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Abstract
Regression analysis is used to model the data statistically. However, data modeling and
interpretation are affected by outliers and significant points. Robust regression analysis
offers an alternative. In this study, the parameters that define the linear regression prob-
lem are estimated using a robust approach. The concept of shrinkage, which has been
investigated for outlier detection in multivariate data. A comprehensive simulation anal-
ysis is performed to examine the breakdown value of the regression estimator, the affine
equivariance, the robustness against contamination, and the efficiency with normal errors.
The advantages of the suggested robust estimator in regression are demonstrated by the
simulation results and real-world data examples. Simulation and research are conducted
using the R software.
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1. Introduction
Regression analysis is commonly used in various academic disciplines, including social

sciences, health sciences, engineering, and physical sciences, among others. This method
relies primarily on ordinary least squares, which makes it vulnerable to problems, especially
in the presence of outliers. Outliers are defined as observations that significantly deviate
from the majority of data points in a data set. As a result, robust regression was created
as a more reliable and efficient alternative to least squares in scenarios where the data
set includes contaminated points. Numerous robust regression algorithms are available,
some of which are also resistant to outliers. Unlike classical linear regression, which focuses
primarily on estimating unknown regression parameters, robust regression aims to provide
reliable estimates even in the presence of data contamination. Consider a linear multiple
regression model for a sample of size n as

yi = α + xt
i β + ϵi, i = 1, 2, 3, ..., n, (1.1)
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where α is the unknown intercept, β represents the unknown vector of regression parame-
ters of size p×1. The error terms ϵi follow an independent and identically distributed i.i.d.
normal distribution and are independent from xt

i , the p - dimensional regressor variables.
The classical method known as ordinary least squares (OLS) minimizes the sum of squared
residuals, and it is the traditional approach for estimating the parameters in Eq. (1.1) as
follows:

β̂OLS = min
β

n∑
i=1

(yi − xt
i β)2. (1.2)

When the data meet these classical estimators’ assumptions, they perform well. The
OLS estimator in Eq. (1.2) can be expressed as follows: Let z = (x, y) represent the joint
variable of the response and carriers. Let µ be the location and Σ be the scatter matrix
of z. Partitioning of µ and Σ with respect to (x, y), we have

µ =
[
µx
µy

]
, Σ =

[
Σxx Σxy

Σyx Σyy

]
. (1.3)

The empirical mean µ̂ and the empirical covariance matrix Σ̂ are traditionally used to
estimate them. Specifically, the OLS estimators of β and α can be expressed as functions
of the µ̂, Σ̂ components as follows:

β̂ = Σ̂−1
xx Σ̂xy, α̂ = µ̂y − β̂tµ̂x. (1.4)

The OLS is widely acknowledged for its vulnerabilities, particularly in producing un-
stable estimates and unreliable predictions in the presence of outliers within the data. A
robust alternative to managing outliers is robust regression estimation. Robust methods
aim to develop estimators that are resilient to outliers. Efficiency and breakdown point
are key metrics to evaluate their performance. The relative efficiency of robust estimators
with respect to the OLS is often used to assess their effectiveness. The breakdown point
measures an estimator’s tolerance to outliers, with the maximum asymptotic breakdown
point being 1

2 . In this paper, we explore several well-known and effective robust regression
techniques for multiple linear regression models that have contaminated data. In addition,
classical normal equations can be represented by a covariance matrix, making it easy to
perform multiple regression.

In this paper, we introduce a robust reweighted regression that utilizes the Shrinkage
Sn covariance matrix as proposed by [20], while also addressing robust regression estima-
tors. The proposed estimator aims to enhance robustness while maintaining computational
efficiency and affine equivariance. The results demonstrate that the shrinkage-based esti-
mator outperforms the classical OLS and some of the other robust estimators, making it
a valuable alternative in regression analysis. The core concept is to employ a simulated
dataset to compare different methodologies and to depend exclusively on comprehensive
empirical simulations to evaluate the characteristics of the proposed estimator.

The paper is organized as follows: Section 2 provides a brief overview of the OLS
method, highlighting the importance of robust methodologies and notable robust estima-
tors that have been developed over the years. A novel reweighted regression estimator
based on a robust covariance matrix approach is also introduced. In Section 3, the pro-
posed estimator is compared with other robust regression estimators using various sim-
ulation methods. Furthermore, the properties of the proposed estimator are evaluated
through extensive simulation. Section 4 presents the conclusions of the paper along with
an application involving real-world data. Equivariance, breakdown, and robustness prop-
erties are studied in Section 5. The sensitivity curve is shown in Section 6 and applications
with various data are given in Section 7. The conclusion is given in Section 8.
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2. Literature review
The primary aim of robust methods is to establish estimators that demonstrate resilience

to outliers. Efficiency and the breakdown point serve as two conventional metrics that
are used to assess the efficacy of the robust approaches currently used. The OLS is
characterized by the lowest variance among unbiased estimators in scenarios involving
normally distributed errors with constant variance without outliers, which results in high
efficiency. Therefore, when the error distribution is precisely normal and the data set
does not have outliers, the relative efficiency of robust estimates compared to the OLS is
frequently considered a crucial metric for evaluating and contrasting the effectiveness of
various robust methodologies.

The breakdown point indicates the percentage of outliers that an estimate can with-
stand, while the asymptotic breakdown point is the limit of the finite sample breakdown
point as the sample size approaches infinity. If more than half of the observations are
contaminated, distinguishing between contamination and valid data becomes impossible,
which makes the maximum asymptotic breakdown point 1

2 [31]. In comparison, the OLS
has an asymptotic breakdown point of 0 and a finite sample breakdown point of 1

n . In 1887,
Edgeworth [12] developed the least absolute deviation (LAD) method, also known as least
absolute value (LAV) regression or L1 estimator, building on Roger Joseph Boscovich’s
idea. The LAV regression is classified as an L estimator and differs from the traditional
least-squares regression by minimizing the sum of the absolute values of the residuals in-
stead of their squares. This makes the LAV regression more robust to outliers as they
have less influence on the results. Although LAV is less affected by odd values y compared
to OLS, it cannot determine leverage levels [28], and its breakdown point is limited to
1
n . The M estimator was the next development in this direction. Huber [34] presents the
M estimator by replacing the least-squares criterion with a robust residual loss function.
It was more efficient than LAD. Since M estimators are resistant to heavy-tailed error
distribution and nonconstant error variance, they are very resistant to y outliers with a
breakdown point of 0.5. However, the finite sample breakdown point of both LAD and
M tends to 0, because of the possibility of leverage points [27]. Due to the vulnerabilities
of M-estimators, generalized M-estimators, or GM estimators, were introduced. These es-
timators were designed to effectively address the challenge of identifying leverage points.
However, they did not distinguish between "good" and "bad" leverage points. Moreover, it
is important to note that the breakdown point decreases as the data dimension p increases.

The least median of square (LMS) was proposed by [30], which minimizes the median of
squared residuals. The slow convergence rate of LMS contributes to its low efficiency, even
if it has a high breakdown point. Rousseeuw [31] proposed another L estimator technique,
called the least trimmed square (LTS). The trimmed-mean approach is expanded upon.
The method is to minimize the sum of trimmed squared residuals. LTS regression is
scale- and affine equivariant. Setting q=n

2 +1 makes sure the estimator has a breakdown
of 0.5. The issue is that LTS performs less efficiently than OLS [40]. Rousseeuw and
Yohai [32], created a high breakdown value approach, which minimizes the dispersion
of residuals with high asymptotic efficiency and improves the convergence rate of the
objective function over LTS because LTS and LMS estimators have weak convergence
rates. The method has definitely greater efficiency than LTS. Although robust against
response outliers, S-estimators are still vulnerable to high leverage points (extreme values
in predictor variables), which can distort the estimates. In order to increase efficiency,
Croux et al. [10] proposed the generalized S-estimator (GS-estimator), but again there
was a constant to define, which depends on sample size and dimension. The most popular
MM regression estimator was introduced by [41]. The first phase required a solid and
consistent estimate of the regression parameters with a high breakdown point, although not
necessarily a high efficiency. The LMS and S-estimates with Huber or bisquare functions
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are the most widely used initial estimators in practice. Compared to regular least squares,
MM estimation has an efficiency of approximately 95% due to its combination of high
breakdown value estimator.

The weighted least squares estimator (REWLSE) presented by [13], which is a reliable
and effective method. Under Gaussian errors, the approach simultaneously achieves max-
imum breakdown point and complete efficiency. The plan is to use hard rejection weights
(0 or 1) derived from a first robust estimator. Because of the adaptive cut-off point, which
is based on the distribution of the standardized absolute residuals, the method has com-
plete asymptotic efficiency and is asymptotically identical to OLS. The REWLSE performs
well with heavy-tailed errors, but it struggles to identify leverage points. Furthermore,
it performs poorly in lower-dimensional settings [2]. The REWLSE is competitive with
SR [2] in high dimension, but in low dimension the REWLSE shows higher errors. The
REWLSE outperforms in heavy-tailed errors, but fails to perform in identifying leverage
points. Also, for smaller dimensions, the REWLSE does not perform. With the covari-
ance approach, an alternative way, the OLS estimators could be determined, as defined in
equation 1.4. The classical sample estimators’ µ̂, Σ̂ used in 1.4 are sensitive to the presence
of outliers, which is considered a downside of this method.

Robust estimators must be used and were put in place by [9, 25]. They proposed the
application of the S-estimator (referred to as technique S) and multivariate M-estimators.
A shrinkage-based covariance matrix as an alternative to Σ̂ was introduced by [2], along
with L1. Median as an option for µ̂ in Eq. (1.4). Consequently, the authors suggested an
alternative to the OLS and conducted a comparative study to evaluate the performance
of their estimator. In conclusion, some of these robust methods are resistant to response
outliers, but are not immune to leverage points or able to discriminate between appropri-
ate and inappropriate leverage. Obtaining maximum breakdown while maintaining good
efficiency is a challenge. The best options appear to be the MM-estimator because of their
high asymptotic efficiency and high breakdown point. Although some of these methods
have a high breakdown point [42], they are computationally challenging in large data sets
of high dimensions [15] and [40]. That is why resampling algorithms are used to obtain
a number of subsets and then compute the robust regression estimate from a number of
initial estimates. However, the property of high decomposition generally requires that the
number of elementary sets go to infinity [15]. An improved M-robust regression method
for anomaly detection was discussed in [17], regarding dam safety monitoring data, ad-
dressing issues such as misjudgment and missed outliers. It introduces an AR factor to
handle random variables and optimize the residual calculation model to enhance robust-
ness. They are mainly using improved M-based robust regression for anomaly detection
purposes.

A robust alternative to the maximum likelihood estimate (MLE) was proposed by [3],
it minimizes the squared difference between the true density g(x) (unknown) and the
assumed parametric model f(x|θ). The proposed method is robust, but can be compu-
tationally intensive and sensitive to parameter choices. It may also face challenges in
high-dimensional settings, especially when residuals are skewed or difficult to interpret
graphically. In this paper, we propose to use robust shrinkage estimators instead of clas-
sical estimators in Eq.(1.4) as proposed by [20]. They obtained a shrinkage covariance
matrix and evaluated the efficiency, robustness, and sensitivity curve of the proposed es-
timator in their paper. Here, all these estimators are used to develop the reweighted
regression estimator.

3. Proposed method
The principle behind shrinkage estimation lies in the notion of "shrinking" an estimator

Ê toward a target estimator T̂ , which serves to effectively diminish estimation errors.
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This approach capitalizes on the fact that while the shrinkage target T̂ may exhibit bias,
it typically shows lower variance compared to the estimator Ê. By carefully calibrating the
level of shrinkage, represented by the intensity of the shrinkage η, the resulting shrinkage
estimator can surpass Ê in terms of reducing estimation errors, provided that certain
general conditions are met [19] as follows:

Σ̂Sh = (1 − η)Ê + ηT̂ . (3.1)
Using a shrinkage estimator offers a significant benefit in balancing bias and variance.

Cabana et al. [5] proposed the shrinkage estimator of the L1 - median as a robust alter-
native to location and the shrinkage estimator based on L1-median is defined as

µ̂Sh = (1 − η)µ̂MM + ηνµe, (3.2)
where νµe is the shrinkage target matrix, e is a vector of ones with p - dimension and
µ̂MM is the L1-median from the samples.

The scaling factor νµ and the shrinkage intensity η should be such that they minimize
the expected quadratic loss. Lakshmi and Sajesh [20] proposed the shrinkage Sn covariance
matrix as a robust alternative to the covariance estimate. Sn covariance of two random
variables X and Y be

Sn(X, Y) = 1.4304(medi[medj ̸=i{(xi − xj)(yi − yj)}]).
Let X be n×p matrix with sample size n, number of variables p, and Xj(j = 1, 2, . . . , p)

be the column of the matrix. The covariance matrix of X based on Sn would be Ŝn =
Sn(Xi, Xj). Then, the covariance matrix based on shrinkage Sn would be

Σ̂Sh = (1 − η)Ê + ηT̂ ,

where Ê = Ŝn.
(3.3)

In this paper, we utilize the above-defined location estimate and covariance matrix
estimate in Eq. (1.4) and propose a reweighted regression estimator. Consider z = (x, y),
the joint variable with location and covariance matrix µ, Σ, respectively. The associated
squared Mahalanobis distance for each observation zi, i = 1, 2, 3, . . . , n, based on µ̂Sh and
Σ̂Sh be

RD2(zi) = (zi − µ̂Sh)tΣ̂−1
Sh(zi − µ̂Sh). (3.4)

The weight function based on the robust Mahalanobis distance is wi = w(RD2(zi)),
where a weight of 1 is assigned to the observations (zi) with a Mahalanobis distance less
than χ2

0.95,p×median(RD2(zi))
χ2

0.5,p
. Thus, the reweighted shrinkage location and Sn covariance

matrix is defined as

µ̂1 =
∑n

i=1 wizi∑n
i=1 wi

, Σ̂1 =
∑n

i=1 wi(zi − µ̂1)(zi − µ̂1)t∑n
i=1 wi

. (3.5)

The regression estimates, based on one-step reweighted shrinkage are β̂1 and α̂1 based on
µ̂1 and Σ̂1 be defined as

β̂1 = (Σ̂1)−1
xx (Σ̂1)xy, α̂1 = (µ̂1)y − (β̂1)t(µ̂1)x, (3.6)

where (β̂1, α̂1)t is our one-step reweighted shrinkage-based regression estimator. The
scale estimate of errors based on the regression estimator defined above is given by

σ̂ = (Σ̂1)yy − (β̂1)t(Σ̂1)xxβ̂1.

The next step is to reweight by taking into consideration the residuals based on the
following one-step reweighted shrinkage based regression estimator

ri = yi − (β̂1)txi − α̂1.
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The Mahalanobis distance for the above estimator defined residuals is
d(ri) = ((ri)t(σ̂)−1ri)1/2.

Let wri = w(d2(ri)) be the weighting function with respect to the residual Mahalanobis
distance, where a weight of 1 is assigned to the residuals with a Mahalanobis distance less
than χ2

1,0.99. Define ui=(xt
i, 1)t, then we have

ϕW ShSn = ((β̂W ShSn)t, α̂W ShSn)t = (
n∑

i=1
wriuiut

i)−1
n∑

i=1
wriyiui. (3.7)

Note that Equation (3.7) is the two-step reweighted regression estimator based on
shrinkage Sn (WShSn).

4. Simulation
This section presents the results of a simulation study that compares the performance

of the proposed WShSn regression estimator with the OLS and several robust regression
techniques previously discussed, namely MM, S, LTS, LMS and the reweighted regression
estimator based on the shrinkage comedian (SR). The simulations were conducted using
the R software using the following functions: The lmrob.S function of the robustbase
package for the S estimator, the rlm function for the MM method of the MASS package,
the lmsreg function from the MASS package for the LMS, and the lqs function from the
MASS package for the LTS estimator. We utilized the built-in functions in R for our
simulation study. Consider the linear model

y = α + xβ + ϵ, (4.1)
where x is n×p matrix, β is p×1 vector of unknown regression coefficients, α unknown

intercept, and ϵ are i.i.d. error variable.
The independent variable x follows a multivariate normal distribution with mean vector

0p×1 and covariance matrix, an identity matrix p × p. For the simulation study, the
sample sizes considered in different situations are n = 80, 100, 150, 200, 500, 1000 and
the dimensions considered are p = 5, 10, 15, 20, 30. 1000 times each of the simulation
scenarios is repeated in our study. We have considered simulation scenarios similar to those
found in the literature [1,2,9,13,25,36,42]. In the first scenario, we generate the response
variables from a standard normal distribution with β = 0, α = 0, and the errors are
considered standard Gaussian. Let the scenario be denoted as NE. In the second scenario
to evaluate robustness, normal errors are considered as in NE but with a probability of
δ contamination in response and independent variables. Independent variables are taken
from N(λ

√
χ2

p,0.99, 1) and response variables from N(k
√

χ2
1,0.99, 1) where λ, k = 0, 0.5, 1,

1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Let the respective scenario be denoted as NEO further in the article. The percentages

of contamination considered are δ = 10%, 20%. If λ = 0 and k > 0, we will get y outliers.
Similarly, if λ > 0, k = 0, we will get good leverage points, and we will obtain bad leverage
points for λ > 0, k > 0. Thus, our choice of λ and k gives data that range from extreme
outliers to intermediate outliers. Under the NE criteria, it is clear that the OLS will have
maximum efficiency. For analyzing the performance of the estimators, we have considered
the efficiency of the estimators as a metric. Let ϕ = (βt, α)t be the joint vector (p+1)×1 of
the regression coefficients. The finite sample efficiency of any robust method R is defined
by [13] and given by

Eff = 1/N
∑N

i=1 ||ϕ̂(i)
OLS − ϕ||22

1/N
∑N

i=1 ||ϕ̂(i)
R − ϕ||22

. (4.2)
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Table 1. Finite sample efficiency in case of normal errors

n p WShSn MM S LTS LMS SR
5 0.90111 0.8901934 0.3133835 0.1687298 0.1870315 0.91122

80 10 0.91998 0.9222617 0.2686664 0.1470201 0.128014 0.92895
15 0.933981 0.9306423 0.2520925 0.1427853 0.1423768 0.93391
20 0.91189 0.8765167 0.2664371 0.1724709 0.1269676 0.96774
30 0.98881 0.8412267 0.273741 0.1836285 0.1050502 0.91334

100 5 0.91198 0.9625692 0.3307681 0.1678611 0.1163469 0.92122
10 0.95003 0.9477326 0.2681845 0.1338582 0.1469313 0.93895
15 0.92289 0.9122369 0.2664602 0.1358261 0.1444049 0.93581
20 0.94478 0.9410851 0.2956971 0.1368254 0.1305699 0.96994
30 0.92339 0.8474065 0.3050582 0.167848 0.1229417 0.92293

150 5 0.93328 0.9304732 0.3096604 0.11059407 0.14979494 0.891122
10 0.95001 0.9483747 0.3067942 0.13424255 0.10780639 0.938895
15 0.94991 0.9346738 0.2526533 0.11922365 0.11141836 0.958391
20 0.93391 0.9345712 0.2508206 0.11280803 0.10334599 0.967874
30 0.93443 0.8910862 0.2851218 0.09904998 0.09132823 0.922234

200 5 0.96991 0.9410785 0.3035179 0.11344367 0.12879938 0.89012
10 0.94411 0.9328904 0.2738827 0.0992274 0.09473856 0.93915
15 0.94471 0.9434414 0.2659222 0.08857581 0.08025978 0.95691
20 0.92287 0.9314504 0.2494056 0.08732885 0.09294969 0.93399
30 0.92278 0.9114167 0.2663687 0.08309036 0.07708978 0.92224

300 5 0.99981 0.9836872 0.3414343 0.10978863 0.11293767 0.90012
10 0.94441 0.9344473 0.2969611 0.08428847 0.07586824 0.92981
15 0.96227 0.9637224 0.2685592 0.06195658 0.06536106 0.93441
20 0.95619 0.9543658 0.2491195 0.05939695 0.05864878 0.97001
30 0.95671 0.9463761 0.2569738 0.05703498 0.05549416 0.92881

500 5 0.98827 0.9707854 0.352695 0.08741342 0.08629351 0.92199
10 0.95189 0.9504772 0.3079973 0.06210263 0.06096699 0.93391
15 0.93891 0.9365855 0.2447813 0.04703221 0.04344129 0.94417
20 0.95178 0.9402005 0.2720199 0.04044304 0.03248954 0.91887
30 0.96881 0.9514596 0.2416872 0.03636119 0.03106638 0.93241

1000 5 0.98811 0.947679 0.3242796 0.05436184 0.05822269 0.92289
10 0.95587 0.9488504 0.3353234 0.03039559 0.03082224 0.94805
15 0.96111 0.9575694 0.2741748 0.02430555 0.02085405 0.96791
20 0.94445 0.935774 0.2761304 0.0203216 0.01564593 0.97987
30 0.95011 0.9417903 0.268742 0.01838522 0.01896355 0.97733

Table 1 presents the simulation results of the relative efficiency for the joint regression
estimator ϕ based on shrinkage Sn (WShSn) compared to other robust methods. The
results indicate that our proposed method is more efficient than the robust S, LTS, and
LMS estimators. Furthermore, WShSn along with the MM and SR estimators, achieves
efficiency values close to one. Table 1 confirms the performance of our proposed estima-
tor in non-contaminated data. The results indicate that, regardless of sample size and
dimension, our estimator demonstrates higher relative efficiency compared to other robust
methods. Furthermore, its efficiency improves as the dimension increases. In contrast, the
LTS and LMS methods consistently perform poorly across all dimensions and sample sizes,
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highlighting their limitations for use in non-contaminated datasets. A robust method that
matches the performance of OLS in clean data while outperforming it in contaminated
cases is ideal, making it highly suitable for practical applications. The efficiency value of
our proposed estimator remains consistently close to one, indicating that it performs well
in non-contaminated data. To assess the robustness property, that is, the NEO criteria,
the mean square error (MSE) of the estimated parameter ϕ = (βt, α)t averaged over the
identified simulation runs N . We consider the maximum MSE for different values of k for
each λ as

MSEλ(.)max = maxkϵ0,0.5,....,10MSEλ,k(.).

Finally, the maximum MSE is considered; that is, the metric for the assessment of NEO
performance is defined as follows:

MSE()max = maxλϵ0,0.5,...,10MSEλ(.).

Table 2 shows that our proposed method exhibits less MSE()max than other methods
for contamination of 10% and 20%. In addition, our proposed regression estimator shows
a decrease MSE()max as the dimension increases. Even for higher contamination in the
dataset, our estimator possesses the least compared MSE()max to other estimators. The
classical method, OLS, is not robust and exhibits a drastically high MSE()max value.
Among other robust estimators, the MM estimator shows the minimum MSE()max. The
LMS shows the worst performance in terms of MSE()max robustness.

Table 2. MSE()max of estimates for checking robustness - NEO case

p δ OLS WShSn MM S LTS LMS SR
5 9.8874 0.002384 0.095852 0.053662 0.058848 0.059968 0.048566
10 8.9993 0.002662 0.038258 0.027147 0.06561 0.063555 0.029432
15 10% 7.6712 0.002871 0.02485 0.026043 0.078443 0.07844 0.022529
20 6.8201 0.003129 0.021788 0.022529 0.094063 0.093965 0.019781
30 3.1178 0.003704 0.027099 0.019681 0.135806 0.138321 0.015976
5 9.9991 0.024481 0.195169 0.140195 0.122953 0.139308 0.225836
10 9.0001 0.006446 0.091101 0.079506 0.132886 0.130309 0.120671
15 20% 8.5619 0.007887 0.077203 0.059177 0.152587 0.15697 0.079638
20 7.2211 0.007104 0.091241 0.043591 0.233085 0.233583 0.065083
30 4.1871 0.007844 0.064294 0.037972 1.178396 1.555017 0.046544

5. Equivariance and breakdown

Equivariance, breakdown, and robustness properties that determine an estimator’s ac-
tual usefulness rather than theoretical goodness. Three forms of equivariance are taken
into consideration for regression estimators. The regression equivariant is equivalent to
adding the coefficients of this linear function to the estimators if we convert the dependent
variable by adding a linear function of independent variables. y - equivariant is the estima-
tors transform correctly if the response variable is changed linearly. These two mentioned
properties can be summarized as follows:

ϕ̂W ShSn(x, yb + xg + u) = ϕ̂W ShSn(x, y)b + (gt, u)t, (5.1)
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where b ϵ R is any non-zero constant, g be any p × 1 vector and u ϵ R is any constant.
Keeping x the same and transforming the dependent variable as yb + xg + u, the resulting
transformed estimators are β̂new

W ShSn
= b(β̂W ShSn) + g and α̂new

W ShSn
= bα̂W ShSn + u.

If the independent variables undergo a linear transformation, the equivalent transformed
estimator can be defined for x - equivariance ϕ̂W ShSn(xA, y) = ((β̂W ShSn)t(A−1)t, α̂W ShSn)t.
Note that if independent variables are transformed using any non-singular matrix p×p A,
then the resulting new regression estimators are β̂new

W ShSn
= A−1β̂W ShSn and the intercept

remains the same. Since it is impossible to investigate all possible transformations, [26]
and [37] suggested that A matrices be randomly generated to check x - equivariance as A
= TD, where D is a p × p diagonal matrix with diagonal entries that are uniformly and
independently distributed and T is a random orthogonal matrix.

In this study, we examine the x - equivariance property of the proposed estimator
using the approaches described above. Also, we propose a random non-zero zero b,g and
u to check regression and y - equivariance. The approximate affine equivariance of the
initial estimates µ̂Sh and Σ̂Sh is demonstrated by extensive simulation by [20]. Our main
concern is about the estimator ϕ̂W ShSn = (β̂t

W ShSn
, α̂W ShSn)t. We studied the equivariance

property of the proposed estimator on transformed data as described above. Similarly to
the simulation scenarios NE and NEO, we have considered contamination δ = 0%, 10%,
20%. ϕ̂W ShSn is obtained from the non-transformed data and recorded. The data is
then transformed as in the explanations given above and ϕ̂new

W ShSn
is recorded from the

transformed data. The MSE is calculated between ϕ̂new
W ShSn

and the estimator should
determine if the equivariance property holds. Tables 3 and 4 show MSEλ(ϕ̂new

W ShSn
)max for

each λ. The MSE is minimal even for the higher dimension in the equivariance y and is
negligibly low in all contamination. The same pattern as we could see in x - equivariance,
too. The values give us empirical confirmation regarding the equivariance property of the
new robust estimator.

Table 3. Affine y - equivariance and regression equivariance MSEλ(.)max values

p = 5 p = 30
λ δ = 0% δ = 10% δ = 20% δ = 0% δ = 10% δ = 20%
0 0.01692 0.03357 0.08543 0.0006 0.02763 0.09313
0.5 0.01693 0.03212 0.03269 0.00065 0.00526 0.00292
1 0.01645 0.03259 0.02042 0.00061 0.00541 0.00266
1.5 0.01687 0.03309 0.02099 0.00058 0.00533 0.00272
2 0.01683 0.03275 0.02016 0.00061 0.0058 0.00271
3 0.01767 0.03195 0.02029 0.00061 0.00552 0.00248
4 0.01677 0.03449 0.02045 0.00063 0.00557 0.00294
5 0.01736 0.03307 0.02059 0.00062 0.00558 0.00263
6 0.01725 0.03275 0.02049 0.00064 0.00507 0.00254
7 0.01659 0.03275 0.02065 0.0006 0.00547 0.00262
8 0.01706 0.03267 0.02093 0.00063 0.0052 0.0025
9 0.01662 0.03249 0.02051 0.00059 0.00544 0.00279
10 0.01710 0.03332 0.02015 0.00061 0.0054 0.00284
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Table 4. Affine x - equivariance MSEλ(.)max values

p = 5 p = 30
λ δ = 0% δ = 10% δ = 20% δ = 0% δ = 10% δ = 20%
0 9.55e-27 0.17066 0.35649 0.13403 0.22271 0.12016
0.5 1.51e-6 0.94962 0.36883 0.00089 0.09106 0.26992
1 4.23e-24 0.36592 0.09488 0.00055 0.13569 0.12746
1.5 1.71e-27 0.35441 0.22789 0.00251 0.10637 0.08758
2 3.81e-26 0.08954 0.64404 0.00024 0.10065 0.12487
3 3.81e-26 0.51310 0.56414 0.00656 0.11819 0.14615
4 1.43e-27 0.48495 0.49300 0.00656 0.11531 0.13136
5 2.11e-23 0.73876 1.3392 0.00142 0.11602 0.11201
6 7.41e-25 0.92863 0.44410 0.00194 0.14555 0.16444
7 1.21e-27 0.48099 0.40906 0.00517 0.14801 0.11676
8 0.00016 0.26175 0.19499 0.03388 0.10334 0.12029
9 4.80e-7 0.59238 0.35093 0.00106 0.13357 0.12236
10 1.13e-5 0.34573 0.91354 0.00379 0.19618 0.11513

The maximum percentage of outliers that the estimator can safely accept is measured by
the breakdown point. The breakdown point can have a maximum value of 50%. With high
contamination levels in mind, simulations such as those done by Sajesh and Srinivasan [37]
can be used to investigate the empirical breakdown value. We suggest examining whether
error and bias are controlled in these circumstances in order to assess the effectiveness of
the suggested estimator WShSn, even if low levels of contamination should be assumed
and therefore make these scenarios less relevant in practice. We consider the NEO scenario
to check the breakdown, with the percentage of contamination δ = 30%, 40%, 45%. For
evaluation, we considered MSE()max as defined by

MSE()max = maxλϵ0,0.5,1,...,10MSEλ(.)max.

Table 5 shows that our proposed method has the least error compared to MSE()max of
other estimators, especially for higher contamination like 40% and 45%. In addition, we
can see a decrease in MSE()max with an increase in dimension. Even for 45% contamination
our method has least MSE()max which gives us empirical assurance of having a high
breakdown property.

Table 5. MSE()max table for breakdown property

p = 5 p = 30
Method δ = 30% δ = 40% δ = 45% δ = 30% δ = 40% δ = 45%
OLS 3.43891 4.57897 3.58334 2.4692 4.5482 1.2738
WShSn 0.22585 0.56321 0.96679 0.0113 0.0323 0.0607
MM 0.49268 1.3743 4.0716 3.3505 5.5076 5.5949
LTS 0.29355 0.84809 1.70897 0.5239 0.7636 0.8144
LMS 0.28607 0.88574 1.82799 0.6210 0.8764 0.9119
S 0.28507 0.86094 2.57749 0.1356 0.4699 0.6267
SR 0.3125 0.6782 1.0122 0.02118 0.02442 0.07023
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6. Sensitivity curve

The sensitivity curve of an estimator shows how an estimator performs when a small
contamination replaces a single observation in the dataset. That is, it measures how
the estimator responds to the local effect of a single observation. An estimator with a
bounded sensitivity curve has an influence function that remains bounded. In this study,
for the evaluation of the sensitivity curve, normal errors are considered, as in the NE case.
The independent variables are taken from N(0p×1, Ip×p) and the response variables from
N(0, 1). The contaminant, a single observation in the independent variable.

The dependent variable is taken from N(λ
√

χ2
p,0.99, 1) and N(k

√
χ2

1,0.99, 1) respectively,
where λ, k = -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10.

SCn(y) = (n + 1)
(
θ̂n+1(y1, . . . , yn, y) − θ̂n(y1, . . . , yn)

)
.

Here, θ̂ represents the regression coefficient of the respective methods. Then, across the
λ, k values, we found the norm of the above-defined difference of the regression coefficients.

In this study, each value is obtained after 1000 simulations. After obtaining the norm
values for all values λ, k, we obtain the maximum norm k at different values, λ and it
is plotted. The maximum norm for different values of λ and k provides insight into the
resistance of robust methods to contamination. Here, we compare our proposed estimator
with classical estimators and other robust estimators such as LTS, LMS, MM, and S.

Figure 1 illustrates that our proposed estimator remains more bounded than other
methods, regardless of dimension. This empirically confirms the bounded nature of the
influence function of our proposed estimator.
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Figure 1. Sensitivity curve of our proposed regression method along with other
methods a)p = 5 b)p = 10 c)p = 15 d)p = 20 e)p = 30
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7. Applications

In this section, four real-life data sets are performed, namely, the learning data studied in
[18], the mineral data studied in [39], the aircraft data mentioned in [14], and the Belgium
phone call data used in [31]. The mean square error (MSE), the mean absolute percentage
error (MAPE), the mean absolute deviation (MAD), and the Akaike information criterion
(AIC) are used to compare the estimator model in real-life data sets. These measures are
defined as follows:

MSE = 1
n

n∑
i=1

(Yi − Ŷi)2, (7.1)

MAPE = 1
n

n∑
i=1

∣∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣∣ , (7.2)

MAD = 1
n

n∑
i=1

|Yi − Ŷi, | (7.3)

AIC = n × ln

[
1
n

n∑
i=1

(Yi − Ŷi)2
]

+ 2p. (7.4)

We compare the different estimators by looking at the one that gets the lowest MSE,
MAPE, MAD and AIC.

7.1. Application I

The simulation data consisted of student motivation (x1), learning facilities (x2), and
student learning outcomes in the cognitive domain (y). Motivation and facilities were
evaluated using a questionnaire with scores ranging from 0 to 30, while learning outcomes
were evaluated using a test, with scores ranging from 0 to 100. Data are tabulated in [18].
20 respondents were part of the study.

Figure 2 shows that the data contain outliers and observations 7, 14, 15, and 18 detected
as outliers. If we closely observe the data, we can confirm these observations as outliers
or observations that require close surveillance. For example, if we look at observations 7
and 18, the respective students express high student motivation and a very good learning
facility, but the student learning outcome is very low. The low learning outcome of a
student who felt good motivation to learn and had good facilities contradicts the explicit
statement that the student should be monitored. This discrepancy suggests that, despite
favorable learning conditions, other unobserved factors may be influencing their academic
performance. These cases alarm researchers with warnings of the need for more research
to understand the underlying causes and provide the necessary interventions. The reason
for the presence of these outliers varies, such as recording errors, psychological stress,
or external distractions, or they might be students who required special attention. We
analyze the data with all the estimators used in our comparison study, and the results are
shown in Table 6.
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Figure 2. Standardized residuals index plot for outlier detection of WShSn, MM,
S, LMS, LTS, SR for the learning data.
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Figure 3. Fitted values versus residuals plot of WShSn, MM, S, LMS, LTS, SR
for the learning data.
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Figure 4. Q-Q plot of residuals of WShSn, MM, S, LMS, LTS, SR for the learning
data.
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Table 6. The results for the learning data

Method Intercept Slope x1 Slope x2 RSE MSE MAPE MAD AIC

WShSn 50.11493 1.91120 1.77704 21.7768 477.2288 0.75461 9.35787 129.91775
MM 39.30157 0.82210 1.12754 24.14265 585.8677 0.86269 14.16605 131.46190
LTS 50.42680 0.97560 0.48780 25.51272 653.8988 0.90765 14.87439 133.65910
LMS 51.63640 1.90910 -0.36360 27.10937 737.9178 0.95359 16.44091 136.07660
S 40.50310 0.76260 1.08140 21.29027 578.4258 0.85499 14.06815 131.20620
OLS -1.78900 1.91780 2.03000 21.00165 444.0691 0.70329 15.93060 125.91960
SR -1.37300 1.43300 2.03370 21.02750 445.0811 0.80911 16.78160 126.69180

7.2. Application II

Smith [39] studied the investigation of how various elements of the Golden Grove mas-
sive sulfide deposits disperse throughout the lateritic landscape. They conducted mea-
surements of the concentrations (in parts per million) of 22 chemical elements in 53 rock
samples from Western Australia. Maronna et al. [27] studied two variables from the data
mentioned above in their book. We use the same data as in [27]. The data consists of
details of the zinc (study variable) and copper (explanatory variable) content deposits.
We tried to explore the relationship of these two elements.

For model comparison purpose, we consider MSE, MAPE, MAD of the study variables.
In addition, we consider AIC for comparison purposes. This particular data set contains
outliers [35]. When we look into the fitted versus residual of the OLS, we could see the
OLS Q-Q plot exhibits, the line attracted towards point 15, but for robust methods, we
could not find such a pattern. Similar false performance of OLS can be found in other
datasets that we observed here. Observations 15, 2, 25, 3, and 39 can be detected as
extreme lying observations by all methods in the residual versus fitted plot. If we closely
look at these observations of behavior in a standardized residual plot, one could find that
the smooth pattern of the points is inhibited by the aforementioned observations. The
Q-Q plot substantiates the fact that the aforementioned observations cause non-normality
in the data.

The observations of data were supposed to be studied in detail, and the reason for
exhibiting these kinds of patterns. The values of the coefficient and model parameters are
given in Table 7.
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Figure 5. Fitted values versus residuals plot of WShSn, MM, S, LMS, LTS, SR
for the mineral data.
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Figure 6. Standardized residuals index plot for outlier detection of WShSn, MM,
S, LMS, LTS, SR for the mineral data.
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Figure 7. Q-Q plot for residuals of WShSn, MM, S, LMS, LTS, SR for the
mineral data.
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Table 7. The results for the mineral data

Method Intercept Slope RSE MSE MAPE MAD AIC
WShSn 10.24283 0.07720 18.03592 331.4453 1.48007 13.0142 301.5835
MM 14.13856 0.031207 18.03535 327.2739 1.017315 9.833758 308.9123
LTS 10.71525 0.07792 15.60709 245.5813 1.038663 9.28958 293.6923
LMS 11.79 0.06 16.45569 272.7899 1.013786 9.443962 299.2612
S 10.41003 0.076318 15.74303 249.8429 1.013658 9.324528 294.6041
OLS 11.4759 0.06313 7.90696 64.51997 0.789537 6.23915 204.0148
SR 7.96063 0.13457 25.07286 604.9256 1.082492 14.42829 343.4706

7.3. Application III

Aircraft data mentioned in [14] consists of 23 observations in five variables. The response
variable is cost and there are four explanatory variables, namely, aspect ratio, lift-to-drag
ratio, weight of the plane, and maximal thrust. The standardized residual plot shows that
some observations deviate and inhibit the smooth pattern of the data. If we look at the
fitted versus residual plot, the same observations as in the residual plot remain outlying.
Rousseeuw and Driessen [33] quoted some of the data sets that include the aircraft data
set and outlying observations in the data sets. Similarly to their findings, we can see that
our robust method detects observations 2, 3, 10, 11, 12, 16, 17, 18, 19, 20, and 22 as
outliers. All other robust methods are used to detect some of these observations. The
regression coefficients and model metrics are presented in Table 8. It can be said that the
proposed estimator successfully detects outliers and performs better than the OLS in the
presence of outliers.

Table 8. The results for the aircraft data

Method Intercept Slope RSE MSE MAPE MAD AIC

W ShSn 6.0121 -2.0006 1.6189 0.00182 -0.0008 11.443 135.95 0.32531 6.1762 120.98
MM 6.1417 -3.2306 1.6711 0.00192 -0.0009 10.339 111.89 0.34389 5.5301 112.50
LTS 14.4816 -4.6712 1.9305 0.00198 -0.0013 11.643 140.56 0.35657 5.9568 121.75
LMS 5.7789 -2.0064 3.3645 0.00079 -0.0005 17.4118 308.17 0.29575 8.6583 139.81
S 13.3733 -4.0219 1.5413 0.00170 -0.0009 11.8193 144.69 0.33773 5.9442 122.42
OLS -3.7913 -3.8529 2.4883 0.00349 -0.0019 7.0921 55.298 0.58333 5.6856 100.29
SR 4.62125 -3.2716 1.8726 0.00212 -0.0011 9.65777 98.2725 0.36041 5.40455 113.5181
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Figure 8. Standardized residuals index plot for outlier detection of WShSn, MM,
S, LMS, LTS, SR for the aircraft data.
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Figure 9. Fitted values versus residuals plot of WShSn, MM, S, LMS, LTS, SR
for the aircraft data.
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Figure 10. Q-Q plot of residuals of WShSn, MM, S, LMS, LTS, SR for the
aircraft data.

7.4. Application IV

The Belgium phone calls data were originally published by the Belgium Statistical Sur-
vey and were used in [31]. This data set includes the annual number of international calls
made from Belgium between 1950 and 1973. The data set consists of two variables: the
year (x) and the number of calls received (y). The data represents simple linear regression
data. The OLS provides regression coefficients but when a person without critical think-
ing looks into the residual plot of the OLS cannot find anything abnormal. If we look
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into the residual plots from robust methods and the fitted vs. residual plot, we can easily
identify 6 outliers in the y direction and we can find how these observations influence other
observations. Our proposed estimator-based graph detects observations 15, 16, 17, 18, 19
and 20 correctly as outliers. Due to the influence of these six outliers, observation 21 was
detected as an outlier. The regression coefficients and model metric values are tabulated
and given in Table 9.

Figure 11. Q-Q plot of residuals of WShSn, MM, S, LMS, LTS, SR for the
Belgium phone call data.
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Figure 12. Q-Q plot of residuals of WShSn, MM, S, LMS, LTS, SR for the
Belgium phone call data.
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Figure 13. Q-Q plot of residuals of WShSn, MM, S, LMS, LTS, SR for the
Belgium phone call data.
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Table 9. The results for the Belgium phone call data

Method Intercept Slope RSE MSE MAPE MAD AIC

W ShSn -5.0119 0.07490 5.7419 37.969 2.7439 4.9275 95.28
MM -5.2423 0.11009 6.5926 48.462 0.30085 3.5316 101.12
LTS -5.6162 0.1159 6.5856 48.3706 0.31328 3.5306 101.09
LMS -5.5947 0.1155 6.5879 48.3989 0.31277 3.5316 101.11
S -5.2732 0.1102 6.6042 48.6151 0.30198 3.5384 101.21
OLS -26.006 0.5041 4.8966 28.9765 1.5236 4.2453 88.796
SR -26.008 0.5042 25.4240 511.7187 10.718 17.0290 157.707

The metrics of different real-life datasets show that our proposed method is capable of
withstanding outliers occupying the dataset and gives metric values less than the LTS,
LMS and S. Also, the regression coefficients are near other robust methods. The plots
show the capability of our method to detect outliers. All this gives assurance regarding
the good performance of our proposed method.

8. Conclusion

In multiple regression, the response variable is clearly associated with explanatory vari-
ables p, and least squares regression is the preferred method for estimating regression
coefficients. It is essential to note that the classical Ordinary Least Squares (OLS) re-
gression is highly sensitive to the presence of outliers. When outliers are present in the
dataset, the OLS often produces distorted regression coefficients that do not accurately
reflect the true relationship. Furthermore, outliers can significantly inflate the standard
errors of the regression coefficients, making them appear less statistically significant and
resulting in a misleading assessment of the goodness of fit. It is crucial to address outliers
to ensure reliable regression analysis. It is essential for the researcher to conduct a metic-
ulous examination of all aspects rather than simply focusing on the regression coefficient
estimates.

A comprehensive assessment of model assumptions, data quality, potential outliers, and
the relevance of the results is crucial. Careful observation, thorough diagnostic testing,
and domain expertise are essential for developing a reliable and valid regression model.
By emphasizing these critical factors, researchers can ensure that their findings are not
only accurate, but also meaningful and significant in their area of study.

In this paper, we confidently present our robust regression estimator, WShSn, which
is built upon the Shrinkage Sn covariance matrix. Our extensive comparisons demon-
strate that WShSn outperforms other existing robust regression methods. It is crucial
to recognize that many available methods fail to deliver satisfactory performance with
high-dimensional data. Not all available methods perform well with large datasets or
high-dimensional data, and many are not proven to be sufficiently robust against the
presence of outliers.

This paper proposes making use of robust location and scatter shrinkage estimators
to estimate regression parameters using the concept of shrinkage. The method produces
the WShSn regression estimator. The advantages of the proposed estimator are shown
through the simulation study. The simulation study demonstrates that our proposed
estimator consistently outperforms other methods in terms of robustness, regardless of
higher dimensions, greater contamination, or transformed data. In terms of efficiency, our
method shows an advantage over existing approaches like LTS, LMS, S, and MM.
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A key feature of WShSn is that it utilizes all observations, unlike the sub-sample iter-
ations employed in other methods, which adds to its stability. We also applied the new
estimator to several real-life datasets and evaluated its performance. The results favor the
effectiveness of our proposed method, in line with the findings of the simulation study.
Comparisons of real-life models highlight the capabilities of our estimator and reveal how
classical OLS can mislead researchers when dealing with data sets containing outliers.
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APPENDIX

The median absolute deviation (MAD) is similar to the median, is a reliable estimate
of the dispersion for a random variable X. Rousseeuw and Croux in 1993 offered a more
effective substitute for MAD with a breakdown of 50% and established Sn, a consistent
and unbiased estimator for the function of the relevant population. It is defined as

Sn = c medimedj |xi − xj |.

Here, the constant (c = 1.1926) is chosen as the consistency factor for normal distributions
and to make the estimator also unbiased. Also, Sn is location-free that it does not use any
location estimator. Sn estimator of scale assures bounded influence function and is more
applicable due to its low sensitivity to gross error. A comedian-based robust alternative
to the sample covariance between two random variables X and Y was put out by [16],
also, he has mentioned the idea of extending Sn scale estimator as a robust alternative
to covariance between two random variables, the same is developed here in a multivariate
version. Sn covariance of two random variables X and Y be

Sn(X, Y) = 1.4304(medi[medj ̸=i{(xi − xj)(yi − yj)}]).

Let X be n × p matrix with sample size n, number of variables p and Xj (j = 1, 2, ..., p)
be the columns of the matrix. Then, the covariance matrix of X based on Sn would be

Ŝn = Sn(Xi, Xj).

The trace of this equation provides a robust scale estimator is given by

trace(Ŝn) =
p∑

j=1
Sn(Xj, Xj) =

p∑
j=1

1.4304. S2
n(Xj) =

p∑
j=1

σ2
Xj

.

Here, Ŝn is an unbiased estimator and a high breakdown estimator [38], but it is not def-
inite positive. Instead of employing conventional methods to ensure positive semidefinite-
ness of the covariance matrix, our approach involves shrinkage estimation on the empirical
covariance matrix Ŝn. This estimation leads to a well-conditioned, positive semi-definite
matrix, serving as the shrinkage dispersion matrix defined below:
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ÊSh = (1 − η)Ê + ηT̂.

where Ê =Ŝn. Various options for the shrinkage target T̂ have been proposed in the
literature. For example, Leodit and Wolf [22] used a weighted average of the sample
covariance matrix and a single-index covariance matrix as a shrinkage target. Leodit and
Wolf [22] in their other work chose the shrinkage target as a "constant correlation matrix"
with correlations equal to the average of all sample correlations. Using a scaled multiple
of the identity matrix as a shrinkage goal, as suggested by [23], ensures a well-conditioned
shrinkage covariance matrix even if the sample covariance matrix is not. DeMiguel et al.
[11] have introduced an alternative approach to estimating the covariance matrix and its
inverse. According to their proposal, a shrinkage estimator can be constructed taking a
convex combination of the sample covariance matrix and a scaled shrinkage target. The
same approach is executed for sample covariance inverse too in their paper. DeMiguel
et al. [11] consider the scaled identity matrix as a target, same as that of [23]. In our
procedure, also, we use the shrinkage target T̂ = νΣI. Thus ÊSh = (1 − η)Ê + ηT̂ becomes

ÊSh = (1 − η)Ê + ηνΣI,
where Ê =Ŝn. We need to estimate η and νΣ. The parameters are selected such that
minimizing the expected quadratic loss

i.e., minνΣ,η E
[
∥Σ̂Sh − Σ∥2

]
, s.t. ÊSh = (1 − η)Ŝn + ηνΣI,

where||A||2 = trace(AAT )/p. Consider the above function to be minimized

E
[
∥Σ̂Sh − Σ∥2

]
=

E
[
∥(1 − η)Ŝn + ηνΣI − Σ∥2

]
=

E
[
∥(1 − η)Ŝn + ηνΣI − Σ + ηΣ − ηΣ∥2

]
=

(1 − η)2E
[
∥Ŝn − Σ∥2

]
+ η2∥νΣI − Σ∥2+

2E
[
⟨(1 − η)(Ŝn − Σ), η(νΣI − Σ)⟩

]
.

Let our associated inner product is ⟨A1, A2⟩ = trace(A1A2)T/p. The latter element in
the above expression is zero as E(Ŝn) = Σ which is shown above. Therefore, the above
minimization expression reduces to:

E
[
∥Σ̂Sh − Σ∥2

]
= [(1 − η)2E

[
∥Ŝn − Σ∥2

]
+ η2∥νΣI − Σ∥2.

Parameter νΣ presents only on the right side element in above expression. Thus, min-
imizing the right element gives the optimum value of νΣ. Also, ∥νΣI − Σ∥2 = ν2

Σ∥I∥2 +
∥Σ∥2 − 2νΣ⟨I, Σ⟩. Thus, the first order minimization condition with respect to νΣ be

2νΣ − 2⟨Σ, I⟩ = 0,

νΣ = trace(Σ)/p.

Since Σ is unknown, we propose to estimate with Ŝn, thus νΣ = trace(Ŝn)/p. The first
order optimal condition of η from equation gives:

η =
E

[
∥Ŝn − Σ∥2

]
E

[
∥Ŝn − νΣI∥2

] .


