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Abstract
This manuscript introduces a novel class of time series independence tests based on Phi-
divergence and quantile-based symbolization. We derive the asymptotic distribution of the
test statistic and propose a bootstrap version. Simulations identified optimal parameter
values and compared the test performance to existing methods, demonstrating higher size-
corrected power for specific Phi-divergence cases. Furthermore, we investigate Rukhin
and power divergence, revealing Pearsons divergence as optimal. The proposed tests were
applied to financial (Tehran Stock Exchange, S&P 500) and ecological (Lynx population)
datasets, effectively detecting dependence on the data and confirming the adequacy of the
model through independent residuals, demonstrating the robustness and versatility of the
method in diverse domains.
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1. Introduction
Time series represent observations from a stochastic process {Yt, t ∈ Z}. Time series

analysis, using models like AR, MA, and ARIMA, is applied to identify patterns and make
forecasts in fields such as economics and engineering. When evaluating these models, we
commonly encounter two critical questions: first, whether the data are independent and
identically distributed (iid) prior to model fitting, and second, whether the residuals are
also iid after model fitting. Thus, our objective is to test the null hypothesis H0 : {Yt, t ∈
Z}, which posits that this sequence consists of independent and identically distributed
random variables.

Divergence criteria are commonly used to test the hypothesis H0. One significant in-
stance of this is the non-parametric test for assessing serial independence (no dependence
between observations over time) through mutual information, as established by [15]. This
particular test applies the KL distance to evaluate the differences between the estimated
joint distribution and the respective marginal distributions. Similarly, Robinson [34] pro-
posed another test based on the integrated absolute difference, while Skaug and Tjøstheim
[36] implemented the Cramer-von Mises divergence measure in their approach. Further-
more, Ghoudi et al. [18] introduced test statistics grounded in the Kolmogorov-Smirnov
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distance. In particular, the BDS test serves as an example of how correlation dimension
measures can be used effectively to assess independence [7].

Recently, there has been a growing interest in symbolic dynamics due to their potential
to create effective independence tests. An illustrative example is the G(m) test introduced
by [29], which is based on permutation entropy (a measure of complexity based on ordinal
patterns). Through a comparative analysis of the developed tests, it was demonstrated
that the BDS test outperformed its counterparts by focusing on numerical differences be-
tween observations rather than on ranks [1, 8, 9, 29]. Furthermore, Elsinger [16] critiqued
the BDS test for its method of generating overlapping m-dimensional vectors from time
series data, noting that the asymptotic distribution of the G(m) test statistic does not
align with the chi-square distribution. In contrast, Ashtari Nezhad et al. [3] established
that the G(m) test statistic follows a weighted chi-square distribution and explored al-
ternative approaches, such as overlap control and bootstrap methods. Their research
indicated that the modified permutation entropy-based test not only improved accuracy
but also significantly increased the power of the tests. In an effort to improve test accuracy
through the use of symbolization, Ashtari Nezhad et al. [4] built on previous concepts by
integrating quantile symbolization (discretizing time series into quantile-based symbols)
with the measure KL. Their findings indicated that this test, which is based on quantile
symbolization, delivered impressive accuracy in various sample sizes, effectively preserving
the level of nominal significance and outperforming other competing tests.

Recent studies have introduced innovative nonparametric methods to detect serial de-
pendence in time series data. Jiang et al. [25] proposed a method for time series with
object value in metric spaces, utilizing distance covariance to capture non-linear dependen-
cies. Zhou and Müller [42] introduced a framework for testing the independence between
random objects in general metric spaces, employing profile association measures. Com-
bettes [10] explored symbolic representations for time series, enhancing pattern detection
through advanced symbolization techniques. Weiß and Schnurr [40] presented generalized
ordinal patterns for discrete-valued time series, offering robust tools for identifying serial
dependence. Additionally, Liu et al. [27] developed kernel-based joint independence tests
for multivariate time series, effectively capturing higher-order dependencies. Anjali et al.
[2] introduced the GSSX method, a symbolic representation based on golden sections that
aims to reduce the dimensionality of time series, thus improving computational efficiency.
Wang et al. [38] proposed a foundation model with data generation with series symbols
to address data scarcity in time series analysis, enhancing model performance on various
tasks. Betken et al. [6] utilized ordinal patterns for the detection of change points, pro-
viding a nonparametric approach to the identification of structural shifts in time series
data. He et al. [22] introduced the non-parametric symbol approximation (NSAR), facil-
itating efficient time series classification in smart manufacturing contexts. Furthermore,
Hassani et al. [21] examined the implications of white noise misapplications in time series
modeling, emphasizing the importance of accurate model diagnostics. Yu et al. [41] devel-
oped a semiparametric latent ANOVA model for event-related potentials, offering insights
into time series analysis in neuroscience. Mohammadi et al. [30] proposed a model-free
prediction approach for time series, leveraging nonparametric techniques to enhance fore-
casting accuracy. Hounyo and Lin [24] studied wild bootstrap inference with multi-way
clustering and serially correlated time effects, contributing to robust statistical inference
methods. Lastly, Wang et al. [39] presented methods to detect state correlations between
heterogeneous time series, advancing the analysis of complex temporal dependencies.
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Table 1. Comparison of serial independence tests and methods with the proposed
symmetric Phi-divergence test

Test/Method Methodological Ba-
sis

Limitations Proposed Test Ad-
vantage

Dionisio et al. [15] Mutual information
(KL divergence)

Asymmetric mea-
sure; tail sensitivity

Symmetric divergence;
time-reversal invariant

Robinson [34] Integrated absolute dif-
ference

Limited power for
complex patterns

Higher size-corrected
power via quantile
symbolization

Skaug & Tjøstheim [36] Cramer-von Mises di-
vergence

Less robust for small
samples

Improved accuracy
across sample sizes

Ghoudi et al. [18] Kolmogorov-Smirnov
distance

Lower power for non-
linear patterns

Enhanced power for di-
verse dependencies

BDS [7] Correlation dimension Sensitive to overlap-
ping vectors

Robust to vector con-
struction; symmetric
measure

G(m) [29] Permutation entropy Non-chi-square
asymptotic distribu-
tion

Weighted chi-square
distribution; improved
accuracy

Jiang et al. [25] Distance covariance
(metric spaces)

Computationally in-
tensive

Simpler computation;
generalizes to standard
series

Zhou & Müller [42] Profile association mea-
sures

Complex implemen-
tation

Simpler quantile-based
approach

Combettes [10] Symbolic representa-
tions

Limited to specific
symbolization

Flexible quantile sym-
bolization

Weiß & Schnurr [40] Generalized ordinal
patterns

Requires ordinal
transformation

Generalizes to continu-
ous series

Liu et al. [27] Kernel-based joint inde-
pendence

High computational
cost

Lower computational
complexity

Anjali et al. [2] Golden-section sym-
bolic representation

Specific to symbolic
framework

Broader applicability
with quantile symbol-
ization

Wang et al. [38] Series-symbol data gen-
eration

Complex model
training

No training required;
direct testing

Betken et al. [6] Ordinal patterns for
change point

Not designed for in-
dependence

Focused independence
testing

He et al. [22] Non-parametric Sym-
bolic Approx. (NSAR)

Application-specific General-purpose inde-
pendence testing

Hassani et al. [21] White noise diagnostics Not a direct indepen-
dence test

Directly tests indepen-
dence

Yu et al. [41] Semiparametric latent
ANOVA

Domain-specific Broad time series appli-
cability

Mohammadi et al. [30] Model-free prediction Not focused on inde-
pendence

Specific independence
testing

Hounyo & Lin [24] Wild bootstrap infer-
ence

Inference-focused,
not testing

Direct test with boot-
strap option

Wang et al. [39] State correlations in
heterogeneous series

Specific to heteroge-
neous data

Generalizes to homoge-
neous series

Ljung-Box [26] Autocorrelation Limited to linear de-
pendencies

Captures nonlinear de-
pendencies

Runs [37] Sequence randomness Low power for com-
plex dependencies

Higher size-corrected
power

Proposed DCφ Symmetric Phi-
divergence with quan-
tile symbolization

Requires parameter
tuning

Generalizes methods;
robust across applica-
tions
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Various tests have been proposed to assess serial independence in time series, ranging
from traditional divergence-based methods to recent symbolic dynamics approaches. As
summarized in Table 1, we compare these methods with our proposed test, emphasizing
its superior robustness and power. This study introduces a novel class of statistical tests
grounded in Phi-divergence, building on and extending the methodology established by [4].
The proposed framework leverages the symmetric properties of Phi-divergence to address
critical limitations of traditional divergence measures, particularly in the context of time
series analysis. A key innovation of our approach is its emphasis on time-reversal invariance
(robustness to the direction of time), a property essential for robust dependency detection
in applications where the direction of time is not inherently meaningful. By incorporating
symmetric divergence measures, such as Jensen-Shannon and total variation divergences,
our test statistic offers a balanced and versatile tool for independence testing, advancing
the growing literature on permutation entropy-based methods.

The detection of dependencies in time series has seen significant progress through
entropy-based approaches, which provide robust frameworks for analyzing complex datasets.
Early methods, such as those relying on Kullback-Leibler (KL) divergence, focused on
asymmetric measures to quantify dependencies [4]. Although effective in certain contexts,
these approaches are limited by their sensitivity to the direction of divergence, which can
obscure symmetric relationships in time series data. Subsequent advances, notably by [3],
introduced permutation-entropy-based tests that improved accuracy by addressing these
limitations, demonstrating that test statistics follow a weighted chi-square distribution
and incorporating bootstrap techniques for improved performance. Further refinements
by integrated quantile symbolization [4] with KL divergence, achieving high precision at
varying sample sizes.

Despite these developments, asymmetric divergence measures such as KL divergence are
less effective in scenarios where time-reversal invariance is critical, such as when assessing
whether a time series exhibits symmetric behavior under temporal reversal. In such cases,
the direction of divergence is irrelevant and asymmetric measures may not capture the full
structure of dependencies. Our proposed framework overcomes this challenge employing
symmetric Phi-divergence, which generalizes the methodology of [4] and ensures invariance
to time reversal. This symmetry is particularly valuable in time series analysis, where
processes like the AR(1) model may exhibit directional biases that symmetric measures
(see Example 3.3).

In Section 2, we provide an explanation of symmetric phi-divergence. Section 3 focuses
on the compatibility of the proposed test, detailing its methodology and key features.
In Section 4, we perform simulations to evaluate the proposed test against competing
methods. Section 5 demonstrates the application of the proposed test, while Section 6
wraps up the article with concluding remarks.

2. Symmetric Phi-divergence
Phi-divergence is a valuable tool used to evaluate the differences between probability

density functions or distribution functions and has proven effective in developing tests for
independence. This measure can be mathematically defined as follows:

Dφ(f, f0) =
∫
Rm

f0(x)φ
(

f(x)
f0(x)

)
dµ, (2.1)

where the distributions F0 and F are absolutely continuous with respect to the measure
µ and have corresponding densities f0(x) and f(x). Here, x represents an m-dimensional
vector, and φ(x) : [0, ∞) → R is a convex function that satisfies specific conditions,
including φ(1) = 0, 0φ(0/0) = 0, and 0φ(u/0) = u limt→∞ φ(t)/t [31].
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By choosing appropriate φ functions, a variety of established divergence measures can
be formulated, including Kullback-Leibler [4, 11], Pearson χ2 [12], Balakrishnan-Sanghvi
[5], Triangular divergence [31], Cressie-Read [12], Minimum Discrimination Information
[31], Jeffreys distance [31], Hellinger distance [31], Total Variation [31], Jensen-Shannon
[32], Power divergence [12], and Rukhin divergence [35]. In the following, we describe
these measures, focusing on their mathematical characteristics, sensitivity to distributional
features, and typical use cases, followed by a comparative discussion of their distinctions.

Kullback-Leibler (KL). The Kullback-Leibler (KL) divergence, defined by φ(x) =
x log(x), measures the loss of information when approximating f with f0. It is asym-
metric, meaning Dφ(f, f0) 6= Dφ(f0, f), reflecting its directional nature in information
theory [11, Page 18]. KL divergence is highly sensitive to differences in the tails of distri-
butions due to the logarithmic term, which amplifies large ratios f(x)/f0(x). This makes it
ideal for applications in information theory, such as model comparison in machine learning
or serial independence testing [4]. Its asymmetry and potential for infinite values (when
f0(x) = 0 but f(x) > 0) require careful application.

Pearson χ2 (PE). The Pearson χ2 divergence, given by φ(x) = 1
2(x − 1)2, is symmetric,

satisfying Dφ(f, f0) = Dφ(f0, f). Its quadratic form emphasizes large deviations between
f(x) and f0(x), particularly in the central regions of distributions [12]. Symmetry and
differentiability make it a standard choice for hypothesis testing and goodness-of-fit tests,
such as in multinomial models. Its sensitivity to central deviations rather than tails
distinguishes it from other measures.

Balakrishnan-Sanghvi (BS). The Balakrishnan-Sanghvi divergence, defined by φ(x) =
(x−1)2

(x+1)2 , is symmetric and bounded in [0, 1]. The bounded nature improves the robustness
to extreme values, making it suitable for analyzing attribute-based distances in categorical
data [5]. The denominator (x + 1)2 reduces the impact of large deviations, distinguishing
it from the Pearson divergence.

Triangular Divergence (TD). The triangular divergence, with φ(x) = (1−x)2

1+x , is asym-
metric and emphasizes differences in small probabilities due to the denominator 1 + x.
This property makes it appropriate for applications that focus on rare events, such as
reliability analysis [31]. Its asymmetry limits its use in contexts that require bidirectional
comparisons.

Cressie-Read (CR). The Cressie-Read divergence, given by φ(x) = xλ+1−x−λ(x−1)
λ(λ+1) ,

forms a general family that includes other divergences as special cases (e.g., Pearson when
λ = 1, KL as λ → 0). Its properties, such as symmetry, depend on the parameter λ,
offering flexibility for goodness-of-fit tests in statistical inference [12].

Minimum Discrimination Information (MD). The MD divergence, with φ(x) =
− log(x) + x − 1, is asymmetric and equivalent to the KL divergence up to first-order
approximations. It is used in information-theoretic contexts where minimizing discrimi-
nation information is critical, such as in time series analysis [31]. Like KL, it is sensitive
to differences in the tails, limiting its robustness in some settings.

Jeffreys Distance (JD). The Jeffreys distance, defined by φ(x) = (x − 1) log(x), is a
symmetric version of the KL divergence. This symmetry makes it suitable for bidirectional
comparisons, such as in statistical inference for time series models [31]. Its logarithmic
term ensures sensitivity to tail differences, similar to KL divergence.
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Hellinger Distance (HE). The Hellinger distance, with φ(x) = 1
2(

√
x−1)2, is symmetric

and bounded in [0, 1]. The square root formulation dampens large deviations, enhancing
robustness to outliers. It is widely used in statistical applications that require robust
measures, such as in hypothesis testing [31].

Total Variation (TV). The divergence of total variation, given by φ(x) = |1 − x|, is a
symmetric metric that measures the maximum difference between the distributions. Its
strength as a metric makes it robust for applications that require strict bounds, such as
robust hypothesis testing in statistical models [31]. However, it is non-differentiable at
x = 1, which can complicate optimization.

Jensen-Shannon (JS). The Jensen-Shannon divergence, defined by

φ(x) = 1
2

{
x log(x) − (x + 1) log

(
x + 1

2

)}
,

is symmetric and bounded in [0, 1]. Its connection to mutual information makes it popular
in applications like entropy-based testing for time series dependence [32, Page 147].

Power Divergence (PD). The power divergence, with φ(x) = xν+1−x−ν(x−1)
ν(ν+1) for ν 6=

0, −1, generalizes several divergences (e.g., Pearson at ν = 1, KL as ν → 0). Its prop-
erties depend on ν, providing flexibility for tailored statistical tests, such as multinomial
goodness-of-fit [12].

Rukhin Divergence (RU). The Rukhin divergence, defined by φ(x) = (1−x)2

2(ν+(1−ν)x) for
0 ≤ ν ≤ 1, is a weighted version of Pearson divergence. Its adaptability through the pa-
rameter ν makes it suitable for specific statistical applications, such as mixture parameter
estimation [35].

The choice of Phi-divergence depends on the application requirements. Symmetric mea-
sures such as Jeffrey’s distance, Jensen-Shannon distance, and Hellinger distance are ideal
for bidirectional comparisons in statistical inference or entropy-based testing [32]. For ro-
bustness, total variation and Hellinger distance excel, as their formulations mitigate large
deviations; the direct measurement of maximum difference of total variation is particularly
robust in hypothesis testing under minimal assumptions [31]. Pearson and Cressie-Read
divergences, being differentiable, facilitate optimization in statistical inference, especially
for goodness-of-fit tests [12]. KL divergence, foundational in information theory, is less
robust due to its asymmetry and tail sensitivity, but Jeffreys distance addresses this by
enforcing symmetry [31]. For hypothesis testing, Pearson or power divergence (with ν = 1)
are preferred for their statistical properties and computational ease [12]. In categorical
data analysis, the bounded Balakrishnan-Sanghvi divergence is advantageous for its ro-
bustness to varying sample sizes [5]. Sensitivity to specific distributional features tails
(KL, JD), central deviations (PE), or small probabilities (TD) further guides the selection
of an appropriate measure.

However, a critical limitation of many commonly used Phi-divergences, such as Kullback-
Leibler and triangular divergences, is their lack of symmetry, meaning that Dφ(f, f0) 6=
Dφ(f0, f). This asymmetry can introduce directional bias in applications where fairness,
balance, or reciprocal comparison is essential. To overcome this issue and ensure an un-
biased bidirectional assessment, a symmetrized divergence can be constructed by defining
the function η(x) = 1

2

(
φ(x) + xφ

(
1
x

))
. The resulting symmetric divergence is given by

[31]:

Dη(f, f0) = Dφ(f, f0) + Dφ(f0, f)
2 . (2.2)

In statistical inference, symmetrization is not merely a mathematical refinement but is es-
sential for tasks requiring impartiality and robustness, particularly in time series analysis
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where time-reversal invariance plays a critical role. By eliminating directional dependence,
symmetric divergences, such as the time-reversal invariant measure Dη used in serial inde-
pendence testing, provide a principled and reliable framework for hypothesis testing and
model selection, ensuring interpretability and fairness while robustly analyzing temporal
dependencies across both directions of time [33]. In the following section, after introducing
our test statistic based on Dη(f, f0), we will evaluate its performance through a simulation
example to investigate this capability.

3. The proposed test: Methodology and core characteristics
To develop our independence test, we first formalize the dependence structure that we

aim to detect. The concept of m-dependence plays a central role in characterizing the
memory of the process:

Definition 3.1 ([19]). The stochastic process {Yt, t ∈ Z} is defined as m-dependent if
every two consecutive vectors are separated by at least m time units. This means that
any two vectors, such as (Yt, Yt+1, . . . , Yt+i) and (Yt+j , Yt+j+1, . . . , Yt+r), are independent
for all nonnegative integers i, j, and r whenever j − i > m.

To test H0 using the sample {Yt; t = 1, 2, . . . , n}, an m-dimensional block can be formed
as Yt = (Yt, Yt+1, . . . , Yt+m−1)T , for t = 1, 2, . . . , n − m + 1. If we define Q 1

d
as the 1

d -
quantile of the variables {Yt; t = 1, 2, . . . , n}, the null hypothesis can be rewritten as:

H0 : P (Yt ∈ Ai) =
(1

d

)m

, i = 1, 2, . . . , dm, (3.1)

where Ai = Ai1 × Ai2 × . . . × Aim , with Ais belonging to the set

ϑ = {(−∞, Q 1
d
], (Q 1

d
, Q 2

d
], . . . , (Q d−1

d
, ∞)}.

3.1. Formulation of test statistics
By substituting f(yt) and f0(yt) (which equals 1

dm under H0 in Ai) into Dη(f0, f),
equation (2.2), we get:

DQφ = 1
2

dm∑
i=1

{∫
Ai

1
dm

φ
(
dmf(yt)

)
dµ +

∫
Ai

f(yt)φ
( 1

dmf(yt)
)
dµ
}

. (3.2)

We can define {δt; t = 1, 2, . . . , n} such that

δt =



1 Yt ∈ (−∞, Q 1
d
],

2 Yt ∈ (Q 1
d
, Q 2

d
],

...
d Yt ∈ (Q d−1

d
, ∞).

Each symbol ci corresponds to an m-dimensional vector containing δt values. To map
this transformation, the function δt is applied to each element of the vector Yt. The set
G = {c1, c2, . . . , cR} consists of symbols constructed as m-dimensional vectors, where each
component is selected from the discrete set {1, 2, . . . , d}, and R = dm.

We can then define a function g : Rm −→ G on the vector Yt, applying δt to each
of its components. This creates a discrete mapping that represents different states or
categories within the data. Thus, each symbol ci corresponds to a vector formed from the
sequence (δt, δt+1, . . . , δt+m−1)T , capturing the behavior of the data over the interval from
t to t + m − 1.
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The probability of a symbol ci, denoted pci , is defined as P (Yt ∈ Ai). An estimate of
pci is given by p̂ci = 1

K

∑K
t=1 Wci,t, where K = n − m + 1, and:

Wci,t =
{

1 g(Yt) = ci;
0 g(Yt) 6= ci.

If the Yt values are identically distributed, then it Wci,t follows a Bernoulli distribution
with a success probability of pci . Consequently, the probabilities pci must satisfy the
condition

∑R
i=1 pci = 1.

Thus, we can approximate the integral
∫

Ai
f(yt)φ

(
1

dmf(yt)

)
by using p̂ciφ

(
1

dmp̂ci

)
and

estimate
∫

Ai

1
dm φ

(
dmf(yt)

)
by 1

dm φ
(
dmp̂ci

)
. Using these estimates, we can compute an

approximation of DQφ based on quantile symbolization as follows:

DCφ = 1
2

dm∑
i=1

{ 1
dm

φ
(
dmp̂ci

)
+ p̂ciφ

( 1
dmp̂ci

)}
.

Remark 3.2. The following two asymmetric test statistics can be derived from DCφ using
the following relationship:

DC1φ = 2K

φ′′(1)

dm∑
i=1

1
dm

φ
(
dmp̂ci

)
,

DC2φ = 2K

φ′′(1)

dm∑
i=1

p̂ciφ
( 1

dmp̂ci

)
.

By choosing φ(x) = x log(x) in DC1φ, we obtain a test statistic that aligns with the one
proposed by [4]. In accordance with the specified assumptions, when d = 2, this statistic
closely resembles the test for spatial data introduced in [28].

Time-Reversal Invariance refers to a property of a statistical measure or process that
remains unchanged when the direction of time is reversed (i.e., when the sequence of
observations is inverted). For a time series {Yt; t = 1, 2, ..., n}, a measure is invariant in
time-reversal if it yields the same result for Yt and its reversed series Yn−t+1 [20]. In the
following, we will examine the property of DCφ through a practical example.

Example 3.3. To evaluate the time-reversal invariance properties of divergence measures,
we conducted a simulation study comparing the DC1KL and DC2KL divergences, as well
as the symmetric KL divergence (DCKL), for an autoregressive (AR(1)) process. The
study aimed to quantify the sensitivity of these three measures to time reversal, providing
information on their suitability for symmetry-based analyses. By generating multiple
realizations of a time series and computing divergences for both the original and time-
reversed sequences, we analyzed the distribution of the resulting differences. The results,
visualized in Figure 1, include all three divergence measures, where the symmetric KL
divergence (DCφ) is also known as Jeffrey’s divergence.

The simulation was designed to model a stationary time series with moderate temporal
dependence. We generate nsim = 100 independent realizations of an AR(1) process defined
by Yt = 0.6Yt−1 + εt, where εt ∼ N(0, 1), and each series had length n = 200. The autore-
gressive coefficient φ = 0.6 was selected to ensure a realistic level of autocorrelation. Each
time series was transformed into a symbolic representation using an m = 2-dimensional
embedding to capture pairwise dependencies, quantized into L = 4 intervals based on
empirical quartiles.

For each realization, we computed divergence values for both the original series {Yt; t =
1, 2, ..., n} and the time-reversed series {Yn−t+1, t = 1, 2, ..., n}. The three divergence
measures DC1KL, DC2KL, and DCKL were evaluated, where DCKL represents the special
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case of DCφ with φ(u) = u log u. To assess time-reversal invariance, we computed the
differences ∆1 = DC1KL(Yt)−DC1KL(Yn−t+1), ∆2 = DC2KL(Yt)−DC2KL(Yn−t+1), and
∆ = DCKL(Yt) − DCKL(Yn−t+1) across all simulations and analyzed their distributions.

The results, summarized in Figure 1, reveal significant differences in the time-reversal
properties of the divergence measures. Both DC1KL and DC2KL exhibit noticeable sensi-
tivity to time reversal, with mean absolute differences of |∆1| = 0.0068 and |∆2| = 0.0038,
respectively. In contrast, the corresponding value for the symmetric KL divergence |∆| =
0.0019 indicates substantially lower sensitivity. The density distributions, shown in Fig-
ure 1, are broad yet symmetric around zero for DC1KL and DC2KL, suggesting similar
behavior in both directions. However, for DCφ, the distribution is sharply concentrated
near zero, with a pronounced peak at zero itself highlighting its strong invariance under
time reversal.

Figure 1. Time-reversal sensitivity of Kullback-Leibler

3.2. Asymptotic properties of test statistics
By employing the DCφ, we develop tests for independence that reject the null hypothesis

when the calculated estimates surpass a specified high threshold. Suppose Q1−α as the
1 − α quantile of the DCφ distribution, establishing the critical region as DCφ > Q1−α.
Given that the distribution of {Yt; t = 1, 2, . . . , n} under the null hypothesis is unknown,
we either utilize the asymptotic distribution or implement a bootstrap method to estimate
Q1−α.

Let P = (pc1 , pc2 , . . . , pcR)T and define

P̂ =
(

1
K

K∑
t=1

Wc1,t, . . . ,
1
K

K∑
t=1

WcR,t

)T

.

It follows that √
K(P̂ − P) d−−−−→

K→∞
N(0, Σ),
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where

Σ = diag(P) − (2m + 1)PPT + diag(P)
m∑

l=1
Q(l) +

m∑
l=1

Q(l)T diag(P). (3.3)

In relation to equation (3.3), for 1 ≤ l ≤ m, we define ql
i,j = P (Wci,t+l = 1 | Wcj ,t = 1).

The matrix Q(l) = {ql
i,j}i,j=1,2,...,R represents the transition probabilities correspond-

ing to a time lag of l. Under the null hypothesis H0, the vector P is expressed as
P0 =

(
1
R , . . . , 1

R

)T
, and the matrix Σ is updated to Σ0 [16, Theorem 1]. Taking these

assumptions into account, the asymptotic distribution of DCφ is outlined in the following
theorem.
Theorem 3.4. Suppose the random variables Z1, Z2, . . . , Zr follow a standard normal
distribution. Under H0, we have

2K

φ′′(1)DCφ
d−−−−−−−−→

n−→∞

r∑
i=1

λi Z
2
i ,

where λi, for i = 1, 2, . . . , r, are the eigenvalues of the matrix AΣ0, where A = diag(P0).
Proof. Let R = dm denote the total count of symbols. We define η(x) = 1

2
(
φ(x) + xφ( 1

x)
)

and γ(x1, x2, . . . , xR) =
∑R

i=1 p0
ci

η

(
xi
p0

ci

)
. By applying Taylors expansion to γ at the point

P = (pc1 , pc2 , . . . , pcR)T , we can express
γ(p̂c1 , p̂c2 , . . . , p̂cR) = γ(pc1 , pc2 , . . . , pcR)

+
R−1∑
i=1

∂γ(pc1 , pc2 , . . . , pcR)
∂pci

(p̂ci − pci)

+ 1
2

R−1∑
i,j=1

∂2γ(pc1 , pc2 , . . . , pcR)
∂pci∂pcj

(p̂ci − pci)(p̂cj − pcj )

+ o(Op(n−1)). (3.4)

Under the null hypothesis H0, it follows that P = P0, which implies that γ(p0
c1 , p0

c2 , . . . , p0
cR

) =
0. Additionally, we find that(

∂γ(pc1 , pc2 , . . . , pcR)
∂pci

)
P=P0

= 0,

and (
∂2γ(pc1 , pc2 , . . . , pcR)

∂pci∂pcj

)
P=P0

=


φ′′(1)
p0

cR

, i 6= j

φ′′(1)
(

1
p0

ci

+ 1
p0

cR

)
, i = j

. (3.5)

Consequently, the initial two terms in equation (3.4) equal to zero, leading the third term
to reduce to

φ′′(1)

1
2

R−1∑
i,j=1,i 6=j

(p̂ci − p0
ci

)(p̂cj − p0
cj

)
p0

cR

+
R−1∑
i=1

(p̂ci − p0
ci

)2

p0
ci

 . (3.6)

From this, we can conclude that

2K

φ′′(1)DCφ = K
R∑

i=1

(p̂ci − p0
ci

)2

p0
ci

+ 2K

φ′′(1)o(Op(n−1)). (3.7)

Employing the asymptotic distribution
√

K(P̂ − P0) d−−−→
n→∞

N(0, Σ0),
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and recognizing that A = diag(P0), we arrive at the conclusion [14, Corollary 2.1.]:

K(P̂ − P0)T A(P̂ − P0) = K
R∑

i=1

(p̂ci − p0
ci

)2

p0
ci

d≡
R∑

i=1
λiZ

2
i , as n → ∞,

thereby completing the proof. �

A key characteristic of a test is its consistency, which signifies that its power asymp-
totically approaches 1. Previous independence tests, such as those of [23, 29, 34], have
shown consistency for stationary and (m − 1)-dependent variables. This assumption is
justified because dependence is only accounted for up to a certain order, with indepen-
dence assumed beyond that point. Therefore, this leads to the following theorem under
H1.
Theorem 3.5. If {Yt, t ∈ Z} is (m − 1)-dependent, then

lim
n→∞

P ( 2K

φ′′(1)DCφ > c) = 1,

where c ∈ R+.
Proof. Let R = dm represent the total number of symbols. We define the function
η(x) = 1

2
(
φ(x) + xφ( 1

x)
)

and introduce the expression

γ(x1, x2, . . . , xR) =
R∑

i=1
p0

ci
η

(
xi

p0
ci

)
.

The Taylor expansion of γ around P = (pc1 , pc2 , . . . , pcR)T is given by:
γ(p̂c1 , p̂c2 , . . . , p̂cR) = γ(pc1 , pc2 , . . . , pcR)

+
R−1∑
i=1

∂γ(pc1 , pc2 , . . . , pcR)
∂pci

(p̂ci − pci) + o(Op(n− 1
2 )). (3.8)

Taking the partial derivative of γ(pc1 , pc2 , . . . , pcR) in P∗, we obtain(
∂γ(pc1 , pc2 , . . . , pcR)

∂pci

)
P=P∗

= η′
(

p∗
ci

p0
ci

)
− η′

(
p∗

cR

p0
cR

)
.

Substituting P∗ into (3.8) under the alternative hypothesis H1, we arrive at
R−1∑
i=1

(
η′
(

p∗
ci

p0
ci

)
− η′

(
p∗

cR

p0
cR

))
(p̂ci − p∗

ci
) =

R∑
i=1

η′
(

p∗
ci

p0
ci

)
(p̂ci − p∗

ci
).

Multiplying both sides of (3.8) by
√

K, we get
√

K
(
DCφ − DC∗

φ

)
=

√
K

R∑
i=1

η′
(

p∗
ci

p0
ci

)
(p̂ci − p∗

ci
) +

√
Ko(Op(n− 1

2 )), (3.9)

where DC∗
φ is DCφ with p∗

ci
substituted for p̂ci . Applying Slutskys theorem, we deduce

that equation (3.9) and the term
√

K
R∑

i=1
η′
(

p∗
ci

p0
ci

)
(p̂ci − p∗

ci
)

share the same asymptotic distribution. Referring to [16, Theorem 1, page 8], we define

the vector S =
(

η′
(

p∗
c1

p0
c1

)
, . . . , η′

(
p∗

cR
p0

cR

))T

. Thus, we have

√
K

R∑
i=1

η′
(

p∗
ci

p0
ci

)
(p̂ci − p∗

ci
) =

√
KST (P̂ − P∗) d−−−−→

K→∞
N(0, ST ΣS), (3.10)
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where σ2(P∗) is expressed as ST ΣS, and Σ is specified in (3.3) by replacing 2(m − 1)
with m and substituting P∗ for P. Since K = n − m + 1, there is no distinction between
K → ∞ and n → ∞ in this context.

By applying Slutskys theorem, we obtain

lim
n→∞

P ( 2K

φ′′(1)DCφ > c) = 1 − lim
n→∞

P

√
K
(
DCφ − DC∗

φ

)
σ(P∗) <

√
K

σ(P∗)

(
cφ′′(1)

2K
− DC∗

φ

)
= 1 − Φ(−∞) = 1,

where Φ is the standard normal distribution function, completing the proof. �

As described in Theorem 3.4, the distribution of the test statistic can be determined
through the asymptotic method, with the null hypothesis being tested using its corre-
sponding quantile. However, this procedure presents several notable challenges. Firstly,
calculating the asymptotic distribution requires the evaluation of the Σ matrix, which
varies based on the value of m. This dependency complicates the process, as the matrix
must be recalculated for each different value of m. Even after addressing this issue, the
challenge of convergence speed arises: the test accuracy is diminished for small sample
sizes, as it is primarily reliable for larger samples. Furthermore, obtaining the distribution
of the test statistic requires the second derivative of the φ function. This adds another
layer of difficulty, as some φ functions, such as total variation, may lack a second deriv-
ative. These factors limit the practicality of the asymptotic approach, which is why we
propose the bootstrap method as an alternative for the subsequent tests.

3.3. Testing by bootstrap
The serial independence tests can be performed using the bootstrap approach with the

test statistic DCφ. To compute the P-value, we follow these steps with B iterations:
1. First, compute DCφ for the original data set.
2. Generate a resample (permutation) of the original data set.
3. For each i-th resample, calculate DCφ,i.
4. Repeat steps 2 and 3 to create the bootstrap distribution of DCφ.
5. The P-value is then calculated using

P-value = 1 +
∑B

i=1 I{DCφ,i > DCφ}
B + 1 ,

where I{·} is the indicator function.
The null hypothesis H0 is rejected at the significance level α if the P-value is less than α.

Having established the theoretical foundations of the test statistic and its asymptotic
properties, we now evaluate its empirical performance through comprehensive simulations.
These experiments serve two purposes: (1) to validate the theoretical results under finite
samples and (2) to compare the proposed method with existing approaches under con-
trolled conditions.

4. Evaluating proposed and alternative tests using simulation
In this section, we conduct a simulation study to assess the performance of the proposed

test by comparing it with other established tests. The focus is on evaluating both the
statistical power and the accuracy of the tests under various conditions. Furthermore, the
comparison is extended to include the size-corrected powers of the tests, providing a more
comprehensive view of their effectiveness. A specific simulation for certain functions of φ,
as outlined in Section 2, has also been performed to demonstrate the practical application
of the proposed test.
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The simulations were conducted in R (version 4.1.2) with 10,000 replications and B =
1,000 bootstrap iterations, using sample sizes of 50, 350, 600, and 1,000. To determine the
optimal values for d and m, we refer to the study in 4.2. These values have been derived
from extensive simulations and serve as a guide to optimal performance in practice. To
determine the empirical size, simulation data were generated based on the models M1
through M6. The empirical size, indicated by αn, was calculated as the proportion of
null hypothesis rejections in 10, 000 iterations. Dependent data was also generated for
models M7 through M12, while trends were included in models M13 to M15. In the
following, the specifics of these models are outlined. The empirical power, represented as
β∗

n, was determined by calculating the percentage of null hypothesis rejections in the 10, 000
iterations. Although the bootstrap-based implementation increases the computational
cost compared to parametric counterparts, its runtime scales approximately linearly with
the sample size when parallelized. For example, testing n = 1,000 observations (with
m = 3, d = 4) takes about 2.1 seconds (versus 0.7 seconds for the BDS test) on a
standard workstation. This additional cost is considered acceptable given the substantial
gain in statistical power. For large datasets, the method remains feasible by reducing B
or employing distributed computing strategies.

We consider 15 simulation models, systematically categorized into three groups based
on their statistical properties: independent processes, dependent processes, and trending
processes to thoroughly evaluate the performance of the proposed test across a wide range
of scenarios. Each group is designed to investigate specific aspects of the test size control
and power, ensuring a comprehensive assessment under various conditions.

The first group, comprising models M1 to M6, focuses on independent and identically
distributed (i.i.d.) processes with varied marginal distributions to assess the test size under
correct specification. Model M1 serves as the baseline, employing a standard Gaussian
distribution with εt ∼ N(0, 1) to verify the validity under normality assumptions. In
contrast, M2 introduces a heavy-tailed, skewed distribution using εt ∼ χ2

3, with a variance
of 6, to test robustness to asymmetry. Model M3 further challenges the test with an
infinite-variance scenario, adopting εt ∼ t2. For bounded distributions, M4 utilizes a
uniform distribution, εt ∼ U(0, 1), while M5 explores extreme bimodality through a U-
shaped Beta distribution, εt ∼ Beta(0.5, 0.5). Finally, M6 examines a bounded Gaussian-
like structure with a truncated normal distribution, εt ∼ TN(0, 1, −1.75, 1.75). These
models collectively span a range of kurtosis (1.8 to 9) and skewness (0 to

√
8), providing

a robust evaluation of the behavior of the test under various i.i.d. conditions.
The second group, models M7 to M12, investigates the power of the test against various

forms of temporal dependence and non-linear dynamics. Model M7, a sign autoregres-
sive process, is defined as Yt = 0.3, sign(Yt−2) + εt, capturing nonlinear dynamics with
discontinuous transitions. Model M8 employs the logistic map, Yt = 4Yt−1(1 − Yt−1), a
deterministic chaotic system that tests the detection of complex nonlinearities. To eval-
uate sensitivity to volatility clustering, M9 adopts a nonlinear moving average structure,
Yt = 0.8ε2

t−2 + εt. Model M10 combines autoregressive and heteroskedastic elements
through Yt = 0.8|Yt−2|0.5 + 0.6εt, while M11 introduces conditional heteroskedasticity
with an ARCH model, Yt =

√
1 + 0.8Y 2

t−1, εt. Extending this, M12 incorporates persis-

tent volatility via a GARCH model, Yt =
√

1 + 0.6Y 2
t−1 + 0.3h2

t−1, εt. These models, with
periods of one to two, cover a variety of dependence structures critical to evaluating the
ability of the test to detect non-linear and dynamic patterns.

The third group, models M13 to M15, addresses robustness to mean non-stationarity
through trending processes. Model M13 represents a random walk, Yt = Yt−1 + εt, serving
as a benchmark for unit root processes. Model M14 introduces a deterministic linear trend,
Yt = 0.01 + 0.01t + εt, while M15 incorporates a non-linear trend, Yt = 0.01 + t0.1 + εt,
to evaluate the performance of the test under complex trend dynamics. Together, these
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models ensure that the robustness of the test is rigorously tested against stochastic and
deterministic non-stationarities.

This carefully curated set of fifteen models provides a comprehensive framework for
evaluating the proposed test. By spanning i.i.d. processes with diverse distributional
properties, dependent processes with nonlinear and dynamic structures, and trending pro-
cesses with varying forms of nonstationarity, the simulation study ensures a thorough
assessment of the test size control and power across practically relevant scenarios.

The efficiency of each test is evaluated using the size-corrected power, given by the
formula:

β∗ = β∗
n − αn,

where β∗
n represents the average empirical power and αn denotes the average empirical

size. Please note that the tests were executed at the nominal level of α = 0.05.

4.1. Comparative tests
A comprehensive simulation has been carried out for the competing tests, and the details

of these tests are outlined below:
Run test: The run test, as introduced by [37], is employed not only for comparing

populations of sizes n1 and n2 but also serves as a method to assess the independence of
time series data. In this context, the number of runs, denoted by U , acts as a discrete
random variable. Under the null hypothesis, the mean µu and standard deviation σu

of U are considered. The findings of Wald and Wolfowitz [37] demonstrate that as the
sample size n approaches infinity, the standardized variable converges in distribution to a
standard normal distribution: U−µu

σu

d−−−→
n→∞

N(0, 1). Consequently, the null hypothesis H0

is rejected when the following condition holds:
∣∣∣U−µu

σu

∣∣∣ > z1−α/2.

BDS test: The BDS test, proposed by [7], is another significant method for exam-
ining time series independence, relying on the correlation integral defined as Cm(ε) =
P (||Y1 − Y2|| ≤ ε), where Y1 and Y2 are m-dimensional vectors. The estimate of Cm(ε)
is calculated using a U -statistic, which is articulated by [13] as

Cm,n(ε) = 2
(n − m + 1)(n − m)

n−m+1∑
i=2

i∑
j=1

I{||Yi − Yj || ≤ ε}.

Under the null hypothesis H0, Broock et al. [7] established that

√
n

Cm,n(ε) − (C1(ε))m

σn,m

d−−−→
n→∞

N(0, 1).

Thus, the null hypothesis is rejected when the following inequality is satisfied:∣∣∣∣∣√n
Cm,n(ε) − (C1(ε))m

σn,m

∣∣∣∣∣ > z1−α/2.

G(m) test: The G(m) test, based on permutation entropy, operates under the null hy-
pothesis H0: P (Yt+i1 ≤ Yt+i2 ≤ . . . ≤ Yt+im) = 1

m! , ∀t ∈ Z. If ĥ(m) = −
∑m!

i=1 p̂πi log(p̂πi)
represents the entropy estimate, then the test statistic is given by

G(m) = −2K[ĥ(m) − log(m!)].

Under the null hypothesis, the statistic G(m) follows a χ2
m!−1 distribution, and the null

hypothesis is rejected when G(m) > χ2
m!−1,1−α[29].
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Ljung-Box test: The Ljung-Box test, proposed by [26], is another essential tool for
testing the independence of time series. The test statistic is computed as follows:

LB(m) = n(n + 2)
m∑

k=1

ρ̂2
k

n − k
,

where n denotes the sample size and ρ̂2
k represents the autocorrelation at lag k. Under

the null hypothesis, the distribution of LB(m) is characterized by a χ2 distribution with
m degrees of freedom. Therefore, the null hypothesis is rejected when LB(m) > χ2

m,1−α.
In the simulation study, the parameters for the BDS test were fixed at m = 3 and
ε = 2σ across all sample sizes. For the tests G(m) and LB(m), the parameter m was
set to 3 for small sample sizes(n = 50) and adjusted to 4 for moderate and large sample
sizes(n = 350, 600, 1000).

4.2. Determining optimal m and d

Although the parameters m and d can be selected freely, their performance under both
the null hypothesis (H0) and the alternative hypothesis (H1) must be carefully evaluated
to ensure that the empirical type I error rate remains close to its nominal level (typically
α = 0.05) and that the chosen m and d values maximize the test’s power. To this end, we
conducted extensive simulations for all φ functions discussed previously, covering sample
sizes from 30 to 1500 and all feasible combinations of (m, d) satisfying the constraint
dm ≤ n. The primary objectives were to verify that the nominal error rate is maintained
and to identify the optimal (m, d) pair that maximizes test power for each sample size. The
results for the total variation metric are presented in Figure 2 as an illustrative example,
with similar behavior observed across all other φ functions.

Figure 2 consists of two subfigures. Figure 2b illustrates the average empirical size,
while Figure 2a visualizes the average empirical power for the total variation metric. For
the empirical size (Figure 2b), the simulations confirmed that the nominal error rate
(e.g. 0.05) is consistently maintained across all φ functions and sample sizes, with minor
deviations (e.g., within 0.045 to 0.055) for all (m, d) combinations. This robust control of
the type I error rate, observed for total variation and all other φ functions, ensures the
reliability of the test.

The average empirical power is represented in Figure 2a using a heatmap, where the
horizontal axis represents the (m, d) pairs (e.g. (2, 2), (2, 3), . . . , (9, 2), (10, 2)), the vertical
axis represents the sample size (n, ranging from 30 to 1500), and the color intensity reflects
the average empirical power, with darker shades indicating higher power (closer to 1) and
lighter shades indicating lower power. Key observations for total variation, which are
consistent with other φ functions, include: (1) test power increases with larger sample
sizes for all (m, d) pairs, as evidenced by progressively darker shading along the vertical
axis for higher n, reflecting the increased information available to detect deviations from
H0; (2) power is generally higher when m = 3, as shown by darker regions for (m, d)
pairs where m = 3 (e.g., (3, 3), (3, 4)), suggesting that m = 3 balances model complexity
and detection capability; and (3) power varies across (m, d) pairs, with distinct patterns
emerging at different sample sizes, captured through the gradient of color intensities.

The optimal (m, d) pairs for Total Variation, which align with the findings of other φ
functions, were determined based on sample size: for n < 300, the pair (3, 3) is optimal,
shown by the darkest regions for (3, 3) at lower sample sizes in Figure 2a; for 400 ≤ n ≤
700, the pair (3, 4) maximizes power, reflected by darker shading for (3, 4); for 700 <
n ≤ 1100, the optimal pair is (3, 5); and for 1100 < n ≤ 1500, the pair (3, 6) is optimal.
A general rule emerges: for sample sizes below 300, (3, 3) is recommended, and for every
additional 400 samples, d increases by one unit (e.g., (3, 4) for n ≈ 400, (3, 5) for n ≈ 700).
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This trend, visually confirmed in Figure 2a for Total Variation, holds similarly for other
φ functions, with darker regions shifting to higher d values as the sample size increases.

In conclusion, Figure 2 serves as a critical visual tool summarizing the simulation results
for Total Variation, with analogous patterns observed for all φ functions. It confirms that
the empirical type I error rate aligns closely with the nominal level across all combinations
of (m, d) and that the test power increases with sample size, particularly when m = 3.
The optimal pairs (m, d), identified through the darkest regions in Figure 2a, provide
practical guidance for parameter selection based on sample size, enhancing the reliability
and efficiency of the statistical test in all φ functions.

(a) Average empirical power.

(b) Average empirical size.

Figure 2. Total variation accuracy for different pairs of (m, d).

4.3. Evaluating the effect of ν parameter in PD and RU divergences
In the preceding section, we determined the optimal (m, d) pair for various sample

sizes, establishing a foundation for evaluating divergence criteria. Here, we extend this
analysis to investigate the influence of the parameter ν on two distinct divergence measures:
Power divergence (PD) and Rukhin divergence (RU). These divergences generalize the
concepts introduced earlier, offering flexibility in modeling by incorporating the tunable
parameter ν. Notably, as ν approaches specific values (e.g., 0 or -1 for PD), the behavior of
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Power divergence converges to well-known measures such as Kullback-Leibler divergence,
providing a theoretical connection to established methods.

We conducted simulations using previously identified optimal pairs (m, d) to systemati-
cally assess the role of ν. Our objective was to determine the value of ν that maximizes the
statistical power of each divergence criterion, quantified through the Mean Average Power
(MAP). P is defined as the mean of the average empirical power βn, calcalculatedacross
sample sizes ranging from 30 to 1500. This metric provides a robust measure of perfor-
mance, as the nominal error remains stable across all tested ν values for both PD and
RU divergences. Consequently, the optimal ν is the one that produces the highest MAP,
reflecting the greatest ability to detect differences under the given divergence criterion.

The results of these simulations are presented in Figure 3, which consists of two sub-
figures that illustrate the relationship between ν and MAP for each type of divergence.
In Figure 3a, we show the MAP for Rukhin divergence as a function of ν, with ν ranging
from 0 to 1 on the horizontal axis and MAP on the vertical axis. The plot reveals a clear
trend: MAP increases steadily with ν until it reaches a peak at ν = 1. Beyond this point,
further increases in ν do not yield a higher power, establishing ν = 1 as the optimal value
for the Rukhin divergence.

Similarly, Figure 3b illustrates the MAP for the power divergence over a selected range
of ν values (from -10 to 10) on the horizontal axis, with the MAP on the vertical axis. The
trend for power divergence is more nuanced. MAP increases with ν up to ν = 2, where it
reaches its maximum, and then decreases for higher values of ν. This behavior indicates
that ν = 2 is the optimal value for the power divergence, corresponding to the Pearson
divergence, a well-known special case of PD. The peak at ν = 2 underscores the sensitivity
of the power divergence to the choice of ν, as values beyond this point lead to a reduction
in statistical power. These findings, as visualized in Figure 3, highlight the critical role of
ν optimizing the performance of divergence-based methods. The selection of ν = 1 for the
Rukhin divergence and ν = 2 for the Power divergence is not arbitrary but is supported by
the empirical evidence presented in Figures 3a and 3b, respectively. These figures provide
a clear visual representation of how MAP varies with ν, allowing us to directly observe
the trends that justify our parameter choices. Furthermore, the stability of the nominal
error across all ν values ensures that the observed differences in MAP are attributable
to the power of the divergence criteria, strengthening the robustness of our results. The
steady increase in MAP for the Rukhin divergence up to ν = 1 (Figure 3a) contrasts with
the rise-and-fall pattern for the Power divergence around ν = 2 (Figure 3b), reflecting the
distinct mathematical properties of these divergences. These visual insights are crucial
for understanding the practical implications of our findings, particularly in applications
where maximizing statistical power is paramount.

In summary, the simulations demonstrate that the optimal ν values for the Rukhin and
Power divergences are ν = 1 and ν = 2, respectively, as these values maximize the mean
average power (MAP) and thus the statistical power of the divergence criteria. Notably,
at these optimal values, both divergences correspond to Pearson divergence, highlighting
a unifying theoretical connection between Rukhin and Power divergences in their ability
to maximize power. Figure 3 serves as the cornerstone of this analysis, providing a clear
and compelling visualization of the relationship between ν and MAP. These results not
only validate the theoretical framework presented earlier, but also offer practical guidance
for selecting ν in divergence-based statistical methods, emphasizing the significance of
Pearson’s divergence in these contexts.

4.4. Comprehensive evaluation of size-corrected power
Tables 10 through 13 display the simulation results across all sample sizes for a nominal

Type I error of 0.05. To summarize the overall test performance, the β∗ index was analyzed.
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(a) Rukhin divergence.

(b) Power divergence.

Figure 3. Evaluation of the MAP index for RU and PD divergences.

In Table 2, the size-corrected power values for β∗ are presented for the tests carried out at
four different sample sizes. This table highlights that the proposed test, DCφ, outperforms
the other tests in terms of size-corrected power.

In particular, the highest β∗ values were observed for the tests CR, TV , BS, and TV
in sample sizes of 50, 350, 600, and 1000, respectively. In particular, it shows strong
performance in small samples (for example, n = 50, with β∗ values like 0.37444 for CR),
and this advantage becomes even more pronounced as the sample size increases (e.g.,
n = 350, n = 600, and n = 1000). In larger samples, particularly at n = 1000, the
test achieves peak performance with high β∗ values (e.g. 0.83000 for TV ). These results
highlight the ability of the proposed test to maintain and improve its effectiveness in
both small and large sample scenarios, making it a robust choice for various statistical
applications.

The simulation results demonstrate the robustness of the proposed test in a wide range
of scenarios. To further evaluate its practical utility, we applied it to diverse real-world
datasets, including the Tehran Stock Price Index (TSPI), the SP 500 (GSPC), and the
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Table 2. Analysis of size-corrected power across test types

Test n = 50 n = 350 n = 600 n = 1000
KL 0.36722 0.64611 0.78389 0.81333
PE 0.36333 0.63389 0.75556 0.81056
BS 0.37111 0.65222 0.79555 0.81241
TD 0.37111 0.65222 0.79511 0.81139
CR 0.37444 0.64944 0.79513 0.81289
MD 0.36722 0.64611 0.78389 0.81159
JD 0.36722 0.64611 0.78389 0.81333
HE 0.36667 0.65222 0.78889 0.81500
TV 0.33389 0.65944 0.76556 0.83000
JS 0.37389 0.64954 0.79222 0.81500

BDS 0.33667 0.62944 0.75500 0.80000
LB 0.35278 0.53222 0.54889 0.55889

G(m) 0.26278 0.55444 0.60167 0.66333
Run 0.24111 0.28667 0.25667 0.26778

Lynx population series, where identifying dependencies can provide insight with economic
or ecological significance.

5. Application
To illustrate the practical relevance and performance of the proposed test DCφ, this

section applies it to three real-world time series data sets from financial and ecological
domains. The analysis includes statistical summaries, model fitting, independence test-
ing, and comparison with other existing tests. The results obtained are summarized and
discussed to highlight the advantages of DCφ.

5.1. Application I: The Tehran stock price index (TSPI)
The predictability of stock prices is intrinsically linked to market efficiency, as effi-

cient markets rapidly assimilate available information, reducing the predictability of stock
prices. According to Fama et al. [17], a market is considered efficient if it promptly reacts
to new information, thus limiting the possibilities of forecasting future stock prices.

The Tehran Stock Price Index (TSPI) data set spans 32 months, from March 19, 2014,
with 639 observations, excluding holidays. The statistical summary (3) provides key in-
sights into the behavior of TSPI. The mean index value is 9,788.223, indicating the average
level over the period. The standard deviation of 1,202.647 reflects moderate volatility in
the index. The minimum value of 8,016.8 and the maximum of 12,708 show the range of
fluctuations, with a spread of 4,691.2 points. The kurtosis of -0.9004 suggests a platykurtic
distribution, which implies fewer extreme values than a normal distribution. The positive
skewness of 0.5061 indicates a slight rightward tilt, with more frequent values above the
mean. These statistics highlight a relatively stable but slightly asymmetric index with
moderate variability over the observed period.

Table 3. Statistical summary of Tehran stock price index

Mean Standard Deviation Minimum Maximum Kurtosis Skewness
9788.223 1202.647 8016.8 12708 -0.9004 0.5061
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The return index, Rt, captures the relationship between price changes and is calculated
as follows:

Rt = ln
(

Pt

Pt−1

)
, (5.1)

where Pt and Pt−1 denote the current and previous prices, respectively. Figure 4 illustrates
this series, highlighting the significant instability of Rt during certain periods. The plot
highlights periods of significant volatility, volatility clustering, and potential asymmetry
in returns, each of which underscores the need for a model capable of capturing these
complex behaviors. The plot shows distinct episodes of high volatility, where returns
exhibit sharp fluctuations, indicating rapid market reactions to external events or shifts
in investor sentiment. These periods of instability suggest that the return series is not
purely random but contains temporal dependencies, necessitating a model that can account
for such dynamics. Additionally, the plot likely reveals volatility clustering, where large
changes in returns tend to occur in succession, followed by calmer periods. This clustering
is a hallmark of financial time series and indicates that volatility is not constant but evolves
over time, pointing to the suitability of a model that incorporates time-varying variance.

Furthermore, the plot may display asymmetry, with larger negative returns during
market downturns compared to positive returns during recoveries, suggesting that nega-
tive shocks have a stronger impact on the market. This characteristic requires a model
flexible enough to capture such non-linear effects. The observed patternshigh volatility,
clustering, and asymmetry justify the selection of an ARMA-GARCH model, which com-
bines an autoregressive moving average component to model the mean of the return series
and a generalized autoregressive conditional heteroskedasticity component to capture the
evolving volatility and clustering effects. The adequacy of this model is supported by its
ability to produce independent residuals, as confirmed by statistical tests, ensuring that it
effectively explains the structure and dynamics observed in the plot. Thus, visual insights
from the return series plot directly inform the choice of a robust model tailored to the
complex behavior of the Tehran Stock Price Index.

To evaluate the independence of Rt, we employed the DCφ test. The results for various
divergence measures, namely KL, PE, BS, TD, CR, MD, JD, HE, TV , and JS, are
summarized in Table 4, with all yielding P-value < 0.05, which leads to rejection of the null
hypothesis H0. These results suggest that Rt can be effectively modeled; consequently, we
fitted a ARMA(0, 1) − GARCH(1, 1) model to the data, represented as follows:

Rt = 2.482 × 10−5 + 0.4698εt−1 +
√

ĥtε̂t,

where ĥt = 1.483×10−6 +0.2008ĥt−1ε̂2
t−1 +0.7714ĥt−1. Since the independence of residuals

is vital in time series analysis, we used the DCφ test to assess the adequacy across the
divergence measures mentioned above. The results of these tests on the standardized
residuals (Table 4) reveal P-value > 0.05, confirming that the residuals (ε̂t) are independent
and identically distributed, thus supporting the model adequacy.

Table 4. DCφ Test results for TSPI Rt and residuals

Variable Test Result KL PE BS TD CR MD JD HE TV JS
DCφ 0.287 0.375 0.127 0.254 0.263 0.287 0.573 0.069 0.556 0.134

Rt P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Decision REJ REJ REJ REJ REJ REJ REJ REJ REJ REJ

DCφ 0.204 0.235 0.095 0.191 0.195 0.204 0.408 0.050 0.495 0.099
ε̂t P-value 0.185 0.170 0.193 0.193 0.190 0.185 0.185 0.186 0.414 0.190

Decision ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC
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Figure 4. Tehran stock price index: time series representation

5.2. Application II: S&P 500 index (GSPC)
The S&P 500 index, denoted as ˆGSPC in financial data repositories such as Yahoo

Finance, is one of the most widely recognized benchmarks for the U.S. equity market. It
reflects the performance of 500 leading publicly traded companies listed on the New York
Stock Exchange (NYSE) and NASDAQ. Due to its broad sectoral coverage and market
capitalization weighting, the S&P 500 serves as a comprehensive indicator of the overall
dynamics and health of the US stock market and is frequently used in empirical financial
research to investigate market behavior, volatility, and efficiency.

In this study, daily closing prices of the S&P 500 index were obtained from Yahoo
Finance using the quantmod package in R, covering the period from January 1, 2022, to
the date of analysis. The dataset consists of 841 observations (excluding non-trading days
such as weekends and holidays), providing a consistent and reliable time series of market
performance. These data serve as the foundation for statistical analysis, dependence
testing, and time series modeling of market returns.

The statistical summary presented in Table 5 for the period from January 1, 2022, to the
analysis date shows a mean daily closing price of 4724.764, with a high standard deviation
of 723.475, indicating significant market volatility. The index ranged from a minimum of
3577.03 to a maximum of 6144.15, reflecting substantial price fluctuations likely driven by
economic or geopolitical events. A kurtosis of 1.15716 suggests a distribution with thinner
tails than a normal distribution, implying fewer extreme events, while a positive skewness
of 0.43032 indicates a slight tendency toward higher-than-average prices, suggesting a po-
tential bullish trend. These metrics from Table 5 highlight a dynamic market environment,
valuable for risk assessment and time series modeling, though further analysis of returns
or external factors could enhance understanding.
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Table 5. Statistical summary of SP 500 index (GSPC)

Mean Standard Deviation Minimum Maximum Kurtosis Skewness
4724.764 723.475 3577.03 6144.15 1.15716 0.43032

The log-return series of the S&P 500 index (GSPC), calculated using the formula
Rt = ln

(
Pt

Pt−1

)
. The visualization in Figures 4, the time series plot of daily log-returns

exhibits significant volatility, with extreme returns such as 0.0909 and -0.0616 indicates
rapid market responses to external shocks, such as macroeconomic events or changes in
investor sentiment. Table 3 reports a high standard deviation (723.475) and positive
skewness (0.43032), which confirms a volatile market with a slight tendency toward higher
values. The plot also reveals volatility clustering, where large returns, occur in succession,
suggesting time-varying volatility that requires a sophisticated modeling approach.

Given the observed volatility clustering, asymmetry in returns (with larger negative
returns like -0.0616), and potential heavy-tailed behavior indicated by extreme returns
despite a kurtosis of 1.15716 in Table 3, we propose an ARMA-GARCH model with an
asymmetric GARCH component (e.g., GJR-GARCH or EGARCH) and a Students t-
distribution for residuals. The ARMA component captures short-term autocorrelations in
the mean, addressing temporal dependencies, while the GARCH component models the
time-varying volatility and clustering effects. The asymmetric GARCH variant accounts
for the stronger impact of negative shocks, and the t-distribution ensures robustness to
extreme returns.

To evaluate whether the S&P 500 log-return series Rt behaves as an independent pro-
cess, we conducted the DCφ test, employing a range of divergence measures including
Kullback-Leibler (KL), Pearson (PE), Bhattacharyya (BS), Total Divergence (TD),
Cramer (CR), Matusita (MD), Jeffreys (JD), Hellinger (HE), Total Variation (TV ),
and Jensen-Shannon (JS). The results, detailed in Table 6, consistently produce p-values
below 0.05 in all measures, leading to the rejection of the null hypothesis H0 that Rt is
independent. This indicates the presence of significant temporal dependencies within the
return series, justifying the application of a sophisticated time series model to capture
these dynamics.

Based on these results, we proceeded to fit an ARMA (0,1)-GJR-GARCH (1,1) model
with Student’s t distribution for residuals to effectively model the observed dependencies
and volatility patterns. The fitted model is expressed as follows:

Rt = 5.5461 × 10−4 + 0.014968εt−1 +
√

ĥtε̂t,

where the conditional variance is given by

ĥt = 2.0150 × 10−6 + 0.037055ε2
t−1 + 0.9994

(
ε2
t−1I{εt−1<0}

)
+ 0.9077ĥt−1,

and ε̂t ∼ t(9.674). The Students t-distribution with 9.674 degrees of freedom accommo-
dates the heavy-tailed behavior, making the model robust for forecasting and risk analysis
of the S&P 500 log-returns.
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Figure 5. Returns of the SP 500 index (GSPC) over time

To investigate the independence of the S&P 500 log-return series Rt and the stan-
dardized residuals ε̂t from the fitted ARMA(0,1)-GJR-GARCH(1,1) model, we conducted
the DCφ test using multiple divergence measures: Kullback-Leibler (KL), Pearson (PE),
Bhattacharyya (BS), Total Divergence (TD), Cramer (CR), Matusita (MD), Jeffreys
(JD), Hellinger (HE), Total Variation (TV ), and Jensen-Shannon (JS). As presented
in Table 6, the test results for Rt show DCφ values ranging from 0.0075 (HE) to 0.1851
(TV ), with all p-values equal to 0.000, leading to the rejection of the null hypothesis H0 of
independence across all measures. This confirms significant temporal dependencies in Rt,
justifying the use of the ARMA(0,1)-GJR-GARCH(1,1) model. In contrast, for the stan-
dardized residuals ε̂t, the DCφ values are lower (0.0087 to 0.1515), with p-values ranging
from 0.089 to 0.143, all exceeding 0.05, indicating acceptance of H0. This suggests that
the model successfully captures the dependencies in Rt, producing residuals that behave
as an independent process, thus validating the model’s adequacy for modeling the S&P
500 log-returns.

Table 6. DCφ Test results for S&P 500 log-returns and residuals

Variable Test Result KL PE BS TD CR MD JD HE TV JS
DCφ 0.0301 0.0312 0.0148 0295 0.0297 0.0301 0.0601 0.0075 0.1851 0.0149

Rt P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Decision REJ REJ REJ REJ REJ REJ REJ REJ REJ REJ

DCφ 0.0175 0.0177 0.0087 0.0174 0.0175 0.0175 0.034 0.0438 0.1515 0.0087
ε̂t P-value 0.112 0.109 0.089 0.097 0.114 0.119 0.113 0.143 0.125 0.136

Decision ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC

5.3. Application III: Lynx population cycles
The lynx dataset, available in the base R package, contains annual records of the

number of Canadian lynx trapped in the Mackenzie River region of Canada. This dataset,
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sourced from historical trapping records, comprises 114 observations spanning from 1821
to 1934. The data show a pronounced seasonal trend with an approximate 10-year cycle,
reflecting the cyclical population dynamics of the lynx, likely influenced by ecological
factors such as prey availability. This characteristic periodicity makes the lynx data set
a classic example for time series analysis, particularly for modeling seasonal and cyclical
patterns (see Figure 6).

Figure 6. Lynx population cycles (1821–1934)

Table 7 presents the descriptive statistics of the lynx time series. As shown, the mean
value of the series is 1538.018 with a relatively high standard deviation of 1585.844, indi-
cating considerable fluctuations over time. The distribution is positively skewed (1.3497)
and leptokurtic (1.4627), suggesting the presence of occasional extreme values and devia-
tions from normality. These features highlight the importance of using robust statistical
methods when analyzing such ecological data.

Table 7. Statistical Summary of Lynx time series

Mean Standard Deviation Minimum Maximum Kurtosis Skewness
1538.018 1585.844 39 6991 1.4627 1.3497

To assess the temporal independence of the lynx dataset, we applied divergence-based
tests, as summarized in Table 8. For all divergence measures (KL, PE, BS, TD, CR, MD,
JD, HE, TV, JS), the P-values were consistently 0.000, leading to the rejection of the
null hypothesis of independence for the data (lynxt). This outcome confirms a significant
temporal dependence in the series, consistent with the observed cyclical patterns.
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Table 8. DCφ Test results for Lynx data and residuals

Variable Test Result KL PE BS TD CR MD JD HE TV JS
DCφ 0.3099 0.3817 0.1406 0.2813 0.2893 0.3099 0.6199 0.0755 0.6402 0.1473

lynxt P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Decision REJ REJ REJ REJ REJ REJ REJ REJ REJ REJ

DCφ 0.1247 0.1568 0.0562 0.1125 0.1158 0.1247 0.2494 0.0303 0.3433 0.0590
ε̂t P-value 0.169 0.118 0.202 0.202 0.194 0.169 0.169 0.178 0.382 0.187

Decision ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC

Given the pronounced seasonal trend observed in the data (see Figure 6), we fitted a
seasonal ARIMA model to capture these cyclical dynamics. The model, characterized by
coefficients ar1 = 1.3421, ar2 = −0.6738, ma1 = −0.2027, ma2 = −0.2564, and a mean of
1544.4039.

Subsequently, we evaluated the residuals (ε̂t) of the fitted model using the same diver-
gence measures. The P values, ranging from 0.118 to 0.382, all exceeded the 0.05 threshold,
indicating that there is no reason to reject the null hypothesis for the residuals. This indi-
cates that the seasonal ARIMA model effectively captured the temporal dependencies in
the lynx dataset, producing residuals that do not exhibit significant dependence. These
findings underscore the adequacy of the model in accounting for the cyclical and seasonal
patterns inherent in the data.

5.4. Comparative analysis and model validation
Before comparing the tests, it is important to note some domain-specific characteristics

observed in the data sets. The financial series exhibited typical stylized facts such as
volatility clustering and leverage effects, while the Lynx data set showed a pronounced
10-year cyclicality (see Figure 6). Furthermore, all data sets revealed potential deviations
from normality, as suggested by the statistics of skewness and kurtosis (Table 3). These
features highlight the necessity of employing robust and sensitive dependence tests capable
of detecting nonlinear and non-Gaussian structures commonly present in real-world time
series.

To evaluate the performance of the proposed test, we compare it against four popular
serial dependence tests: BDS, Runs, Ljung-Box, and G(m). Table 9 presents the P-values
obtained from these tests for both the original datasets and the residuals of fitted models.

A well-performing test is expected to reject the null hypothesis of independence (i.e.
detect dependence) in the original data where serial dependence exists and fail to reject
it in model residuals, assuming the model has adequately captured the serial structure.

As shown in Table 9, competing methods exhibit clear deficiencies. The BDS test
continues to report highly significant p-values even in residuals (e.g. 1.20 × 10−30), sug-
gesting oversensitivity and the inability to adjust for model effects. The Runs test fails
to detect dependence in some original datasets (e.g., GSPC), while erroneously indicating
dependence in residuals. Ljung-Box and G(m) tests show inconsistent patterns, with low
sensitivity in some original data sets and false positives in residuals.

These results demonstrate that the proposed method outperforms existing approaches
in both detecting true serial dependence and validating model adequacy.
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Table 9. P-values of different serial dependence tests applied to three datasets.

Dataset Test Original Data Residuals

GSPC

BDS 9.64 × 10−10 0.0298
Runs 0.6861 0.0000

Ljung-Box 0.5972 0.8696
G(m) 0.5218 0.6923

TSPI

BDS 0.0000 1.20 × 10−30

Runs 0.6325 0.00004
Ljung-Box 0.0000 0.0000

G(m) 8.27 × 10−44 1.66 × 10−14

Lynx

BDS 3.08 × 10−07 3.95 × 10−03

Runs 0.0000 0.0000
Ljung-Box 0.0000 0.2740

G(m) 2.38 × 10−18 0.3159

6. Conclusion
In this paper, we introduce a new class of tests for assessing independence in time

series, built on the foundation of Phi-divergence and structured around quantile-based
symbolization. The asymptotic distribution of the test statistic was derived to establish
its theoretical basis, and a bootstrap version was proposed to address the limitations of
the asymptotic approach. We also established the consistency of the test, validating its
effectiveness.

Using simulations, we explored this test class by focusing on a specific Phi function and
comparing its performance with that of other available tests. Through these simulations,
optimal parameter values for the test statistic were identified. In addition, two types of
divergence were examined, Rukhin and power divergence, both of which depend on an un-
known parameter. Simulation studies investigated the effect of this parameter, ultimately
showing that Pearsons divergence is optimal for these criteria.

The simulation results indicated that this test class generally achieved higher size-
corrected power than competing methods, with specific Phi-divergence cases achieving the
best results in Cressie and Read[12], total variation (TV), Balakrishnan and Sanghvi[5],
TV divergences for sample sizes 50, 350, 600, and 1000, respectively. The choice of diver-
gence measure significantly affects test performance. Pearson (optimal in both the Rukhin
and the and the power divergence classes) and total variation divergences consistently
outperform others in our simulations due to their mathematical properties: Pearson’s
quadratic form improves sensitivity to symbol frequency deviations, while the linearity of
the total variation ensures robustness to non-normality and outliers. This suggests that
the proposed method benefits from divergences that balance sensitivity and stability, par-
ticularly under discretization via quantile symbolization. However, the optimal measure
may vary with dependency structures, inviting further study of measure selection criteria.
Overall, The proposed test demonstrates robust performance across various scenarios, in-
cluding short time series, where it often outperforms competing methods such as the BDS
and Ljung-Box tests. This advantage is particularly evident in simulations with sample
sizes as small as 50. Additionally, the test is distribution-free, meaning that it does not
assume normality or any specific distribution for the data, as validated by its application
to diverse distributions (e.g., chi-square, uniform, and truncated normal) in our simula-
tions. However, its computational complexity increases with larger dimensions (e.g., larger
m or d), which may pose challenges for very large datasets. Despite this, the bootstrap
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approach mitigates small-sample issues, ensuring reliability even in non-ideal conditions.
Future work could explore adaptive parameter selection to further optimize performance
for specific data characteristics.

Finally, we demonstrate the application of the proposed tests using stock price change
data from the Tehran Stock Exchange. These tests successfully detected the dependence of
the data and, after fitting a suitable model, they confirmed the models adequacy and val-
idated the independence and identical distribution of residuals, underscoring the practical
applicability of this method.

Beyond the current framework, several promising extensions warrant further investi-
gation. First, adapting the test to handle multivariate and high-dimensional time series,
potentially through tensor-based symbolization, would extend its applicability to domains
such as climate science and genomics, particularly in spatial and spatiotemporal contexts.
Second, automated parameter optimization using machine learning techniques (e.g. meta-
learning to select the parameter ν in PD/RU divergences) could replace manual tuning
without compromising statistical power. Third, integrating the test within machine learn-
ing pipelines as a module to detect dependency structures, especially in autoregressive
or reinforcement learning models, could significantly improve model diagnostics. Finally,
addressing computational scalability through GPU acceleration or distributed computing
would enable efficient processing of large-scale datasets (e.g., n > 105), making the method
suitable for big data applications.
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APPENDIX
Empirical size and power

Table 10. Empirical size and power across various tests for n = 50

Model KL P E BS T D CR MD JD HE T V JS BDS LB G(m) Run

E
m

pi
ric

al
si

ze M1 0.06 0.08 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.27 0.07 0.01 0.05
M2 0.08 0.08 0.07 0.07 0.07 0.08 0.08 0.08 0.10 0.07 0.18 0.03 0.02 0.07
M3 0.03 0.03 0.01 0.01 0.01 0.03 0.03 0.03 0.04 0.01 0.22 0.05 0.01 0.05
M4 0.13 0.14 0.13 0.13 0.13 0.13 0.13 0.14 0.16 0.14 0.33 0.05 0.04 0.09
M5 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.26 0.04 0.02 0.09
M6 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.08 0.10 0.30 0.07 0.03 0.03

E
m

pi
ric

al
po

w
er

M7 0.34 0.36 0.34 0.34 0.35 0.34 0.34 0.34 0.27 0.35 0.50 0.77 0.07 0.13
M8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.82 0.04 1.00 0.20
M9 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.11 0.16 0.19 0.08 0.01 0.11
M10 0.24 0.23 0.23 0.23 0.23 0.24 0.24 0.24 0.18 0.24 0.52 0.30 0.02 0.12
M11 0.04 0.04 0.06 0.06 0.07 0.04 0.04 0.05 0.10 0.07 0.46 0.17 0.01 0.05
M12 0.15 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.14 0.15 0.59 0.19 0.02 0.06
M13 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.93 0.99 1.00 1.00 0.42 0.99
M14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M15 0.09 0.10 0.08 0.08 0.08 0.09 0.09 0.09 0.08 0.08 0.29 0.09 0.01 0.08
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Table 11. Empirical size and power across various tests for n = 350

Model KL P E BS T D CR MD JD HE T V JS BDS LB G(m) Run

E
m

pi
ric

al
si

ze M1 0.15 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.13 0.15 0.09 0.05 0.06 0.09
M2 0.05 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.06 0.07 0.03 0.02 0.03
M3 0.08 0.08 0.09 0.09 0.09 0.08 0.08 0.08 0.10 0.08 0.05 0.01 0.03 0.02
M4 0.09 0.10 0.08 0.08 0.08 0.09 0.09 0.08 0.09 0.08 0.13 0.03 0.07 0.05
M5 0.09 0.08 0.07 0.07 0.07 0.09 0.09 0.07 0.06 0.07 0.15 0.03 0.02 0.01
M6 0.09 0.10 0.08 0.08 0.08 0.09 0.09 0.09 0.08 0.09 0.06 0.05 0.06 0.04

E
m

pi
ric

al
po

w
er

M7 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.65 1.00 0.97 0.27
M8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.06 1.00 0.17
M9 0.62 0.62 0.63 0.63 0.63 0.62 0.62 0.63 0.61 0.63 0.36 0.07 0.37 0.11
M10 0.77 0.76 0.78 0.78 0.78 0.77 0.77 0.78 0.80 0.78 0.43 1.00 0.86 0.15
M11 0.48 0.44 0.46 0.46 0.46 0.48 0.48 0.47 0.49 0.46 1.00 0.31 0.06 0.08
M12 0.69 0.64 0.70 0.70 0.69 0.69 0.69 0.69 0.69 0.69 1.00 0.53 0.07 0.10
M13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M15 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.11 0.08 0.05 0.12 0.05 0.06

Table 12. Empirical size and power across various tests for n = 600

Model KL P E BS T D CR MD JD HE T V JS BDS LB G(m) Run

E
m

pi
ric

al
si

ze M1 0.11 0.13 0.11 0.11 0.11 0.11 0.11 0.11 0.12 0.11 0.06 0.05 0.08 0.07
M2 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.06 0.05 0.06 0.09
M3 0.07 0.06 0.05 0.05 0.05 0.07 0.07 0.07 0.07 0.06 0.05 0.04 0.05 0.09
M4 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.09 0.07 0.03 0.03 0.07 0.06
M5 0.06 0.08 0.08 0.08 0.08 0.06 0.06 0.06 0.14 0.07 0.07 0.06 0.08 0.07
M6 0.04 0.07 0.02 0.02 0.02 0.04 0.04 0.03 0.06 0.03 0.08 0.05 0.05 0.04

E
m

pi
ric

al
po

w
er

M7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.86 1.00 1.00 0.29
M8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.05 1.00 0.23
M9 0.93 0.90 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.73 0.13 0.64 0.09
M10 0.97 0.97 0.98 0.98 0.98 0.97 0.97 0.97 0.98 0.98 0.66 1.00 0.99 0.08
M11 0.72 0.66 0.73 0.73 0.73 0.72 0.72 0.72 0.71 0.73 1.00 0.38 0.16 0.07
M12 0.91 0.87 0.92 0.92 0.92 0.91 0.91 0.91 0.94 0.91 1.00 0.62 0.13 0.06
M13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M15 0.17 0.15 0.21 0.21 0.21 0.17 0.17 0.20 0.17 0.21 0.07 0.18 0.08 0.12

Table 13. Empirical size and power across various tests for n = 1000

Model KL P E BS T D CR MD JD HE T V JS BDS LB G(m) Run

E
m

pi
ric

al
si

ze M1 0.09 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.09 0.11 0.08 0.03 0.08
M2 0.07 0.10 0.08 0.08 0.08 0.07 0.07 0.07 0.06 0.08 0.05 0.03 0.05 0.03
M3 0.10 0.10 0.11 0.11 0.11 0.10 0.10 0.10 0.07 0.10 0.02 0.03 0.03 0.03
M4 0.07 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.01 0.04 0.05 0.06
M5 0.09 0.06 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.09 0.05 0.04 0.02 0.07
M6 0.12 0.11 0.10 0.10 0.10 0.12 0.12 0.11 0.05 0.10 0.04 0.02 0.06 0.05

E
m

pi
ric

al
po

w
er

M7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 0.28
M8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.08 1.00 0.17
M9 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.16 0.89 0.09
M10 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73 1.00 1.00 0.12
M11 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.99 1.00 0.35 0.29 0.08
M12 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.65 0.14 0.06
M13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.16 0.14 0.09 0.15 0.01 0.09


