
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume XX (x) (XXXX), 1 – 8

DOI : 10.15672/hujms.xx

Research Article

An expression for zeta values and a summation
formula via hyperbolic secant random variables

Taekyun Kim∗1, Dae San Kim2
1Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea

2Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea

Abstract
The aim of this paper is to derive a summation formula for the series

∑∞
k=0

(−1)k

(2k+1)2n+1 and
an expression for ζ(2n + 2) by using hyperbolic secant random variables. These identities
involve Euler numbers and are obtained by computing the moments of the random variable
and the moments of the sum of two independent such random variables.
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1. Introduction
The aim of this paper is twofold. Firstly, we assume that X is the hyperbolic secant

random variable. Then we derive a summation formula for
∑∞

k=0
(−1)k

(2k+1)2n+1 by computing
the moments E[X2n] in two different ways. Secondly, we assume that X and Y are
independent hyperbolic secant random variables. Then we obtain the expression for ζ(2n+
2) by computing the moments E[(X +Y )2n] in two different ways. We note here that both
of these identities involve the Euler numbers (see (1.1)).

In more detail, the outline of this paper is as follows. In Section 1, we remind the reader
of the facts that are needed throughout this paper. Among other things, we mention that
Kim derived the summation formula in (1.8) from the generating function of Euler numbers
and the Fourier series of sine function (see [4]). Section 2 contains the main results of this
paper. Let X be the hyperbolic secant random variable (see (2.1)). We determine the
moment generating function of X by using the beta function and the reflection formula of
the gamma function. This yields an expression for E[X2n] (see Theorem 2.1). In another
way, we compute the moment E[X2n] directly from definition. By equating these two,
we get the summation formula for

∑∞
k=0

(−1)k

(2k+1)2n+1 in Theorem 2.2, which is the same
as the one in (1.8). Assume that X and Y are independent hyperbolic secant random
variables. On the one hand, we derive the moment generating function of X + Y from
those of X and Y . Thereby we obtain an expression of E[(X + Y )2n]. On the other hand,
we compute E[(X + Y )2n] directly from the definition. Now, equating these two gives
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us an expression for ζ(2n + 2), (n = 0, 1, 2, . . . ), in Theorem 2.4. It is noteworthy that
these special values of the zeta function at even positive integers possess an alternative
representation involving Euler numbers, in contrast to their conventional expression in
terms of Bernoulli numbers (see [6, 13]). In Section 3, we apply the central limit theorem
to a sequence of independent hyperbolic secant random variables to show a lemma.

In recent years, much work has been done for probabilisitc extensions of many special
polynomials and numbers and their applications. Let Y be a random variable satisfying
suitable moment condition. Indeed, probabilisitc Stirling numbers associated with Y are
introduced in [1], probabilisitic Bernoulli and Euler polynomials associated with Y are
studied in [7] and probabilistic Bell polynomials associated with Y are investigated in [11].
Spivey’s type recurrence relation is shown for probabilistic r-Bell polynomials associated
with Y in [5], some dimorphic properties associated with Bernoulli random variables are
explored in [9] and some identities related to Poisson and uniform random variables are
considered in [8]. For further details on these, the reader may refer to [1, 5, 7–9, 11] and
the references therein. In the rest of this section, we recall the facts that are needed
throughout this paper.

The Euler numbers are defined by

sech x = 1
cosh x

= 2
ex + e−x

=
∞∑

n=0
En

tn

n!
, |x| <

π

2
. (1.1)

From (1.1), we get
E0 = 1, E2 = −1, E4 = 5, E6 = −61, E8 = 1385, E10 = −50521, · · · ; (1.2)
E2k+1 = 0, for k = 0, 1, 2, · · · , (see [4]).

Euler’s formula states that, for any real number x,
eix = cos x + i sin x, where i =

√
−1, (see [13]). (1.3)

From (1.3), we note that

cos x = 1
2
(
eix + e−ix), (see [13]). (1.4)

Thus, by (1.1) and (1.4), we get

sec x = 2
eix + e−ix

= sech(ix) =
∞∑

n=0

inEn

n!
xn (1.5)

=
∞∑

n=0

(−1)nE2n

(2n)!
x2n + i

∞∑
n=0

(−1)nE2n+1
(2n + 1)!

x2n+1

=
∞∑

n=0

(−1)nE2n

(2n)!
x2n.

From (1.5), we have

x sec x =
∞∑

n=0

(−1)nE2n

(2n)!
x2n+1,

(
|x| <

π

2
)
. (1.6)

From the Fourier series of f(x) = sin ax on [−π, π], Kim derived the following formula
πa

2
sec

(πa

2

)
=

∞∑
k=0

2
∞∑

n=1

(−1)n−1

(2n − 1)2k+1 a2k+1, (see [4]). (1.7)

Thus, by (1.6) and (1.7), we get
∞∑

k=0

(−1)k

(2k + 1)2n+1 = (−1)n 1
2

E2n

(2n)!

(π

2

)2n+1
= 1

2
|E2n|
(2n)!

(π

2

)2n+1
, (see [4]), (1.8)
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where n is a nonnegative integer. Here we note that Euler considered the numbers |E2n|
in connection with sums like (1.8). Later, in 1851, Raabe introduced the term “Euler
numbers," (see [12]).

For s ∈ C with Re(s) > 1, the Riemann zeta function is defined by

ζ(s) =
∞∑

n=1

1
ns

, (see [2, 13]). (1.9)

From (1.8) and (1.9), we note that

ζ(2n + 1,
1
4

) + 22n(1 − 22n+1)ζ(2n + 1) = (−1)n E2n

2(2n)!
π2n+122n, (1.10)

where ζ(s, a) is Hurwitz zeta function given by

ζ(s, a) =
∞∑

n=0

1
(n + a)s

, (Re(s) > 1, a ̸= 0, −1, −2, · · · ), (see [13]).

In addition, by (1.9), we get

ζ(2n) = (−1)n−1(2π)2n

4(2n − 1)!(1 − 4n)
E∗

2n−1, (see [4, 6]),

where E∗
n is defined by 2

et+1 =
∑∞

n=0 E∗
n

tn

n! .

Let X and Y be independent random variables such that f(x) and g(x) are their re-
spective probability density functions. We recall that the cumulative distribution function
of the random variable X is defined by

FX(a) = P{X ≤ a} =
∫ a

−∞
f(x)dx, (see [10]).

Assume that fX+Y (a) is the probability density function of X + Y . Then it is given by
the convolution of f(x) and g(x) as in the following:

fX+Y (a) =
∫ ∞

−∞
g(y)f(a − y)dy, (see [10]). (1.11)

By (1.5), we easily get
1
π

∫ ∞

−∞

1
cosh x

dx = 2
π

∫ ∞

0

1
cosh x

dx = 4
π

∫ ∞

0

1
ex(1 + e−2x)

dx (1.12)

= 4
π

∞∑
k=0

(−1)k
∫ ∞

0
e−(2k+1)xdx = 4

π

∞∑
k=0

(−1)k

2k + 1
= 4

π

π

4
= 1.

A random variable X is the hyperbolic secant random variable if the probability density
function is given by

f(x) = 1
π

sech x = 1
π

1
cosh x

, (x ∈ (−∞, ∞)), (see [3]). (1.13)

For α > 0, the gamma function is defined by

Γ(α) =
∫ ∞

0
e−ttα−1dt, (see [13]). (1.14)

For α, β > 0, the Beta function is defined by

B(α, β) =
∫ 1

0
tα−1(1 − t)β−1dt, (see [13]). (1.15)

Thus, by (1.15), we get

B(α, β) = Γ(α)Γ(β)
Γ(α + β)

=
∫ ∞

0

tβ−1

(1 + t)α+β
dt, (see [13]). (1.16)
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For |t| < 1, the Euler’s reflection formula of the gamma function is given by

Γ(t)Γ(1 − t) = π

sin πt
, (see [13]). (1.17)

2. An expression for zeta values and a summation formula via hyperbolic
secant random variables

In this section, we assume that X is the hyperbolic secant random variable. Then the
probability density function of X is given by

f(x) = 1
π

sech x = 1
π

1
cosh x

, (x ∈ (−∞, ∞)). (2.1)

First, we consider the moment generating function of X.
For |t| < 1, we have

E[eXt] =
∫ ∞

−∞
extf(x)dx = 1

π

∫ ∞

−∞
ext 1

cosh x
dx (2.2)

= 2
π

∫ ∞

−∞
ext 1

ex + e−x
dx = 2

π

∫ ∞

−∞
ext e−x

e2x + 1
e2xdx.

From (2.2), by making change of the variable y = e2x, and using (1.16) and (1.17), we get

E[eXt] = 1
π

∫ ∞

−∞
ext e−x

e2x + 1
2e2xdx = 1

π

∫ ∞

0

y
t
2 + 1

2 −1

1 + y
dy (2.3)

= 1
π

B

(
t

2
+ 1

2
, 1 − t

2
− 1

2

)
= 1

π

Γ( t
2 + 1

2)Γ(1 − t
2 − 1

2)
Γ(1)

= 1
π

π

sin( t
2 + 1

2)π
= 1

cos πt
2

.

From (1.5) and (2.3), we note that
∞∑

n=0
E[Xn] t

n

n!
= E[eXt] = 1

cos πt
2

= 1
cosh πit

2
(2.4)

=
∞∑

n=0
E2n

(π

2

)2n
(−1)n t2n

(2n)!
, (|t| < 1).

Therefore, by (2.4), we obtain the following theorem.

Theorem 2.1. Let X be the hyperbolic secant random variable whose probability density
function is given by f(x) = 1

π
1

cosh x . Then, for n ≥ 0, we have

E[X2n] = E2n

(π

2

)2n
(−1)n, (2.5)

and
E[X2n+1] = 0.

We recall that the variance of X is given by

σ2 = E[
(
X − E[X]

)2] = E[X2] − (E[X])2. (2.6)

From (2.5) and (2.6), we note that

σ2 = E[X2] − (E[X])2 =
(π

2

)2
E2(−1) =

(π

2

)2
, µ = E[X] = 0. (2.7)
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On the other hand, by (1.13), we get

E[X2n] =
∫ ∞

−∞
x2nf(x)dx = 1

π

∫ ∞

−∞
x2n 1

cosh x
dx (2.8)

= 4
π

∫ ∞

0
x2n 1

ex + e−x
dx = 4

π

∫ ∞

0
x2n e−x

1 + e−2x
dx

= 4
π

∞∑
k=0

(−1)k
∫ ∞

0
x2n+1e−(2k+1)x dx

x

= 4
π

∞∑
k=0

(−1)k

(2k + 1)2n+1 (2n)!.

From (2.5) and (2.8), we have the following theorem.

Theorem 2.2. For n ≥ 0, we have
∞∑

k=0

(−1)k

(2k + 1)2n+1 = (−1)n

(2n)!
1
2

(π

2

)2n+1
E2n.

In particular, for n = 1, we have the following result.

Corollary 2.3.
∞∑

k=0

(−1)k

(2k + 1)3 = −1
4

(π

2

)3
E2 = 1

32
π3.

Assume that X and Y are independent hyperbolic secant random variables.
Then, by (1.11), we get

fX+Y (a) =
∫ ∞

−∞

1
π

1
cosh(y)

1
π

1
cosh(a − y)

dy (2.9)

= 4
π2

∫ ∞

−∞

1
ey + e−y

1
ea−y + ey−a

dy

= 4
π2

∫ ∞

−∞

ey

e2y + 1
e−a+y

e−2a+2y + 1
dy.

From (2.9), by making change of the variable ey = x, we have

fX+Y (a) = 4
π2

∫ ∞

0

x

1 + x2
e−a

1 + x2e−2a
dx (2.10)

= 4
π2(ea − e−a)

∫ ∞

0

(
x

1 + x2 − xe−2a

1 + x2e−2a

)
dx

= 4
π2(ea − e−a)

[ log(1 + x2) − log(1 + e−2ax2)
2

]∞

0

= 4
π2(ea − e−a)

[1
2

log
( 1 + x2

1 + x2e−2a

)]∞

0

= 4
π2(ea − e−a)

1
2

log(e2a) = 4a

π2(ea − e−a)
,

where a ∈ (−∞, ∞).
Thus, the probability density function of Z = X + Y is given by

fZ(a) = fX+Y (a) = 4a

π2(ea − e−a)
, (a ∈ (−∞, ∞)). (2.11)

Since X and Y are independent random variables,

E[et(X+Y )] = E[etX ]E[etY ] = 1
cos π

2 t

1
cos π

2 t
. (2.12)
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Thus, by (1.5) and (2.12), we get

E[et(X+Y )] =
∞∑

m=0
E2m

(π

2

)2m
(−1)m t2m

(2m)!

∞∑
j=0

E2j

(π

2

)2j
(−1)j t2j

(2j)!
(2.13)

=
∞∑

n=0

(
(−1)n

(π

2

)2n n∑
l=0

(
2n

2l

)
E2lE2n−2l

)
t2n

(2n)!
,

From (2.11), we note that

E[(X + Y )2n] = E[Z2n] (2.14)

=
∫ ∞

−∞
x2nfZ(x)dx =

∫ ∞

−∞
x2n 4x

π2
1

ex − e−x
dx

= 8
π2

∫ ∞

0

x2n+1

ex − e−x
dx = 8

π2

∫ ∞

0

e−xx2n+1

1 − e−2x
dx

= 8
π2

∞∑
k=0

∫ ∞

0
x2n+2e−(2k+1)x dx

x

= 8
π2 (2n + 1)!

∞∑
k=0

1
(2k + 1)2n+2 .

By (2.13) and (2.14), we get

∞∑
k=0

1
(2k + 1)2n+2 = (−1)n

(π

2

)2n π2

8
1

(2n + 1)!

n∑
l=0

(
2n

2l

)
E2lE2n−2l (2.15)

= (−1)n
(π

2

)2n+2 1
2

1
(2n + 1)!

n∑
l=0

(
2n

2l

)
E2lE2n−2l.

By (1.9), we have

ζ(2n + 2) =
∞∑

k=0

1
(2k + 1)2n+2 +

∞∑
k=1

1
(2k)2n+2 (2.16)

=
∞∑

k=0

1
(2k + 1)2n+2 + 1

22n+2 ζ(2n + 2).

Thus, (2.16), we get

∞∑
k=0

1
(2k + 1)2n+2 =

(
1 − 1

22n+2

)
ζ(2n + 2). (2.17)

From (2.15) and (2.17), we have the following theorem.

Theorem 2.4. For n ≥ 0, we have

ζ(2n + 2) = (−1)n(
1 − 1

22n+2

)
(2n + 1)!

1
2

(π

2

)2n+2 n∑
l=0

(
2n

2l

)
E2lE2n−2l. (2.18)
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To illustrate our results, by using (1.2) and (2.18) we compute

ζ(2) = 4
3 · 1

1
2

(π

2

)2
= π2

6
,

ζ(4) = −16
15 · 6

1
2

(π

2

)4
(−1 − 1) = π4

90
,

ζ(6) = 64
63 · 120

1
2

(π

2

)6(
5 + 6(−1)(−1) + 5

)
= π6

945
,

ζ(8) = −256
255 · 5040

1
2

(π

2

)8(
− 61 + 15(−1)5 + 15 · 5(−1) − 61

)
= π8

9450
,

ζ(10) = 1024
1023 · 362880

1
2

(π

2

)10(
1385 + 28(−1)(−61)

+ 70 · 5 · 5 + 28(−61)(−1) + 1385
)

= π10

93555
.

3. Further remark
Let X1, X2, . . . be a sequence of independent random variables with E[Xi] = µ, V ar(Xi) =

σ2, (i = 1, 2, . . . ). Then the cental limit theorem (see [10]) states that

lim
n→∞

X1 + X2 + · · · + Xn − nµ

σ
√

n
∼ N(0, 1).

That is,

P

{
X1 + X2 + · · · + Xn − nµ

σ
√

n
≤ a

}
→ 1√

2π

∫ a

−∞
e− x2

2 dx, (3.1)

as n → ∞.

Lemma 3.1. Let X1, X2, . . . be a sequence of independent hyperbolic secant random vari-
ables, and let fX1+X2+···+Xn(x) be the probability density function of X1 + X2 + · · · + Xn.
Then

π

2
√

nfX1+X2+···+Xn

(π
2

√
n y
)

→ 1√
2π

e− y2
2 ,

as n → ∞.

Proof. By (2.7), we get

σ2 = V ar(Xi) =
(π

2

)2
, µ = E[Xi] = 0,

where i = 1, 2, . . . . By central limit theorem (see (3.1)), we have

P

{
X1 + X2 + · · · + Xn

π
2
√

n
≤ y

}
→ 1√

2π

∫ y

−∞
e− x2

2 dx, (3.2)

as n → ∞. Then (3.2) is the same as saying that∫ y

−∞

π

2
√

nfX1+X2+···+Xn

(π
2

√
n x
)
dx →

∫ y

−∞

1√
2π

e− x2
2 dx,

as n → ∞. □

4. Conclusion
In this paper, among other things, we showed the summation formula

∞∑
k=0

(−1)k

(2k + 1)2n+1 = (−1)n 1
2

E2n

(2n)!

(π

2

)2n+1
= 1

2
|E2n|
(2n)!

(π

2

)2n+1
,

by evaluating even moments of the hyperbolic secant random variable in two different
ways. As we mentioned in the Introduction, this formula was known to Euler. So the
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contribution of the present paper would be that it gives a probabilistic and simple proof
of the above summation formula.

We would like to note that the Euler numbers in (1.1) has interesting connections with
Euler zigzag numbers defined by the Taylor series, which is given by

sec x + tan x = tan
(π

4
+ x

2

)
=

∞∑
n=0

An
xn

n!
.

Indeed, one can show that A2n = (−1)nE2n = |E2n|, (n = 0, 1, 2, . . . ). Interesting combi-
natorial interpretations for the zigzag numbers can be found in the stanley’s recent talk
given at the 14th Ramanujan Colloquium, which was held at University of Florida in
2023, (see [12]). For example, An is equal to the number of permutations in the symmet-
ric group Sn that are alternationg. Here a sequence a1, a2, . . . , an of distinct integers is
defined to be alternating if a1 > a2 < a3 > a4 < · · · . For example, A4 = E4 = 5, since
2143, 3142, 3241, 4132, 4231 are the alternating permutations in S4.

Acknowledgment. The authors would like to thank the referees for their comments and
suggestions that helped improve the original manuscript in its present form.
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