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Abstract: The continuous development of industry pushes people to search for new 

resources, and for this reason, the usage areas of Rare Earth Elements (REEs) are 

increasing day by day. Increasing concentrations of REEs, as a result of increased use, 

create pollution in the environment and harm living organisms. This pollution interacts 

with increasing temperature and causes more negative synergistic effects of the 

pollutant in the environment and in the living body. In this study, sublethal 

concentration values were determined by literature review and the concentration value 

was determined as 125 mg/L. In the present study tt was aimed to investigate some 

oxidative stress and antioxidant responses of Terbium, Lanthanum, Gadolinium and 

Praseodymium REEs in Dreissena polymorpha at 125 mg/L concentration at 3 

different temperatures (16, 18, 20 0C) with biomarkers. For this purpose, 24 and 96 

hour experimental trial design was created and 7 D. polymorpha were used in each trial 

group, and the application experiments were carried out with 3 replications. The 

samples at the end of the experimental phase were stored at -80 degrees Celsius until 

they were analyzed. In this study, Superoxide dismutase (SOD), catalase (CAT) and 

glutathione peroxidase (GPx) enzyme activities and glutathione (GSH) and 

Thiobarbituric acid (TBARS) level biomarker responses were determined by ELISA 

test microplate reader. CAYMAN brand SOD (Catalog No 706002), CAT Catalog No 

707002) and GPx (Catalog No 703102), GSH (Catalog No 703002) and TBARS 

(Catalog No 10009055) were used in the study. SPSS 24.0 package program one-way 

ANOVA (Duncan 0.05) was used for the evaluation of biochemical analyzes. 

According to the study data, statistically significant decreases were observed in SOD 

and CAT activities in the oxidative stress responses of REEs on D. Polymorpha with 

increasing temperature, while there was no significant change in GPx activities. It was 

determined that there were increases in TBARS levels and decreases in GSH levels. It 

is thought that the temperature factor, application concentration and application time 

are effective in the formation of these changes. It can be said that temperature change 

and pollutants cause oxidative stress in organisms and cause cell damage. 
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Özet: Sanayi ve endüstrinin sürekli gelişmesi insanları yeni kaynak arayışlarına 

itmekte ve bu amaçla kullanım alanları her geçen gün artan Nadir Toprak 

Elementlerinin (NTE) kullanım alanları hızla artmaktadır. Artan kullanım sonucu 

NTE'lerin artan konsantrasyonları çevrede kirlilik yaratmakta ve canlı organizmalara 

zarar vermektedir. Bu kirlilik artan sıcaklıkla etkileşime girerek kirleticinin çevrede ve 
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canlı vücudunda daha olumsuz sinerjik etkilere neden olmaktadır. Bu çalışmada, 

subletal konsantrasyon değerleri literatür taraması ile belirlenmiş ve konsantrasyon 

değeri 125 mg/L olarak tespit edilmiştir. Dreissena polymorpha'da Terbium, 

Lanthanum, Gadolinium ve Praseodymium NTE'lerin 125 mg/L konsantrasyonda 3 

farklı sıcaklıkta (16, 18, 20 0C) bazı oksidatif stres ve antioksidan tepkilerinin 

biyobelirteçler ile araştırılması amaçlanmıştır. Bu amaçla 24 ve 96 saatlik deneme 

deseni oluşturularak her deneme grubunda 7 adet D. polymorpha kullanılmış ve 

uygulama deneyleri 3 tekrarlı olarak gerçekleştirilmiştir. Deneme aşaması biten 

örnekler analiz edilene kadar -80 derecede muhafaza edilmiştir. Bu çalışmada 

Süperoksit dismutaz (SOD), katalaz (CAT) ve glutatyon peroksidaz (GPx) enzim 

aktiviteleri ile glutatyon (GSH) ve Tiyobarbitürik asit (TBARS) düzeyi biyobelirteç 

yanıtları ELISA testi mikroplaka okuyucu ile belirlenmiştir. Çalışmada CAYMAN 

marka SOD (Katalog No 706002), CAT Katalog No 707002) ve GPx (Katalog No 

703102), GSH (Katalog No 703002) ve TBARS (Katalog No 10009055) kullanılmıştır. 

Biyokimyasal analizlerin değerlendirilmesi için SPSS 24.0 paket programı tek yönlü 

ANOVA (Duncan 0.05) kullanılmıştır. Çalışma verilerine göre, D. Polymorpha 

üzerinde NTE'lerin oksidatif stres tepkilerinde artan sıcaklıkla birlikte SOD ve CAT 

aktivitelerinde istatistiksel olarak anlamlı düşüşler gözlenirken, GPx aktivitelerinde 

anlamlı bir değişiklik olmamıştır. TBARS seviyelerinde artışlar, GSH seviyelerinde ise 

düşüşler olduğu tespit edilmiştir. Bu değişikliklerin oluşumunda sıcaklık faktörü, 

uygulama konsantrasyonu ve uygulama süresinin etkili olduğu düşünülmektedir. 

Sıcaklık değişiminin ve kirleticinin organizmalarda oksidatif strese neden olduğu ve 

hücre hasarına yol açtığı söylenebilir. 

● Oksidatif stres 
● Nadir Toprak Elementleri 

  

 

1.INTRODUCTION 
Rare Earth Elements (REE) are considered as 

strategic elements because they are used in many 

different sectors in the production of advanced 

technological materials resistant to high 

temperature, abrasion and corrosion (Celep et al., 

2021). It consists of 15 elements of the 

lanthanide group with similar chemical 

properties, a total of 17 elements including 

scandium and yttrium by Krishnamurthy and 

Gupta (2016). REEs are widely used in the 

production of many advanced technological 

devices (such as mobile phones, computers, 

TVs), rechargeable batteries (NiMH batteries), 

modern medical devices (such as MRI 

equipment), catalytic converters, engines 

(aircraft, hybrid vehicles, wind turbines), glass 

and ceramics, oil refinery, solar panels 

(Binnemas et al., 2013; Krishnamurthy & Gupta 

2016; USGS, 2020). Terbium (Tb) is one of the 

rare earth elements, although it is still twice as 

much as silver in the earth's crust. It cannot be 

found in nature as a free element, but is found in 

many minerals. Gadolinium (Gd) is used in 

control rods for nuclear reactors and nuclear 

power plants. It is used to make garnet for 

microwave applications, and its compounds are 

used to make phosphorus for color TV tubes. 

Praseodymium (Pr) metal darkens slowly in air, 

forming a green oxide layer that flakes off like 

iron rust. It reacts slowly with most acids and  

 

 

cold water, more quickly with hot water (URL 1, 

2023). 

There are several release pathways through 

which anthropogenically derived REE can enter 

the aquatic environment or be transferred across 

environmental segments where they can have 

potentially adverse effects on organisms and 

ecosystems. Researchers investigating such 

potential adverse effects have reported a range of 

effects including changes in survival, 

reproduction and growth rates in freshwater 

zooplankton, echinoderms and fish, as well as 

changes in neural and cardiac activities in 

embryonic development (Blaise et al., 2018; Cui 

et al,. 2012; Dubé et al., 2019; Lürling & Tolman 

2010; Zhao et al., 2021). These effects can be 

attributed to cellular inhibition, homeostasis, Ca
2+

 

signaling and alteration of gene transcription 

involved in DNA repair processes. Chronic 

exposure to REE may adversely affect hepatic, 

respiratory and neural functions. They can affect 

a range of organisms starting from the most 

primitive living things in the environment to 

more evolved organisms such as humans. REE 

may be released into the environment as 

particulate matter or dust during processing and 

use. They enter the aquatic environment as a 

result of atmospheric transport and precipitation 

through urban and industrial wastewater flow, 

rivers, groundwater seepage (Olmaz et al., 1991;; 

Klaver et al., 2014; Morgan et al., 2016; Brito et 

al., 2018; Trifuoggi et al., 2018). 
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For many aquatic organisms, temperature is 

an important environmental variable that can 

affect physiological mechanisms at enzymatic 

and cellular levels and cause changes in 

metabolic rates (Cairns et al., 1975; Ward & 

Stanford 1982). Such temperature effects can 

alter an organism's ability to detoxify xenobiotics 

by altering pollutant uptake, elimination or 

biotransformation rates, ultimately affecting 

toxicokinetic and toxicodynamic processes and 

toxicity (Hooper et al., 2013). Water bodies can 

harbor an increasing number of agricultural and 

industrial chemicals that can disrupt free radical 

processes taken up by organisms. Uptake of these 

pollutants by hydrobionts can occur from water, 

sediments, suspended particulate matter, and 

food sources. Aquatic organisms also have 

special systems for the production and 

breakdown of free radicals. Current knowledge 

and recent developments in general toxicology 

and especially in the toxicology of hydrobionts 

provide a fertile field for aquatic toxicology 

studies (Lushchak 2011). 

Reactive oxygen species (ROS) are an 

indispensable part of aerobic life. Steady-state 

concentrations are a balance between production 

and elimination providing a certain steady-state 

level of ROS. The dynamic balance can be 

disrupted, leading to increased levels of ROS and 

damage to cellular components called "oxidative 

stress". Changes in temperature, oxygen levels, 

and salinity can cause stress in natural and 

artificial conditions by inducing an imbalance 

between ROS production and elimination (Serdar 

et al., 2024a). Catalase (CAT) is one of the 

antioxidant enzymes and has been implicated as 

an essential defense against the potential toxicity 

of superoxide anions such as the hydroxyl free 

radical. Therefore, it is thought to act as a cellular 

defense against the potentially harmful effects of 

the superoxide anion produced by a wide variety 

of biological reactions (David et al., 2008). 

Superoxide dismutase (SOD) is an important 

antioxidant enzyme that catalyzes the conversion 

of superoxide to oxygen and hydrogen peroxide 

in aerobic organisms (Kim et al., 2011). Among 

the antioxidant enzymes, superoxide dismutase 

(SOD), catalase (CAT) and glutathione-S-

transferase (GSH) have been widely used as 

effective biomarkers of environmental 

contamination in aquatic organisms and have 

been identified as effective protective barriers 

against ROS formation (Figueiredo et al., 2018). 

Depletion has an imbalance in the redox state and 

ability to cope with organic xenobiotics 

metabolized by glutathione S-transferase (GST) 

and glutathione peroxidases (GPx) (Aydın & 

Serdar, 2024). Lipid peroxidation, measured as 

thiobarbituric acid reactive substances (TBARS), 

has been frequently used as a marker of oxidative 

stress in response to different environmental 

pollutants in various studies (Roméo et al., 2019; 

Serdar, 2019; Choi & Oris 2000; Oakes & Van 

Der Kraak 2003; Almroth et al. 2005). 

In the examination of pollution in aquatic 

ecosystems, the longevity, limited mobility and 

non-selective filter feeding of freshwater mussels 

ensure their widespread and reliable use in 

toxicological studies with biomarkers (Serdar et 

al., 2021). D. polymorpha may cause the 

imbalance of the very sensitive food chain to 

deteriorate and the aquatic ecosystem may be 

adversely affected by them (Serdar 2021). In 

addition, the sticking behavior of mussels to hard 

surfaces also causes problems. In addition, 

bivalve mollusks are susceptible to heat stress 

and water quality due to their sedentary lifestyle, 

inability to regulate body temperature and 

bioaccumulation of pollutants (Serdar et al., 

2024b). Since D. polymorpha has a strong 

oxidative defense and a relatively high resistance 

to xenobiotics, it is widely used to conduct 

ecotoxicological experiments (Faria et al., 2009). 

The invasive behavior of the zebra mussel is seen 

as a disadvantage in its widespread use. This 

apparent disadvantage may represent one of the 

important reasons to ensure the conservation of 

native species by sampling D. polymorpha, 

which is both invasive and widely used in 

biomonitoring and toxic impact assessment 

studies (Binelli et al., 2015).This makes them 

excellent watchdogs for ecosystem health in 

freshwater ecosystems and also good model 

organisms for studying the interactive effects of 

temperature and pollution stress in the field 

(Negri et al., 2013). 

In this study, it is aimed to examine the 

oxidative stress responses of SOD, CAT, GPx 

activities and TBARS and GSH levels in living 

organisms as a result of the application of REEs 

in mixed form to D. Polymorpha individuals with 

increasing temperature. 
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2.MATERIAL METHOD 
2.1.Model Live Supply and Adaptation 

D. polymorpha individuals were collected 

from the Euphrates River (38º 48 '25 ”N, 38º 43' 

51” E). The organisms were quickly brought to 

the laboratory in plastic bottles. Before being 

used in the experiments, stock ponds were 

created by feeding microalgae in 500 L aerated 

reinforced tanks for at least 30 days in an 

environment similar to natural living conditions 

in a 12:12 hours light:dark cycle for adaptation to 

laboratory conditions. Healthy-appearing 

organisms at similar developmental stages were 

selected for the experimental study and were not 

fed during the experimental study. 

2.2.Experiment Design 

Model organisms were exposed to a 1:1:1:1 

mixture of REE (Tb, Gd, La, Pr) at 3 different 

temperatures (16, 18, 20 ̊C) and 125 mg/L 

concentrations for 24 and 96 hours. In particular, 

the global average surface temperature is 

expected to increase from 1.0 °C to 5.7 °C by the 

end of this century, depending on different CO2 

emission scenarios (IPCC 2022). In line with this 

information given in the literature, the study was 

designed by determining temperature values (16, 

18, 20 ̊C) close to the specified temperature 

averages. 

125 mg/L Mix REE at 16 ᵒC 

125 mg/L Mix REE at 18 ᵒC 

125 mg/L Mix REE at 20 ᵒC 

Experiments were carried out with 3 

replications. 

2.3.Biochemical response 

All application experiments were carried out 

with 3 repetitions and 7 D. polymorpha were 

used for each experimental group. Samples were 

taken from each group at 24 and 96 hours, and 

the soft tissues of the D. polymorpha individuals 

were collected by dissection, following the 

collection process they were stored at -80 degrees 

until they were analyzed. In this study, SOD, 

CAT and GPx enzyme activities and TBARS and 

GSH levels were determined with CAYMAN kits 

and ELISA test microplate reader to determine 

biochemical responses (Aydın & Serdar, 2023). 

CAYMAN brand SOD (Catalog No 706002), 

CAT Catalog No 707002) and GPx (Catalog No 

703102), GSH (Catalog No 703002) and TBARS 

(Catalog No 10009055) were used in the study. 

The kits used in the study were purchased from 

CAYMAN. 

2.4.Dissection Procedures and Preparation of 

Supernatants 

Test organism individuals were separated 

from their shells with the help of scalpel and 

forceps. An average of 0.5 g from each organism 

was carefully weighed, then placed into 1:2 PBS 

(phosphate-buffered saline) buffer and 

homogenized with DAIHAN brand ultra turrax 

homogenizer while keeping everything on ice. 

The homogenized samples were then centrifuged 

at 4°C, at 17000 rpm for 15 minutes. The 

resulting supernatants were kept at -80 °C until 

the measurement was performed. 

2.5.Statistical Analysis 

SPSS 24.0 package program one-way 

ANOVA (Duncan 0.05) was used for the 

evaluation of biochemical analyzes. 

 

3.RESULTS 
3.1.Determination of Biochemical Response 

TBARS Level 

Time-dependent TBARS levels at increasing 

temperature values at 125 mg/L concentrations of 

Mix REE are given in Figure 1. It was 

determined that the increases in TBARS levels in 

all exposure groups due to increasing 

temperatures compared to the control group were 

statistically significant (p<0.05).
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Figure 1: TBARS (µM tissue) levels of D. polymorpha exposed to Mix REE, different letters of the bar are 

statistically significant (p<0.05). 

 

3.2.GSH Level 

The time-dependent GSH levels of REE 

mixture at increasing temperatures at a 

concentration of 125 mg/L are given in Figure 2. 

While a statistically significant decrease was 

observed in GSH levels with 125 mg/L REE 

mixture at 16 and 20 
0
C compared to the control 

groups (p<0.05), no significant difference was 

observed at 18
0
C (p>0.05). 

 

 
Figure 2: GSH (µM tissue) levels of D. polymorpha exposed to REE mixture, different letters on the column are 

statistically significant (p<0.05). 

 

3.3.CAT Activity 

 CAT activities in D. polymorpha exposed to 

125 mg/L concentration of REE mixture and time 

dependent increase for tested temperatures are 

given in Figure 3. While there was a decrease in 

CAT activities at 16 
0
C in 24 hours, the decrease 

at the 96th hour was not statistically significant 

(p>0.05). While there was a decrease in CAT 

activities at 16 
0
C in 24 hours, the decrease at the 

96th hour was not statistically significant 

(p>0.05).
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Figure 3: CAT (nmol/min/ml) activities of D. polymorpha exposed to REE mixture, different letters on the 

column are statistically significant (p<0.05).

3.4.GPx Activity 

GPx activities in D. polymorpha exposed to 

125 mg/L of REE mixture at different 

temperatures over time are given in Figure 4. It 

was stated that the changes in all temperature 

groups after 24 and 96 hours compared to the 

control group were not statistically significant 

(p>0.05).

 

 
Figure 4: GPx (nmol/min/ml) activities of D. polymorpha exposed to REE mixture, different letters on the 

column are statistically significant (p<0.05). 

 

3.5.SOD Activity 

 Time dependent SOD activities at increasing 

temperature ratios at 125 mg/L of REE mixture 

are given in Figure 5. The reductions in SOD 

activities at 16, 18 and 20 ᵒC temperatures 

compared to the control group were statistically 

significant (p<0.05).
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Figure 5: SOD (U/mL) activities of D. polymorpha exposed to REE mixture, different letters on the 

column are statistically significant (p<0.05). 

 

4.DISCUSSION AND CONCLUSION 
Many researchers have contributed to the 

literature with their studies investigating the 

effects of various pollutants on the environment 

as a result of the pollutants’ interaction with 

increasing temperature. Vergauwen et al. 2013, 

they exposed zebrafish acclimated to 12, 18, 26 

(standard temperature) and 34 °C to 5 μM 

cadmium for 4 or 28 days at the respective 

adaptation temperature and reported that 

oxidative stress parameters increased and 

mortality rates increased depending on the 

temperature. Abdel-Tawwab et al., 2017 

examined the oxidative stress responses of Nile 

tilapia by co-exposing them to 0.0 or 0.5 mg 

Cd/L for 8 weeks at 20, 24, 28 and 32°C and they 

noted that SOD, CAT, GPx and GST activities 

were significantly induced due to Cd exposure 

and water temperatures reflecting the direct effect 

of Cd as a cell signaling molecule. 

Gholamhosseini et al., 2023 investigated the 

physiological response of the freshwater crayfish 

Astacus leptodactylus exposed to polyethylene 

microplastics at different temperatures (17 and 22 

ᵒC) and observed increases in SOD and CAT 

activities as a result. Zhang et al., 2023 

investigated the antioxidant system against the 

combined effects of ammonia and temperature in 

Procambarus clarkii in their study and stated that 

the interaction between ammonia and 

temperature was significant in SOD, GPX, but 

not significant in CAT. Figueiredo et al., 2022 

examined the single and combined 

ecotoxicological effects of ocean warming (15 

and 19 ̊C) on lanthanum exposure in Spisula 

solida, and stated that there were decreases in 

SOD, GPx and CAT activities as a result. It is 

thought that the changes in the enzyme activities 

that occur with REE mixture and increasing 

temperature in D. polymorpha are caused by the 

temperature values and concentration, and the 

results are thought to be in parallel with the 

studies in the literature. 

Oxidative stress develops due to excessive 

accumulation of reactive oxygen species (ROS). 

It controls the physiological and chemical events 

that perform roughly all biotic and abiotic 

stresses (Demidchik, 2015). The role of various 

REEs in the redox imbalance leading to oxidative 

stress has been demonstrated in a number of 

independent studies in both plant and animal 

models, and many REEs have been reported to 

cause oxidative stress (Tseng et al., 2012; Wang 

et al., 2012; Zhao et al., 2013). Verlecar et al., 

2007 they investigated the biochemical markers 

of oxidative stress in Perna viridis exposed to 

mercury and heat, and as a result, they stated that 

there were increases in TBARS levels and 

increases in SOD and CAT activities. Banni et 

al., 2004 examined the biomarker responses in 

Mytilus galloprovincialis exposed to nickel and 

heat stress in their study and stated that as a 

result, CAT, SOD and GST levels increased 

significantly compared to the control. Park et al., 
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2020 examined the antioxidant defense system 

responses of cadmium and high temperature 

combined stressors in zebrafish (Danio rerio) 

embryos and stated that there was an increase in 

SOD and CAT activities. Ihunwo et al., 2022 

investigated the oxidative stress responses of 

young Oreochromis niloticus to some heavy 

metals under the simulation of increasing 

temperature and stated that there were decreases 

in GSH level, SOD and GPx activity. Mlouka et 

al., 2019 examined the biological responses of M. 

galloprovincialis to copper with increasing 

temperature and stated that there were increases 

in CAT and SOD activity. Lannig et al., 2006 

investigated the co-effects of temperature and 

cadmium in Crassostrea virginica and 

determined decreases in GSH levels as a result. 

Additional stressors such as pollution may further 

sensitize mollusks to temperature-induced 

oxidative stress Falfushynska et al., 2014 

Therefore, increased temperature and combined 

exposure to REE mixture are thought to affect the 

antioxidant capacity of D. polymorpha and 

caused differences in oxidative stress responses. 

The increase in intracellular ROS due to HO 

overproduction was associated with a decrease in 

CAT expression (Venkatesan et al., 2006). Dubé 

et al., 2019 investigated the effect of 7 different 

REEs on the Rainbow trout and found that 

Yttrium (Y), Samarium (Sm), Erbium (Er) and 

Gadolinium (Gd) were the most toxic elements in 

fish, CAT and GST in Ce. They stated that its 

activity was down-regulated, and the most 

sensitive for the 7 elements examined were 

HSP72, GST, CYAP1A1, GADD45 and SOD for 

Y, Nd, Ce, Gd, Sm, La and Er, respectively. 

Hanana et al., 2021a five (cerium (Ce, 280 μg/L), 

lanthanum (La, 140 μg/L), neodymium (Nd, 120 

μg/L), praseodymium (Pr, 28 μg/L) in 

Oncorhynchus mykiss and samarium (Sm, 23 

μg/L) rare earth elements, investigated the 

toxicity of the mixture state and stated that there 

were increases in CAT activities at all 

concentrations of the mixture, SOD activity was 

not affected and GSH levels increased. Liu et al., 

2023 examined the effects of neodymium in 

zebrafish and stated that CAT activity decreased. 

Hanana et al., 2021b examined the biomarkers of 

rainbow trout exposed to dysprosium (Ds) and 

lutetium (Lu), and there were significant changes 

in Dy exposure, CAT and SOD activity 

compared to controls. They stated that exposure 

to Lu was lower than control, and best 

differentiated it from SOD, CAT and MT. 

Andrade et al., 2023 examined the effect of 

yttrium (Y) in Mytilus galloprovincialis and 

observed decreases in CAT activity. Figueiredo 

et al., 2018 study, examined the effects in 

Anguilla anguilla under lanthanum exposure and 

stated that there were decreases in CAT activities 

in the internal organs. Huang et al., 2010 study, 

examined the biomarker responses induced by 

cerium in Drosophila melanogaster and observed 

reductions in CAT activities. Similar to Huang et 

al.’s data, the reduction in CAT activities that 

occurred in this study, as a result of exposing D. 

polymorpha to the REE mixture (Tb, La, Gd, Pr), 

proves the effectiveness of determined REE 

mixture concentration and the applied 

temperature increments.  

It is well known that organisms can increase 

ROS production in the presence of a stressful 

situation, including the presence of pollutants. To 

avoid damage (including lipid peroxidation, 

protein carbonylation, and DNA damage) caused 

by ROS, organisms can increase the activity of 

antioxidant enzymes. Among these enzymes is 

SOD, which has the capacity to remove ROS (i.e. 

superoxide anion, hydroxyl radical and hydrogen 

peroxide) and protects organisms from cellular 

damage. However, this response normally occurs 

when oxidative stress is not too high or too long-

lasting (Freitas et al., 2020). In the study, it is 

thought that oxidative stress causes a decrease in 

the biomarker of SOD in the organism. Similarly, 

Pastorino et al., 2021 examined the effects of 

cerium (Ce), scandium (Sc), neodymium (Nd), 

lanthanum (La), yttrium (Y) and praseodymium 

(Pr) on Barbus balcanicus; They stated that SOD 

and GST were higher in gills. Liu et al., 2023 

examined the effects of neodymium in zebrafish 

and reported that there were decreases in SOD 

activity. Huang et al., 2010 study, examined the 

biomarker responses induced by cerium in D. 

melanogaster and stated that decreases in SOD 

activities occurred.  

GSTs are a superfamily of Phase II 

detoxification enzymes involved in the 

detoxification of ROS and toxic xenobiotics. 

These enzymes can catalyze the conjugation of 

the reduced form of glutathione (GSH) to 

xenobiotic substrates for detoxification purposes, 

and therefore, in the presence of contaminants, 

GST activity is induced to achieve efficient cell 

protection. D. polymorpha was exposed to REE 

mixture in this study and it is thought that the 
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change in the GSH level occurred due to the 

presence of the pollutant, its effective 

concentration and the effective temperature 

values tested. Similar to the results of the study, 

Liu et al., 2023 examined the effects of 

neodymium in zebrafish and reported that GSH-

Px values increased. Freitas et al., 2020 examined 

the effects of Neodymium (Nd) in M. 

galloprovincialis and reported that GSH levels 

decreased. Henriques et al., 2019 examined the 

effects of gadolinium on M. galloprovincialis and 

reported that there were decreases in GSH levels 

as a result. 

Malondialdehyde levels are a reliable 

indicator of lipid peroxidation (LPO). Lipid 

peroxidation initiates the damaging process by 

increasing the stiffness of cellular membranes 

(Nagarani et al., 2011). Liu et al., 2023 examined 

the effects of neodymium in zebrafish and 

reported that MDA content increased. Figueiredo 

et al., 2018 study, examined the effects in A. 

anguilla under lanthanum exposure and stated 

that there were significant differences in MDA 

levels in the internal organs. Huang et al., 2010 

study, examined the biomarker responses induced 

by cerium in D. melanogaster and stated that 

cerium increased the MDA content. Yang et al., 

2016 study, investigated the effect of yttrium in 

M. aeruginosa and observed increases in MDA 

levels. Serdar et al., 2019 study, examined the 

biochemical effects of Gadolinium exposure on 

D. polymorpha and observed increases in 

TBARS levels. In this study, it is thought that the 

tested pollutant concentration and temperature 

increments are effective in these increases in 

TBARS levels. 

Glutathione peroxidase plays an important 

role in antioxidant defense and the reduction of 

lipids, hydrogen peroxides and organic 

hydroperoxides to H2O and related alcohols 

(Arthur, 2000). Freitas et al., 2020 study, 

examined the toxicological effects of neodymium 

in M. galloprovincialis and stated that GPx did 

not change compared to the control. In this study, 

as in previous studies in the literature, it is 

observed that REEs alone or in a mixture cause 

oxidative stress in the organism by affecting the 

biological activities of the living organism. 

 

CONCLUSION 
It has been observed that there is a parallelism 

between the present study’s data and previous 

studies in the literature. It is an undeniable fact 

that temperature affects all living organisms at 

every stage of their lives. Considering that 

temperature is effective in all biological and 

physical events of the living things, it can be 

thought that the effects of the pollutant are also 

affected by the temperature increase. According 

to the results of the study, it is considered that the 

combined use of REEs may cause environmental 

and water pollution if they mix with the 

environment even in trace amounts. In this case, 

it can be thought that this pollution effect may 

culminate with the temperature increase. 

Therefore, it is suggested that all kinds of 

pollutants released directly or indirectly to the 

environment should be minimized. 
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