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ON THE PARANORMED TAYLOR SEQUENCE SPACES

HACER BILGIN ELLIDOKUZOG̃LU AND SERKAN DEMIRIZ

Abstract. In this paper, the sequence spaces tr0(p), trc(p) and tr(p) of non-

absolute type which are the generalization of the Maddox sequence spaces
have been introduced and it is proved that the spaces tr0(p), trc(p) and tr(p)

are linearly isomorphic to spaces c0(p), c(p) and `(p), respectively. Further-

more, the α−, β− and γ−duals of the spaces tr0(p), trc(p) and tr(p) have been
computed and their bases have been constructed and some topological proper-

ties of these spaces have been investigated. Besides this, the class of matrices

(tr0(p) : µ) has been characterized, where µ is one of the sequence spaces `∞, c
and c0 and derives the other characterizations for the special cases of µ.

1. Introduction

By w, we shall denote the space of all real-valued sequences. Any vector subspace
of w is called a sequence space. We shall write `∞, c and c0 for the spaces of
all bounded, convergent and null sequences, respectively. Also by bs, cs, `1 and
`p, we denote the spaces of all bounded, convergent, absolutely and p−absolutely
convergent series, respectively, where 1 < p <∞.

A linear topological space X over the real field R is said to be a paranormed
space if there is a subadditive function g : X → R such that g(θ) = 0, g(x) = g(−x)
and scalar multiplication is continuous, i.e., |αn−α| → 0 and g(xn− x)→ 0 imply
g(αnxn − αx) → 0 for all α’s in R and all x’s in X, where θ is the zero vector in
the linear space X.

Assume here and after that (pk) be a bounded sequences of strictly positive
real numbers with sup pk = H and L = max{1, H}. Then, the linear spaces
`∞(p), c(p), c0(p) and `(p) were defined by Maddox [12] (see also Simons [14] and
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Nakano [13]) as follows:

`∞(p) = {x = (xk) ∈ w : sup
k∈N
|xk|pk <∞},

c(p) = {x = (xk) ∈ w : lim
k→∞

|xk − l|pk = 0 for some l ∈ R},

c0(p) = {x = (xk) ∈ w : lim
k→∞

|xk|pk = 0},

`(p) =

{
x = (xk) ∈ w :

∑
k

|xk|pk <∞

}
,

which are the complete spaces paranormed by

g1(x) = sup
k∈N
|xk|pk/L ⇐⇒ inf pk > 0 and g2(x) =

(∑
k

|xk|pk
)1/L

,

respectively. For simplicity in notation, here and in what follows, the summation
without limits runs from 0 to ∞. By F and Nk, we shall denote the collection of
all finite subsets of N and the set of all n ∈ N such that n ≥ k, respectively. We
shall assume throughout that p−1k + (p′k)−1 = 1 provided 1 < inf pk ≤ H <∞.

Let λ, µ be any two sequence spaces and A = (ank) be an infinite matrix of real
numbers ank, where n, k ∈ N. Then, we say that A defines a matrix mapping from
λ into µ, and we denote it by A : λ → µ, if for every sequence x = (xk) ∈ λ, the
sequence Ax = {(Ax)n}, the A−transform of x, is in µ, where

(Ax)n =
∑
k

ankxk, (n ∈ N).(1.1)

By (λ : µ), we denote the class of all matrices A such that A : λ → µ. Thus,
A ∈ (λ : µ) if and only if the series on the right-hand side of (1.1) converges for
each n ∈ N and every x ∈ λ, and we have Ax = {(Ax)n}n∈N ∈ µ for all x ∈ µ. A
sequence x is said to be A−summable to α if Ax converges to α which is called the
A−limit of x.

2. The Sequence Spaces tr0(p), trc(p) and tr(p) of Non-Absolute Type

In this section, we define the sequence spaces tr0(p), trc(p) and tr(p), and prove
that tr0(p), trc(p) and tr(p) are the complete paranormed linear spaces.

For a sequence space λ, the matrix domain λA of an infinite matrix A is defined
by

XA = {x = (xk) ∈ w : Ax ∈ X}.(2.1)

In [5], Choudhary and Mishra have defined the sequence space `(p) which consists
of all sequences such that S−transforms are in `(p), where S = (snk) is defined by

snk =

{
1 , 0 ≤ k ≤ n,
0 , k > n.

Başar and Altay [3] have studied the space bs(p) which is formerly defined by Başar
in [4] as the set of all series whose sequences of partial sums are in `∞(p).

More recently, Altay and Başar have studied the sequence spaces rt(p), rt∞(p) in
[1] and rtc(p), r

t
0(p) in [2] which are derived by the Riesz means from the sequence

spaces `(p), `∞(p), c(p) and c0(p) of Maddox, respectively.
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With the notation of (2.1), the spaces `(p), bs(p), rt(p), rt∞(p), rtc(p) and rt0(p)
may be redefined by

`(p) = [`(p)]S , bs(p) = [`∞(p)]S , r
t(p) = [`(p)]tR

rt∞(p) = [`∞(p)]tR, r
t
c(p) = [c(p)]tR, r

t
0(p) = [c0(p)]tR.

In [6], Demiriz and Çakan have defined the sequence spaces er0(u, p) and erc(u, p)
which consists of all sequences such that Er,u- transforms are in c0(p) and c(p),
respectively Er,u = {ernk(u)} is defined by

ernk(u) =

{ (
n
k

)
(1− r)n−krkuk , (0 ≤ k ≤ n),

0 , (k > n)

for all k, n ∈ N and 0 < r < 1.
In [9], the Taylor sequence spaces tr0 and trc of non-absolute type, which are

the matrix domains of Taylor mean T r of order r in the sequence spaces c0 and
c, respectively, are introduced, some inclusion relations and Schauder basis for
the spaces tr0 and trc are given, and the α−, β− and γ− duals of those spaces are
determined. The main purpose of this paper is to introduce the sequence spaces
tr0(p), trc(p) and tr(p) of nonabsolute type which are the set of all sequences whose
T r−transforms are in the spaces c0(p), c(p) and `(p), respectively; where T r denotes
the matrix T r = {trnk} defined by

trnk =

{ (
k
n

)
(1− r)n+1rk−n , (k ≥ n),

0 , (0 ≤ k < n)

where 0 < r < 1. Also, we have constructed the basis and computed the α−, β−
and γ−duals and investigated some topological properties of the spaces tr0(p), trc(p)
and tr(p).

Following Choudhary and Mishra [5], Başar and Altay [3], Altay and Başar [1, 2],
Demiriz [6], Kirişçi [9], we define the sequence spaces tr0(p), trc(p) and tr(p), as the
sets of all sequences such that T r−transforms of them are in the spaces c0(p),c(p)
and `(p), respectively, that is,

tr0(p) =

{
x = (xk) ∈ w : lim

n→∞

∣∣∣∣∣
∞∑
k=n

(
k

n

)
(1− r)n+1rk−nxk

∣∣∣∣∣
pn

= 0

}
,

trc(p) =

{
x = (xk) ∈ w : lim

n→∞

∣∣∣∣∣
∞∑
k=n

(
k

n

)
(1− r)n+1rk−nxk − l

∣∣∣∣∣
pn

= 0 for some l ∈ R

}
and

tr(p) =

{
x = (xk) ∈ w :

∑
n

∣∣∣∣∣
∞∑
k=n

(
k

n

)
(1− r)n+1rk−nxk

∣∣∣∣∣
pn

<∞

}
.

In the case (pn) = e = (1, 1, 1, ...), the sequence spaces tr0(p), trc(p) and tr(p)
are, respectively, reduced to the sequence spaces tr0 and trc which are introduced by
Kirişçi [9] and tr(p) is reduced to the sequence space trp. With the notation of (2.1),
we may redefine the spaces tr0(p), trc(p) and tr(p) as follows:

tr0(p) = [c0(p)]T r , trc(p) = [c(p)]T r and tr(p) = [`(p)]T r .(2.2)
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Define the sequence y = {yk(r)}, which will be frequently used, as the T r−transform
of a sequence x = (xk), i.e.,

yk(r) :=

∞∑
k=n

(
k

n

)
(1− r)n+1rk−nxk for all k ∈ N.(2.3)

Now, we may begin with the following theorem which is essential in the text.

Theorem 2.1. tr0(p) and trc(p) are the complete linear metric space paranormed by
g, defined by

g(x) = sup
k∈N

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk/L

.

Also, trp(p) is the complete linear metric space paranormed by h, defined by

h(x) =

 ∞∑
k=0

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk1/M

.(2.4)

Proof. Since the proof is similar for tr0(p) and trc(p), we give the proof only for the
space tr0(p). The linearity of tr0(p) with respect to the co-ordinatewise addition and
scalar multiplication follows from the following inequalities which are satisfied for
x, z ∈ tr0(p) (see Maddox [11, p.30])

sup
n∈N

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−k(xj + zj)

∣∣∣∣∣∣
pk/L

≤ sup
k∈N

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk/L

+ sup
k∈N

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kzj

∣∣∣∣∣∣
pk/L

(2.5)

and for any α ∈ R (see [14])

|α|pk ≤ max{1, |α|L}.(2.6)

It is clear that g(θ) = 0 and g(x) = g(−x) for all x ∈ tr0(p). Again the inequalities
(2.5) and (2.6) yield the subadditivity of g and

g(αx) ≤ max{1, |α|L}g(x).

Let {xn} be any sequence of the points xn ∈ tr0(p) such that g(xn − x)→ 0 and
(αn) also be any sequence of scalars such that αn → α. Then, since the inequality

g(xn) ≤ g(x) + g(xn − x)

holds by the subadditivity of g, {g(xn)} is bounded and we thus have

g(αnxn − αx) = sup
k∈N

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−k(αnxnj − αxj)

∣∣∣∣∣∣
pk/L

≤ |αn − α|g(xn) + |α|g(xn − x),

which tends to zero as n → ∞. This means that the scalar multiplication is con-
tinuous. Hence, g is paranorm on the space tr0(p).
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It remains to prove the completeness of the space tr0(p). Let {xi} be any Cauchy

sequence in the space tr0(p), where xi = {x(i)0 , x
(i)
1 , x

(i)
2 , . . .}. Then, for a given ε > 0

there exists a positive integer n0(ε) such that

g(xi − xj) < ε

2

for all i, j > n0(ε). Using the definition of g we obtain for each fixed k ∈ N that

|(T rxi)k − (T rxj)k|pk/L ≤ sup
k∈N
|(T rxi)k − (T rxj)k|pk/L <

ε

2
(2.7)

for every i, j > n0(ε) which leads to the fact that
{(T rx0)k, (T

rx1)k, (T
rx2)k, . . .} is a Cauchy sequence of real numbers for every

fixed k ∈ N. Since R is complete, it converges, say (T rxi)k → (T rx)k as i →
∞. Using these infinitely many limits (T rx)0, (T

rx)1, . . ., we define the sequence
{(T rx)0, (T

rx)1, . . .}. From (2.7) with j →∞, we have

|(T rxi)k − (T rx)k|pk/L ≤
ε

2
(i, j > n0(ε))(2.8)

for every fixed k ∈ N. Since xi = {x(i)k } ∈ tr0(p) for each i ∈ N, there exists
k0(ε) ∈ N such that

|(T rxi)k|pk/L <
ε

2
(2.9)

for every k ≥ k0(ε) and for each fixed i ∈ N. Therefore, taking a fixed i > n0(ε) we
obtain by (2.8) and (2.9) that

|(T rx)k|pk/L ≤ |(T rx)k − (T rxi)k|pk/L + |(T rxi)k|pk/L <
ε

2

for every k > k0(ε). This shows that x ∈ tr0(p). Since {xi} was an arbitrary Cauchy
sequence, the space tr0(p) is complete and this concludes the proof.

Now, tr(p) is the complete linear metric space paranormed by h defined by (2.4).
It is easy to see that the space tr(p) is linear with respect to the coordinate-wise
addition and scalar multiplication. Therefore, we first show that it is a paranormed
space with the paranorm h defined by (2.4).

It is clear that h(θ) = 0 where θ = (0, 0, 0, ...) and h(x) = h(−x) for all x ∈ tr(p).
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Let x, y ∈ tr(p); then by Minkowski’s inequality we have

h(x+ y) =

 ∞∑
k=0

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−k(xj + yj)

∣∣∣∣∣∣
pk1/M

=

 ∞∑
k=0


∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−k(xj + yj)

∣∣∣∣∣∣
pk/M


M


1/M

≤

 ∞∑
k=0

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk1/M

+

 ∞∑
k=0

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kyj

∣∣∣∣∣∣
pk1/M

= h(x) + h(y)(2.10)

Let {xn} be any sequence of the points xn ∈ tr(p) such that h(xn − x)→ 0 and
(λn) also be any sequence of scalars such that λn → λ. We observe that

h(λnxn − λx) ≤ h[(λn − λ)(xn − x)]

+ h[λ(xn − x)](2.11)

+ h[(λn − λ)x].

It follows from λn → λ(n→∞) that |λn − λ| < 1 for all sufficiently large n; hence

lim
n→∞

h[(λn − λ)(xn − x)] ≤ lim
n→∞

h(xn − x) = 0.(2.12)

Furthermore, we have

lim
n→∞

h[λ(xn − x)] ≤ max{1, |λ|M} lim
n→∞

h(xn − x) = 0.(2.13)

Also, we have

lim
n→∞

h[(λn − λ)x)] ≤ lim
n→∞

|λn − λ|h(x) = 0.(2.14)

Then, we obtain from (2.11), (2.12), (2.13) and (2.14) that h(λnxn − λx) → 0, as
n→∞. This shows that h is a paranorm on tr(p).

Furthermore, if h(x) = 0, then
(∑∞

k=0

∣∣∣∑∞j=k (jk)(1− r)k+1rj−kxj

∣∣∣pk)1/M = 0.

Therefore
∣∣∣∑∞j=k (jk)(1− r)k+1rj−kxj

∣∣∣pk = 0 for each k ∈ N. Since 0 < r < 1, we

have
(
j
k

)
(1− r)k+1rj−k > 0. Then, we obtain xk = 0 for all k ∈ N. That is, x = θ.

This shows that h is a total paranorm.
Now, we show that tr(p) is complete. Let {xn} be any Cauchy sequence in the

space tr(p), where xn = {x(n)0 , x
(n)
1 , x

(n)
2 , ...}. Then, for a given ε > 0, there exists

a positive integer n0(ε) such that h(xn − xm) < ε for all n,m > n0(ε). Since for
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each fixed k ∈ N that

|(T rxn)k − (T rxm)k| ≤

[∑
k

|(T rxn)k − (T rxm)k|pk
] 1

M

= h(xn − xm) < ε(2.15)

for every n,m > n0(ε), {(T rx0)k, (T
rx1)k, (T

rx2)k, ...} is a Cauchy sequence of real
numbers for every fixed k ∈ N. Since R is complete, it converges, say (T rxn)k →
(T rx)k as n→∞. Using these infinitely many limits (T rx)0, (T

rx)1, ..., we define
the sequence {(T rx)0, (T

rx)1, ...}. For each K ∈ N and n,m > n0(ε)[
K∑
k=0

|(T rxn)k − (T rxm)k|pk
] 1

M

≤ h(xn − xm) < ε.(2.16)

By letting m,K →∞, we have for n > n0(ε) that

h(xn − x) =

[∑
k

|(T rxn)k − (T rx)k|pk
] 1

M

< ε.(2.17)

This shows that xn − x ∈ tr(p). Since tr(p) is a linear space, we conclude that
x ∈ tr(p); it follows that xn → x, as n→∞ in tr(p), thus we have shown that tr(p)
is complete. �

Note that the absolute property does not hold on the spaces tr0(p), trc(p) and
tr(p), since there exists at least one sequence in the spaces tr0(p), trc(p) and tr(p)
and such that g(x) 6= g(|x|), where |x| = (|xk|). This says that tr0(p), trc(p) and
tr(p) are the sequence spaces of non-absolute type.

Theorem 2.2. The sequence spaces tr0(p), trc(p) and tr(p) of non-absolute type are
linearly isomorphic to the spaces c0(p), c(p) and `(p), respectively, where 0 < pk ≤
H <∞.

Proof. To avoid repetition of similar statements, we give the proof only for tr0(p).
We should show the existence of a linear bijection between the spaces tr0(p) and
c0(p). With the notation of (2.3), define the transformation T from tr0(p) and c0(p)
by x 7→ y = Tx. The linearity of T is trivial. Furthermore, it is obvious that x = θ
whenever Tx = θ, and hence T is injective.

Let y ∈ c0(p) and define the sequence

xk(r) :=

∞∑
j=k

(
j

k

)
(−r)j−k(1− r)−(j+1)yj ; k ∈ N.

Then, we have

g(x) = sup
k∈N

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk/L

= sup
k∈N
|yk|pk/L = g1(y) <∞.

Thus, we have that x ∈ tr0(p) and consequently T is surjective. Hence, T is a
linear bijection and this says that the spaces tr0(p) and c0(p) are linearly isomorphic,
as was desired.

�

Theorem 2.3. Convergence in tr(p) is stronger than coordinate-wise convergence.
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Proof. First we show that h(xn − x) → 0, as n → ∞ implies xnk → xk; as n → ∞
for every k ∈ N. We fix k, then we have

lim
n→∞

∣∣∣∣∣
∞∑
n=k

(
n

k

)
(1− r)k+1rn−k[x

(n)
k − xk]

∣∣∣∣∣
pk

≤ lim
n→∞

∑
k

∣∣∣∣∣
∞∑
n=k

(
n

k

)
(1− r)k+1rn−k[x

(n)
k − xk]

∣∣∣∣∣
pk

= lim
n→∞

[h(xn − x)]M = 0.(2.18)

Hence, we have for k = 0 that

lim
n→∞

∣∣∣∣∣
∞∑
n=0

(1− r)rn[x
(n)
0 − x0]

∣∣∣∣∣ = 0

which gives the fact that |x(n)0 − x0| → 0, as n→∞. Similarly, for each k ∈ N, we
have xnk → xk; as n→∞.

A sequence space λ with a linear topology is called a K-space provided each
of the maps pi : λ → C defined by pi(x) = xi is continuous for all i ∈ N, where
C denotes the complex field. A K-space λ is called an FK-space provided λ is
complete linear metric space. An FK-space whose topology is normable is called
a BK-space. Given a BK-space λ ⊃ φ, we denote the n th section of a sequence
x = (xk) ∈ λ by x[n] :=

∑n
k=0 xke

(k), and we say that x = (xk) has the property

AK if limn→∞ ||x− x[n]||λ = 0. If AK property holds for every x ∈ λ, then we say
that the space λ is called AK-space (cf. [7]). Now, we may give the following. �

Theorem 2.4. The space tr(p) has AK.

Proof. For each x = (xk) ∈ tr(p), we put

x<m> =

m∑
k=0

xke
(k),∀m ∈ {1, 2, . . .}.(2.19)

Let ε > 0 and x ∈ tr(p) be given. Then, there is N = N(ε) ∈ N such that

∞∑
k=N

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk

< εM .(2.20)

Then we have for all m ≥ N ,

h(x− x<m>) = h

(
x−

m∑
k=0

xke
(k)

)

=

 ∞∑
k=m+1

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk1/M

≤

 ∞∑
k=N

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk1/M

< ε.(2.21)

This shows that x =
∑
k xke

(k).
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Now, we have to show that this representation is unique. We assume that x =∑
k λke

(k). Then for each k,∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kλj −

∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk1/M

≤

∑
k

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kλj −

∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk1/M

= h(x− x) = 0(2.22)

Hence,
∑∞
j=k

(
j
k

)
(1 − r)k+1rj−kλj =

∑∞
j=k

(
j
k

)
(1 − r)k+1rj−kxj for each j. Then,

λj = xj for each j. Therefore, the representation is unique. �

3. The Basis for the Spaces tr0(p), trc(p) and tr(p)

Let (λ, h) be a paranormed space. Recall that a sequence (bk) of the elements of
λ is called a basis for λ if and only if, for each x ∈ λ, there exists a unique sequence
(αk) of scalars such that

h

(
x−

n∑
k=0

αkbk

)
→ 0 as n→∞.

The series
∑
αkbk which has the sum x is then called the expansion of x with

respect to (bn), and written as x =
∑
αkbk. Since it is known that the matrix

domain λA of a sequence space λ has a basis if and only if λ has a basis whenever
A = (ank) is a triangle (cf. [8, Remark 2.4]), we have the following. Because of the
isomorphism T is onto, defined in the proof of Theorem 2.2, the inverse image of
the basis of those spaces c0(p), c(p) and `(p) are the basis of the new spaces tr0(p),
trc(p) and tr(p), respectively. Therefore, we have the following:

Theorem 3.1. Let λk(r) = (T rx)k for all k ∈ N and 0 < pk ≤ H <∞. Define the
sequence b(k)(r) = {b(k)(r)}k∈N of the elements of the space tr0(p), trc(p) and tr(p)
by

b(k)(r) =

{ (
k
n

)
(1− r)−(k+1)(−r)k−n , k ≥ n

0 , 0 ≤ k < n

for every fixed k ∈ N. Then

(a): The sequence {b(k)(r)}k∈N is a basis for the space tr0(p), and any x ∈ tr0(p)
has a unique representation of the form

x =
∑
k

λk(r)b(k)(r),

(b): The set e, b(1)(r), b(2)(r), ... is a basis for the space trc(p), and any x ∈
trc(p) has a unique representation of the form

x = le+
∑
k

[λk(r)− l]b(k)(r),

where l = limk→∞(T rx)k.
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(c): The sequence {b(k)(r)}k∈N is a basis for the space tr(p), and any x ∈ tr(p)
has a unique representation of the form

x =
∑
k

λk(r)b(k)(r).

4. The α−, β− and γ−Duals of the Spaces tr0(p), trc(p) and tr(p)

In this section, we state and prove the theorems determining the α−, β− and
γ−duals of the sequence spaces tr0(p), trc(p) and tr(p) of non-absolute type.

We shall firstly give the definition of α−, β− and γ−duals of sequence spaces
and after quoting the lemmas which are needed in proving the theorems given in
Section 4.

The set S(λ, µ) defined by

S(λ, µ) = {z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x = (xk) ∈ λ}(4.1)

is called the multiplier space of the sequence spaces λ and µ. One can eaisly observe
for a sequence space ν with λ ⊃ ν ⊃ µ that the inclusions

S(λ, µ) ⊂ S(ν, µ) and S(λ, µ) ⊂ S(λ, ν)

hold. With the notation of (4.1), the alpha-, beta- and gamma-duals of a sequence
space λ, which are respectively denoted by λα, λβ and λγ are defined by

λα = S(λ, `1), λβ = S(λ, cs) and λγ = S(λ, bs).

The alpha-, beta- and gamma-duals of a sequence space are also referred as Köthe-
Toeplitz dual, generalized Köthe-Toeplitz dual and Garling dual of a sequence space,
respectively.

For to give the alpha-, beta- and gamma-duals of the spaces tr0(p), trc(p) and
tr(p) of non-absolute type, we need the following Lemma:

Lemma 4.1. [7] Let A = (ank) be an infinite matrix. Then, the following state-
ments hold

(i): A ∈ (co(p) : `(q)) if and only if

sup
K∈F

∑
n

∣∣∣∣∣∑
k∈K

ankM
−1/pk

∣∣∣∣∣
qn

<∞, ∃M ∈ N2.(4.2)

(ii): A ∈ (c(p) : `(q)) if and only if (4.2) holds and∑
n

∣∣∣∣∣∑
k

ank

∣∣∣∣∣
qn

<∞.(4.3)

(iii): A ∈ (c0(p) : c(q)) if and only if

sup
n∈N

∑
k

|ank|M−1/pk <∞, ∃M ∈ N2,(4.4)

∃(αk) ⊂ R 3 lim
n→∞

|ank − αk|qn = 0 for all k ∈ N,(4.5)

∃(αk) ⊂ R 3 sup
n∈N

N1/qn
∑
k

|ank − αk|M−1/pk <∞, ∃M ∈ N2 and ∀N ∈ N1.(4.6)
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(iv): A ∈ (c(p) : c(q)) if and only if (4.4), (4.5), (4.6) hold and

∃α ∈ R 3 lim
n→∞

|
∑
k

ank − α|qn = 0.(4.7)

(v): A ∈ (co(p) : `∞(q)) if and only if

sup
n∈N

(∑
k

|ank|M−1/pk
)qn

<∞, ∃M ∈ N2.(4.8)

(vi): A ∈ (`(p) : `1) if and only if
(a): Let 0 < pk ≤ 1 for all k ∈ N. Then

sup
N∈F

sup
k∈N

∣∣∣∣∣∑
n∈N

ank

∣∣∣∣∣
pk

<∞.(4.9)

(b): Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, there exists an integer
M > 1 such that

sup
N∈F

∑
k

∣∣∣∣∣∑
n∈N

ankM
−1

∣∣∣∣∣
p
′
k

<∞.(4.10)

Lemma 4.2. [10] Let A = (ank) be an infinite matrix. Then, the following state-
ments hold

(i): A ∈ (`(p) : `∞) if and only if
(a): Let 0 < pk ≤ 1 for all k ∈ N. Then,

sup
n,k∈N

|ank|pk <∞.(4.11)

(b): Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, there exists an integer
M > 1 such that

sup
n∈N

∑
k

∣∣ankM−1∣∣p′k <∞.(4.12)

(ii): Let 0 < pk ≤ H <∞ for all k ∈ N. Then, A = (ank) ∈ (`(p) : c) if and
only if (4.11) and (4.12) hold, and

lim
n→∞

ank = βk, ∀k ∈ N.(4.13)

Theorem 4.1. Let K ∈ F and K∗ = {k ∈ N : n ≥ k} ∩K for K ∈ F . Define the
sets T r1 (p), T r2 , T3(p) and T4(p) as follows:

T r1 (p) =
⋃
M>1

{
a = (ak) ∈ w : sup

K∈F

∑
n

∣∣∣∣∣ ∑
k∈K∗

cnkM
−1/pk

∣∣∣∣∣
qn

<∞

}
,

T r2 =

{
a = (ak) ∈ w :

∑
n

∣∣∣∣∣
n∑
k=0

cnk

∣∣∣∣∣ exists for each n ∈ N

}
,

T3(p) =
⋃
M>1

a = (ak) ∈ w : sup
N∈F

∑
k

∣∣∣∣∣∑
n∈N

cnkM
−1

∣∣∣∣∣
p
′
k

<∞,

 ,

T4(p) =

{
a = (ak) ∈ w : sup

N∈F
sup
k∈N

∣∣∣∣∣∑
n∈N

cnk

∣∣∣∣∣
pk

<∞

}
,
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where the matrix C(r) = (crnk) defined by

crnk =

{ (
k
n

)
(−r)k−n(1− r)−(k+1)an , (k ≥ n),

0 , (0 ≤ k < n).
(4.14)

Then, [tr0(p)]α = T r1 (p), [trc(p)]
α = T r1 (p) ∩ T r2 and

[tr(p)]α =

{
T3(p) , 1 < pk ≤ H <∞,∀k ∈ N,
T4(p) , 0 < pk ≤ 1,∀k ∈ N.(4.15)

Proof. We chose the sequence a = (ak) ∈ w. We can easily derive that with the
(2.3) that

anxn =

∞∑
k=n

(
k

n

)
(−r)k−n(1− r)−(k+1)anyk = (Cry)n, (n ∈ N).(4.16)

for all k, n ∈ N, where Cr = (crnk) defined by (4.14). It follows from (4.16) that
ax = (anxn) ∈ `1 whenever x ∈ tr0(p) if and only if Cy ∈ `1 whenever y ∈ c0(p).
This means that a = (an) ∈ [tr0(p)]α if and only if C ∈ (c0(p) : `1). Then, we derive
by (4.2) with qn = 1 for all n ∈ N that [tr0(p)]α = T r1 (p).

Using the (4.3) with qn = 1 for all n ∈ N and (4.16), the proof of the [trc(p)]
α =

T r1 (p) ∩ T2 can also be obtained in a similar way. Also, using the (4.9),(4.10) and
(4.16), the proof of the

[tr(p)]α =

{
T3(p) , 1 < pk ≤ H <∞,∀k ∈ N,
T4(p) , 0 < pk ≤ 1,∀k ∈ N,

can also be obtained in a similar way. �

Theorem 4.2. The matrix D(r) = (drnk) is defined by

drnk =

{ ∑n
k=0

(
n
k

)
(−r)n−k(1− r)−(n+1)ak , (0 ≤ k ≤ n)

0 , (k > n)
(4.17)

for all k, n ∈ N. Define the sets T r5 (p), T r6 , T r7 , T8(p), T9(p) and T10(p) as follows:

T r5 (p) =
⋃
M>1

{
a = (ak) ∈ w :

∑
k

∣∣∣drnkM−1/pk ∣∣∣ <∞
}
,

T r6 =
{
a = (ak) ∈ w : lim

n→∞
|drnk| exists for each k ∈ N

}
,

T r7 =

{
a = (ak) ∈ w : lim

n→∞

n∑
k=0

|drnk| exists

}
,

T8(p) =
⋃
M>1

{
a = (ak) ∈ w : sup

n∈N

∑
k

∣∣dnkM−1∣∣p′k <∞} ,
T9(p) = {a = (ak) ∈ w : dnk <∞} ,

T10(p) =

{
a = (ak) ∈ w : sup

n,k∈N
|dnk|pk <∞

}
.

Then, [tr0(p)]β = T r5 (p) ∩ T r6 , [trc(p)]
β = [tr0(p)]β ∩ T r7 and

[tr(p)]β =

{
T8(p) ∩ T9(p) , 1 < pk ≤ H <∞,∀k ∈ N,
T9(p) ∩ T10(p) , 0 < pk ≤ 1,∀k ∈ N.(4.18)
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Proof. We give the proof again only for the space tr0(p). Consider the equation

n∑
k=0

akxk =

n∑
k=0

 ∞∑
k=j

(
k

j

)
(−r)k−j(1− r)−(k+1)yk

 ak
=

n∑
k=0

 k∑
j=0

(
k

j

)
(−r)k−j(1− r)−(k+1)aj

 yk = (Dry)n,(4.19)

where Dr = (drnk) defined by (4.17). Thus, we decude from (4.19) that ax =
(akxk) ∈ cs whenever x = (xk) ∈ tr0(p) if and only if Dry ∈ c whenever y = (yk) ∈
c0(p). That is to say that a = (ak) ∈ [tr0(p)]β if and only if Dr ∈ (c0(p) : c).
Therefore, we derive from (4.4),(4.5) and (4.6) with qn = 1 for all n ∈ N that
[tr0(p)]β = T r5 (u, p) ∩ T r6 (u).

Using the (4.4),(4.5), (4.6) and (4.7) with qn = 1 for all n ∈ N and (4.19), the
proofs of the [trc(p)]

β = [tr0(p)]β ∩ T r7 can also be obtained in a similar way. Also,
using the (4.11),(4.12), (4.13) and (4.19), the proofs of the

[tr(p)]β =

{
T8(p) ∩ T9(p) , 1 < pk ≤ H <∞,∀k ∈ N,
T9(p) ∩ T10(p) , 0 < pk ≤ 1,∀k ∈ N.

can also be obtained in a similar way. �

Theorem 4.3. Define the set T r6 (u) by

T r11(u) =

a = (ak) ∈ w :


k∑
j=0

(
k

j

)
(−r)k−j(1− r)−(k+1)aj

 ∈ bs
 .

Then, [tr0(p)]γ = T r5 (p) ∩ T r6 , [trc(p)]
γ = [tr0(p)]γ ∩ T r11 and

[tr(p)]γ =

{
T8(p) , 1 < pk ≤ H <∞,∀k ∈ N,
T10(p) , 0 < pk ≤ 1,∀k ∈ N.

Proof. This is obtained in the similar way used in the proof of Theorem 4.2. �

5. Certain Matrix Mappings on the Sequence Spaces tr0(p), trc(p) and
tr(p)

In this section, we characterize some matrix mappings on the spaces tr0(p), trc(p)
and tr(p).

We known that, if tr0(p) ∼= c0(p), trc(p)
∼= c(p) and tr(p) ∼= `(p), we can say: The

equivalence “x ∈ tr0(p), trc(p) or tr(p) if and only if y ∈ c0(p), c(p) or `(p)” holds.
In what follows, for brevity, we write,

ãnk :=

n∑
k=0

(
n

k

)
(−r)n−k(1− r)−(n+1)ank

for all k, n ∈ N.

Theorem 5.1. Suppose that the entries of the infinite matrices A = (ank) and
E = (enk) are connected with the relation

enk := ãnk(5.1)

for all k, n ∈ N and µ be any given sequence space. Then,
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(i): A ∈ (tr0(p) : µ) if and only if {ank}k∈N ∈ {tr0(p)}β for all n ∈ N and
E ∈ (c0(p) : µ).

(ii): A ∈ (trc(p) : µ) if and only if {ank}k∈N ∈ {trc(0)}β for all n ∈ N and
E ∈ (c(p) : µ).

(iii): A ∈ (tr(p) : µ) if and only if {ank}k∈N ∈ {tr(p)}β for all n ∈ N and
E ∈ (`(p) : µ).

Proof. We prove only part of (i). Let µ be any given sequence space. Suppose
that (5.1) holds between A = (ank) and E = (enk), and take into account that the
spaces tr0(p) and c0(p) are linearly isomorphic.

Let A ∈ (tr0(p) : µ) and take any y = (yk) ∈ c0(p). Then ET (r) exists and
{ank}k∈N ∈ T r5 (p) ∩ T r6 which yields that {enk}k∈N ∈ c0(p) for each n ∈ N. Hence,
Ey exists and thus ∑

k

enkyk =
∑
k

ankxk

for all n ∈ N.
We have that Ey = Ax which leads us to the consequence E ∈ (c0(p) : µ).
Conversely, let {ank}k∈N ∈ {tr0(p)}β for each n ∈ N and E ∈ (c0(p) : µ) hold,

and take any x = (xk) ∈ tr0(p). Then, Ax exists. Therefore, we obtain from the
equality

∞∑
k=0

ankxk =

∞∑
k=0

 k∑
j=0

(
j

k

)
(−r)j−k(1− r)−(j+1)anj

 yk
for all n ∈ N, that Ey = Ax and this shows that A ∈ (tr0(p) : µ). This completes
the proof of part of (i). �

Theorem 5.2. Suppose that the elements of the infinite matrices A = (ank) and
B = (bnk) are connected with the relation

bnk :=

∞∑
j=n

(
j

n

)
(1− r)n+1r(j−n)ajk for all k, n ∈ N.(5.2)

Let µ be any given sequence space. Then,

(i): A ∈ (µ : tr0(p)) if and only if B ∈ (µ : c0(p)).
(ii): A ∈ (µ : trc(p)) if and only if B ∈ (µ : c(p)).
(iii): A ∈ (µ : tr(p)) if and only if B ∈ (µ : `(p)).

Proof. We prove only part of (i). Let z = (zk) ∈ µ and consider the following
equality.

m∑
k=0

bnkzk =

∞∑
j=n

(
j

n

)
(1− r)n+1rj−n

(
m∑
k=0

ajkzk

)
for all m,n ∈ N

which yields as m → ∞ that (Bz)n = {T (r)(Az)}n for all n ∈ N. Therefore, one
can observe from here that Az ∈ tr0(p) whenever z ∈ µ if and only if Bz ∈ c0(p)
whenever z ∈ µ. This completes the proof of part of (i). �

Of course, Theorems 5.1 and 5.2 have several consequences depending on the
choice of the sequence space µ. Whence by Theorem 5.1 and Theorem 5.2, the
necessary and sufficient conditions for (tr0(p) : µ), (µ : tr0(p)), (trc(p) : µ), (µ : trc(p))
and (tr(p) : µ), (µ : tr(p)) may be derived by replacing the entries of C and A
by those of the entries of E = C{T (r)}−1 and B = T (r)A, respectively; where
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the necessary and sufficient conditions on the matrices E and B are read from the
concerning results in the existing literature.

The necessary and sufficient conditions characterizing the matrix mappings be-
tween the sequence spaces of Maddox are determined by Grosse-Erdmann [7]. Let
N and K denote the finite subset of N, L and M also denote the natural numbers.
Prior to giving the theorems, let us suppose that (qn) is a non-decreasing bounded
sequence of positive numbers and consider the following conditions:

lim
n
|ank|qn = 0, for all k(5.3)

∀L,∃M 3 sup
n
L1/qn

∑
k

|ank|M−1/pk <∞,(5.4)

sup
n
|
∑
k

ank|qn <∞,(5.5)

lim
n
|
∑
k

ank|qn = 0,(5.6)

∀L, sup
n

sup
k∈K1

|ankL1/qn |pk <∞,(5.7)

∀L,∃M 3 sup
n

∑
k∈K2

|ankL1/qnM−1|p
′
k <∞,(5.8)

∀M, lim
n

(
∑
k

|ankM1/pk)qn = 0,(5.9)

∀M, sup
n

∑
k

|ank|M1/pk <∞,(5.10)

∀M, ∃(αk) 3 lim
n

(
∑
k

|ank − αk|M1/pk)qn = 0,(5.11)

∀M, sup
K

∑
n

|
∑
k∈K

ankM
1/pk |qn <∞.(5.12)

Lemma 5.1. Let A = (ank) be an infinite matrix. Then

(i): A = (ank) ∈ (c0(p) : `∞(q)) if and only if (4.8) holds.
(ii): A = (ank) ∈ (c(p) : `∞(q)) if and only if (4.8) and (5.5) hold.
(iii): A = (ank) ∈ (`(p) : `∞) if and only if (4.11) and (4.12) hold.
(iv): A = (ank) ∈ (c0(p) : c(q)) if and only if (4.4), (4.5) and (4.6) hold.
(v): A = (ank) ∈ (c(p) : c(q)) if and only if (4.4), (4.5), (4.6) and (4.7) hold.
(vi): A = (ank) ∈ (`(p) : c) if and only if (4.11), (4.12) and (4.13) hold.
(vii): A = (ank) ∈ (c0(p) : c0(q)) if and only if (5.3) and (5.4) hold.
(viii): A = (ank) ∈ (c(p) : c0(q)) if and only if (5.3), (5.4) and (5.6) hold.
(ix): A = (ank) ∈ (`(p) : c0(q)) if and only if (5.3), (5.7) and (5.8) hold.
(x): A = (ank) ∈ (`∞(p) : c0(q)) if and only if (5.9) holds.
(xi): A = (ank) ∈ (`∞(p) : c(q)) if and only if (5.10) and (5.11) hold.
(xii): A = (ank) ∈ (`∞(p) : `(q)) if and only if (5.12) holds.
(xiii): A = (ank) ∈ (c0(p) : `(q)) if and only if (4.2) holds.
(xiv): A = (ank) ∈ (c(p) : `(q)) if and only if (4.2) and (4.4) hold.

Corollary 5.1. Let A = (ank) be an infinite matrix. The following statements
hold:
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(i): A ∈ (tr0(p) : `∞(q)) if and only if {ank}k∈N ∈ {tr0(p)}β for all n ∈ N and
(4.8) holds with ãnk instead of ank with q = 1.

(ii): A ∈ (tr0(p) : c0(q)) if and only if {ank}k∈N ∈ {tr0(p)}β for all n ∈ N and
(5.3) and (5.4) hold with ãnk instead of ank with q = 1.

(iii): A ∈ (tr0(p) : c(q)) if and only if {ank}k∈N ∈ {tr0(p)}β for all n ∈ N and
(4.4), (4.5) and (4.6) hold with ãnk instead of ank with q = 1.

Corollary 5.2. Let A = (ank) be an infinite matrix. The following statements
hold:

(i): A ∈ (trc(p) : `∞(q)) if and only if {ank}k∈N ∈ {trc(p)}β for all n ∈ N and
(4.8) and (5.5) hold with ãnk instead of ank with q = 1.

(ii): A ∈ (trc(p) : c0(q)) if and only if {ank}k∈N ∈ {trc(p)}β for all n ∈ N and
(5.3), (5.4) and (5.6) hold with ãnk instead of ank with q = 1.

(iii): A ∈ (trc(p) : c(q)) if and only if {ank}k∈N ∈ {trc(p)}β for all n ∈ N and
(4.4), (4.5), (4.6) and (4.7) hold with ãnk instead of ank with q = 1.

Corollary 5.3. Let A = (ank) be an infinite matrix. The following statements
hold:

(i): A ∈ (tr(p) : `∞) if and only if {ank}k∈N ∈ {tr(p)}β for all n ∈ N and
(4.11) and (4.12) hold with ãnk instead of ank.

(ii): A ∈ (tr(p) : c0(q)) if and only if {ank}k∈N ∈ {tr(p)}β for all n ∈ N and
(5.3), (5.7) and (5.8) hold with ãnk instead of ank with q = 1.

(iii): A ∈ (tr(p) : c) if and only if {ank}k∈N ∈ {tr(p)}β for all n ∈ N and
(4.11), (4.12) and (4.13) hold with ãnk instead of ank.

Corollary 5.4. Let A = (ank) be an infinite matrix and bnk be defined by (5.2).
Then, following statements hold:

(i): A ∈ (`∞(q) : tr0(p)) if and only if (5.9) holds with bnk instead of ank with
q = 1.

(ii): A ∈ (c0(q) : tr0(p)) if and only if (5.3) and (5.4) hold with bnk instead of
ank with q = 1.

(iii): A ∈ (c(q) : tr0(p)) if and only if (5.3), (5.4) and (5.6) holds with bnk
instead of ank with q = 1.

Corollary 5.5. Let A = (ank) be an infinite matrix and bnk be defined by (5.2).
Then, following statements hold:

(i): A ∈ (`∞(q) : trc(p)) if and only if (5.10) and (5.11) hold with bnk instead
of ank with q = 1.

(ii): A ∈ (c0(q) : trc(p)) if and only if (4.4), (4.5) and (4.6) hold with bnk
instead of ank with q = 1.

(iii): A ∈ (c(q) : trc(p)) if and only if (4.4), (4.5), (4.6) and (4.7) hold with
bnk instead of ank with q = 1.

Corollary 5.6. Let A = (ank) be an infinite matrix and bnk be defined by (5.2).
Then, following statements hold:

(i): A ∈ (`∞(q) : tr(p)) if and only if (5.12) holds with bnk instead of ank
with q = 1.

(ii): A ∈ (c0(q) : tr(p)) if and only if (4.2) holds with bnk instead of ank with
q = 1.

(iii): A ∈ (c(q) : tr(p)) if and only if (4.2) and (4.4) hold with bnk instead of
ank with q = 1.
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