of P-E over P-Z. 

However, the Z/E ratio was seen to be 

kinetically controlled. 
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