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Medical text classification organizes complex medical texts, facing challenges 

like insufficient training data. This paper proposes a novel method for 

categorizing medical texts based on a dataset of health problem abstracts and 

their labels. We applied data representation techniques to our labeled dataset 

and employed various machine learning algorithms for text classification. 

Initial results were unsatisfactory due to limited labeled data. To enhance this, 

we applied data augmentation techniques using an unlabeled dataset, utilizing 

BERT-based models (BioBERT, ClinicalBERT) to enrich the labeled data. 

Different voting mechanisms, namely hard voting and soft voting were 

employed to validate and add new labeled records to the dataset. After 

augmenting the labeled data, machine learning algorithms were re-applied. 

The results demonstrated that our approach significantly improves the 

performance of medical text classification, effectively addressing the 

challenges posed by limited labeled data and enhancing overall accuracy. 
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Tıbbi metin sınıflandırması, yetersiz eğitim verisi gibi zorluklarla karşılaşarak 

karmaşık tıbbi metinleri düzenlemektedir. Bu çalışma, sağlık sorunları özetleri 

ve etiketleri içeren bir veri setine dayanarak tıbbi metinleri sınıflandırmak için 

yeni bir yöntem önermektedir. Etiketli veri setimize veri temsil teknikleri 

uyguladık ve metin sınıflandırması için çeşitli makine öğrenmesi algoritmaları 

kullandık. İlk sonuçlar, sınırlı etiketli veriler nedeniyle yeterli bulunmamıştır. 

Bunu geliştirmek için, etiketli verileri zenginleştirmek amacıyla 

etiketlenmemiş bir veri seti kullanarak veri artırma teknikleri uyguladık; bu 

süreçte BERT tabanlı modeller (BioBERT, ClinicalBERT) kullanılmıştır. 

Yeni etiketli kayıtları doğrulamak ve veri setine eklemek için çoğunluk 

oylama ve ağırlıklı çoğunluk oylama gibi farklı oylama mekanizmaları 

kullanılmıştır. Etiketli verileri artırdıktan sonra, makine öğrenmesi 

algoritmalarını yeniden uygulanmıştır. Sonuçlar, yaklaşımımızın tıbbi metin 

sınıflandırmasının performansını önemli ölçüde artırdığını, sınırlı etiketli 

verilerin getirdiği zorlukları etkili bir şekilde ele aldığını ve genel doğruluğu 

artırdığını göstermiştir. 
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1. INTRODUCTION 

Medical text classification is a specialized area of text classification that deals with organizing and categorizing 

medical texts. These texts contain complex medical language and measurements, which can make classification 

more challenging due to high-dimensionality and sparsity of data. With the growing volume of digital documents, 

automatic text classification has emerged as a significant research area. This importance extends to the medical 

field, particularly with electronic health record (EHR) data. As the amount of medical data grows, the goal of 

medical text classification becomes crucial: to accurately classify medical records, reports, and other relevant texts 

into specific categories or classes based on their content. 

Collecting medical documents, however, presents challenges due to ethical and privacy concerns. To address this, 

augmenting missing medical data based on existing information is crucial. Data augmentation directly contributes 

to the success of machine learning and deep learning applications in the medical field, helping to bridge data gaps 

and support better outcomes in medical research. This study specifically aims to address the critical challenge of 

limited labeled data in medical text classification, which restricts the effective training of supervised machine 

learning models. By leveraging semi-supervised learning techniques and clinical text-oriented BERT models, the 

proposed method significantly increases the volume of labeled data, thereby effectively mitigating the adverse 

effects of data scarcity in medical text classification. The approach enables the integration of domain-specific 

embeddings with traditional ML algorithms, improving the performance and robustness of classification tasks. 

With the recent advancements in Natural Language Processing (NLP) and the success of transformer-based deep 

learning (DL) models such as BERT, there has been a growing interest in applying BERT-based approaches for 

medical text classification. But one of the major problems in these kinds of supervised learning models is the lack 

of labeled data. Labeled data is crucial for training supervised models to make accurate predictions. However, 

obtaining labeled data can be a challenging and time-consuming process, particularly in domains like medicine 

where human annotation is required. In the medical domain, accurately labeling unlabeled data demands a high 

level of expertise. Therefore, employing an automatic labeling approach in this context would prove immensely 

beneficial. 

The problem of lack of labeled data can have several negative impacts on DL. First, models may underfit due to 

the limited amount of available labeled data, resulting in poor accuracy on both training and test sets. Second, 

models may not be able to capture important patterns and relationships in the data, leading to suboptimal 

performance on specific tasks. Finally, without enough labeled data, it can be difficult to fine-tune pre-trained 

models effectively, which can limit their performance on downstream tasks. Therefore, this work focuses on 

increasing the small amount of labeled data using the variants of various types of transformer models. 

In this study, medical text classification results were initially obtained using traditional machine learning (ML) 

methods. A medical text classification study, considering medical specialties as target values, was conducted using 

14,438 labeled and 14,442 unlabeled medical texts obtained from Kaggle [1]. Results such as accuracy, precision, 

recall, and F1 score were obtained through studies conducted using various ML algorithms including K-nearest 

Neighbors (KNN), Decision Tree (DT), Random Forest (RF), and Support Vector Machine (SVM). 

For improved results, we considered augmenting the unlabeled text data essential [2]. We increased the labeled 

text volume by separately retraining the models with BioBERT [3] and ClinicalBERT [4]. We then integrated the 

newly labeled texts into the initial training dataset. Additionally, we improved the evaluation results for the 

unlabeled dataset using soft-voting and hard-voting. The best results were achieved using soft voting in 

combination with Random Forest (RF), yielding precision, recall, and F1 score values of 0.90. 

The remainder of this paper is organized as follows: Section 2 reviews the related work.  Section 3 outlines the 

methodology. Section 4 presents the results. Section 5 discusses similar studies covering augmentation and voting 

mechanisms. Lastly, Section 6 concludes the paper.   

2. RELATED WORK 

The paper focuses on two main topics: text classification and data augmentation. For text classification, traditional 

machine learning methods, ensemble techniques, and deep learning approaches can be utilized. A sufficient 

amount of labeled data is essential for successful text classification. If the results fall below the expected 

performance values, it is often due to the available labeled data not adequately representing the model. In such 

cases, text classification results can potentially be improved through data augmentation methods. The most 

effective method depends on the specific task and the dataset being used.  

Text classification is a specific application of ML that categorizes text documents into predefined classes based 

on their content. It has been used in many different applications, including the medical domain where medical text 

data is classified. This is known as medical text classification and considered as a special case of text classification 

[5, 6]. The state-of-the-art approaches for medical text classification can be classified into traditional ML-based 

methods, DL-based methods, transfer learning, hybrid methods, and ensemble methods [7, 8]. Traditional machine 

learning (ML)-based methods are effective for small datasets and are relatively easy to interpret. However, they 

have limited scalability and require manual feature extraction, which can be a significant drawback for complex 

tasks. Deep learning (DL)-based methods, on the other hand, are capable of handling complex data and can 

automatically learn features, making them highly effective for large-scale problems. Nonetheless, they require 
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substantial amounts of labeled data and are computationally intensive, which can pose challenges. Transfer 

learning leverages pre-trained models to reduce training time, offering a valuable advantage, particularly in 

domains with limited labeled data. However, its effectiveness is constrained by the quality of the pre-trained 

models, and a transfer gap may exist when applied to dissimilar tasks. Ensemble methods combine predictions 

from multiple models to improve accuracy and reduce variance, making them highly robust. However, they come 

with high computational costs and the risk of overfitting if the models are not carefully chosen. Lastly, hybrid 

methods aim to combine the strengths of ML and DL techniques, often achieving improved performance by using 

DL for feature extraction and ML for classification. Despite their potential, they require significant amounts of 

labeled data and add complexity to the workflow.  

ML methods use algorithms, such as KNN, DT, RF, and SVM, to learn patterns between words and predefined 

categories from labeled medical text data. Textual data must be transformed into numerical features using methods 

such as bag-of-words or word embeddings. Then, the mentioned ML algorithms use these numerical 

representations as inputs. Although ML-based methods can be effective with a small amount of labeled data, they 

may not be sufficient on their own for large datasets [9].  

DL-based methods can classify medical text data using neural networks such as recurrent neural networks (RNNs). 

They have the ability to automatically learn features from the data. Unlike ML-based methods, DL can be sufficient 

on its own for large datasets [10, 11]. Moreover, DL can handle more complex datasets and also can be customized 

to consider specific characteristics of the medical domain [11, 12]. This can be achieved through the use of 

appropriate training datasets or other techniques, including transfer learning [13], which involves utilizing a pre-

trained model to solve a new problem. Transfer learning can also be used with ML-based models to have pre-

trained models and adapt them to new tasks [14]. Since RNNs cannot handle long-range dependencies and cannot 

benefit from parallelization, new approaches are proposed such as transformer models [15]. One of the most widely 

used and well-known transformer models is BERT (Bidirectional Encoder Representations from Transformers) 

[16], which is trained on large amounts of text data. It can be fine-tuned on smaller datasets for specific tasks 

including text classification. BioBERT ((Bidirectional Encoder Representations from Transformers for 

Biomedical Text Mining) [3] and ClinicalBERT [4] are variants of BERT that have been specifically trained on 

clinical and biomedical text data, respectively to improve the performance on the tasks in medical domain. 

BioBERT has been used for various tasks such as biomedical named entity recognition [17] and relation extraction 

[18, 19], while ClinicalBERT has been used for tasks including clinical named entity recognition [20]. 

Ensemble methods are another used approach for medical text classification which combines the predictions of 

multiple models [21]. In other words, a set of models on the same dataset are needed for training and the predictions 

of them are combined in different ways such as using majority voting and weighted voting. 

Hybrid methods that combine ML and DL techniques are also being used in medical text data classification. In 

typical hybrid methods, a DL model, such as RNN is used to extract features from the data, and then a traditional 

ML algorithm such as SVM is performed for the medical text classification. In other words, the output of the DL 

model is used as an input for the ML algorithm. Although hybrid methods can have better performance than using 

either approach alone, they need larger amounts of labeled training data as DL-based methods.  

Combining several techniques can lead to better performance [9]. Therefore, data augmentation should be 

employed when the dataset is limited [2, 22]. This becomes particularly relevant in the biomedical field, where 

obtaining large, balanced datasets can be challenging due to privacy concerns and data availability. Therefore, 

researchers have turned to data augmentation as an effective method to address these limitations. 

There are various papers that explore data augmentation with BioBERT and ClinicalBERT. Lu et al. [23] explore 

textual data augmentation with ClinicalBERT for predicting patient outcomes, focusing specifically on patient 

readmission. Their experiments demonstrate that ClinicalBERT benefits significantly from this strategy, 

outperforming other augmentation methods. In this study, ClinicalBERT is integrated into the MedAug 

framework, which uses a fine-tuned GPT-2 model to generate additional training data, addressing issues of data 

scarcity and class imbalance. To manage noise, a teacher-student framework guides the student model, trained on 

both original and synthetic data, by enforcing knowledge consistency. While this approach improves model 

performance, challenges such as high computational costs, scalability limitations, and residual noise remain. 

Nonetheless, MedAug proves to be an effective tool for enhancing text-based predictive tasks in healthcare. 

Erdengasileng et al. [24] explore the use of BioBERT and ClinicalBERT, combined with data augmentation and 

ensemble learning strategies, for biomedical information extraction and document classification tasks. The study 

introduces key data augmentation techniques, such as modifications to drug/chemical–protein interactions, 

chemical entity recognition, and medication extraction from tweets. These strategies aim to enhance the diversity 

and robustness of training data, ultimately improving model performance for specific biomedical applications. By 

leveraging pre-trained models, data augmentation, and ensemble learning, the study achieves significant 

advancements in performance across multiple tracks of the BioCreative Challenge VII, highlighting the practical 

effectiveness of these methods. However, the approach has certain limitations. It heavily relies on computationally 

intensive ensemble models and pre-trained architectures, making it resource demanding. Additionally, the 

applicability of the methods may be restricted in real-world scenarios where domain-specific pre-trained models 

or sufficient labeled data are unavailable. Zhang et al. [25] explore data augmentation in medical specialty 

classification using BioBERT as the classifier model. Their primary aim is to tackle challenges such as insufficient 

and imbalanced medical text data, which often hinder the performance of classification models. By fine-tuning 
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BioBERT with augmented data, the study achieves significant performance improvements compared to other 

models like CNN, LSTM, and standard BERT. The study introduces a novel Semi-Adversarial Data Augmentation 

(SemiADA) technique, paired with probabilistic information recalculation, to address these challenges. This 

approach boosts model performance by 15.1% in accuracy and 14.7% in F1 score, making it particularly effective 

for datasets with multiple classes. SemiADA is not only cost-effective but also enhances the model's robustness 

and generalization capabilities. However, the method has certain limitations. It is computationally intensive, 

especially during the data augmentation and training phases. Additionally, while the probabilistic information layer 

improves classification for underrepresented categories, the approach's scalability and efficiency may decrease as 

data complexity or size increases, requiring further optimization for broader real-world applications.  

3. METHODOLOGY 

3.1. Dataset 

The “Medical Text” dataset [1] comprises medical abstracts that describe current conditions of patients. The 

patient-oriented text is categorized into five different classes: digestive system diseases, cardiovascular diseases, 

neoplasms, nervous system diseases, and general pathological conditions. The dataset includes a total of 14438 

labeled patient records and 14442 unlabeled ones. The primary objective of this dataset is to utilize the labeled 

records for training while predicting the classification of the unlabeled records. This dataset contributes to assisting 

doctors by enabling them to identify salient information regarding each patient’s condition, thereby facilitating a 

more informed diagnosis.  To illustrate the dataset's structure, Table 1 presents the distribution of the labeled 

patient records across various disease categories. 

Table 1. Class distribution of medical text dataset. 
Index Label Support (Count) 

  1 digestive system diseases 3310 

2 cardiovascular diseases 1476 

3 neoplasms 1876 

4 nervous system diseases 3023 

5 general pathological conditions 4753 

3.2. Data Preprocessing and Representation 

Terminological words in the medical domain are mostly long. Hence, words with less than five letters are initially 

removed from the dataset to eliminate meaningless or incorrectly typed words. The contextual information in the 

medical domain can generally be captured by specific words in a medical discipline. Our aim is to focus on these 

words while ignoring punctuation marks. After cleaning the text, we generate a Bag-of-Words (BoW) model to 

analyze it. This model represents a piece of text as a collection of its constituent words, regardless of the order of 

the words. Extracting relevant features from medical text data can aid in classification, and using the BoW model 

for a simple representation before classification is a good starting point. However, the large number of words, 

including critically important medical terms, must be represented in a more processable manner. Therefore, a CSR 

(Compressed Sparse Row) matrix is created to build a sparse matrix from the list of abstracts in the dataset. CSR 

matrices allow efficient memory access and arithmetic operations on sparse matrices, especially when the matrices 

are very large and sparse. When collecting data in a broad range of medical texts, using CSR matrices is an effective 

method of data storage. The CSR matrix stores the frequency of words in each textual document. 

IDF (Inverse Document Frequency) is a numerical measure that reflects how important a term is to a collection of 

documents. It is commonly used in text mining, NLP, and information retrieval. The idea behind IDF is that some 

terms are more important than others in a document collection, and these terms should be given more weight in 

information retrieval systems. IDF calculates the weight of a term by dividing the total number of documents in 

the collection by the number of documents containing the term. The resulting value is then logarithmically scaled 

to reduce the effect of high document frequency terms. When the IDF value of a term is larger than the other one 

means that this is relatively an important term in the collection, as it appears in a relatively small proportion of 

documents. To understand the importance of the terms in the medical text collection, IDF values of each term are 

calculated in the term list of CSR matrix.  

3.3. Data Augmentation via BERT-based Learning  

Studies conducted with a small amount of labeled data may not yield successful results in machine learning models 

and the fact that the available data may not provide sufficient information about the relevant label. In this regard, 

if there is unlabeled data available, labeling it using the relevant labels is crucial to improving success. To address 

this challenge, we initially obtained baseline results by evaluating the performance on the available labeled data. 

Since the dataset obtained from Kaggle also contains unlabeled data, the focus was first placed on labeling this 

data using various machine learning methods. We used semi-supervised learning to apply this approach. Semi-

supervised learning is a machine learning approach that falls between supervised and unsupervised learning. It 

uses both labeled and unlabeled data to improve learning performance, particularly when labeled data is scarce or 
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expensive to obtain. Hence, it was anticipated that the results could be improved by examining semi-supervised 

learning utilizing BERT models specific to the medical domain, BioBERT and ClinicalBERT. 

Since our work involves a small amount of labeled data, the main challenge is to enhance the labeled dataset we 

have. Given that the context pertains to patient health records, it is essential to leverage relevant medical 

information corpora. BioBERT and ClinicalBERT can provide contextual insights into these medical records, 

allowing for the classification of patients' biological or clinical backgrounds into various disease categories. 

However, the classification outputs from each BERT model may yield different results. Therefore, each model 

should be integrated in a combined manner. To achieve this, soft and hard voting approaches have been applied to 

aggregate the information provided by each model. The output of the augmented data for the best-performing 

model is presented in Table 2. 

As the dataset involves a small amount of labeled data for each category, we decided to apply BioBERT and 

ClinicalBERT to increase the number of records in each category. BioBERT [3] is a variant of the BERT model 

specifically pre-trained for tasks in the biomedical domain. It involves the datasets taken from PubMed (a massive 

database containing millions of biomedical abstracts), over 4.5 billion words of abstracts, and PMC (PubMed 

Central), a free full-text archive of biomedical and life sciences including over 13.5 billion words of full-text 

articles. BioBERT significantly improves upon traditional NLP models in medical and biological contexts, and it 

assists to understand domain-specific terminology and context on clinical documentation, medical research, and 

healthcare data analysis. On the other hand, ClinicalBERT [4] is a specifically adapted BERT model for 

understanding and processing clinical text data such as electronic health records (EHRs). It enhances the standard 

BERT model's ability to interpret medical jargon and clinical context, which is critical in healthcare applications 

like patient record analysis, clinical decision support, and medical document classification. ClinicalBERT involves 

text from MIMIC-III (Medical Information Mart for Intensive Care) dataset (a large, publicly available dataset 

containing de-identified health records of over 40,000 patients admitted to critical care units including discharge 

summaries, nursing notes, radiology reports and lab test results) and general pretraining data gathered from 

BooksCorpus and Wikipedia. Table 2 presents the augmented number of data records after operating BioBERT 

and ClinicalBERT based augmentation and applying various voting techniques of unlabeled data records. The 

numbers show the counts for each category in the set formed by the combination of the currently labeled data and 

the augmented labeled data.   

Table 2. Class distribution of augmented medical text dataset. 
Index Label Support (Count) 

  1 digestive system diseases 7962 

2 cardiovascular diseases 1544 

3 neoplasms 2429 

4 nervous system diseases 6026 

5 general pathological conditions 10919 

3.4. Data Augmentation via BERT-based Learning  

The training dataset, sourced from Kaggle [1], is labeled, whereas the test dataset in this setup is unlabeled. 

Consequently, the training dataset can only be utilized for training and preliminary testing during the initial phase 

of evaluation. The labeled dataset is split into 70% for training and 30% for testing, in line with the original 

configuration provided by the dataset’s creator to maintain consistency with baseline results. 

The training process has been conducted using the dataset distribution described in Table 1 and the augmented 

dataset distribution presented in Table 2. The whole flow of the methodology is shown in Figure 1. 

The objective of the proposed method starts with evaluation using the initial dataset provided and evaluated in [1], 

employing ML algorithms such as K-Nearest Neighborhood (KNN), Decision Tree (DT), Random Forest (RF), 

Stochastic Gradient Descent (SGD) and Support Vector Machine (SVM). Subsequently, the augmented portion of 

the unlabeled dataset from [1], labeled separately using BioBERT and ClinicalBERT, has been used for 

classification utilizing the same ML algorithms. Finally, hard and soft voting techniques are applied to the 

BioBERT and ClinicalBERT labeled data to enhance label accuracy.  

4. RESULTS  

All experiments were performed on a Google Colab platform equipped with an NVIDIA T4 GPU, which provided 

sufficient computational resources for training the models. The results of the model trained on the raw dataset are 

summarized in Table 3. Among the models, the RF model achieved the best performance, whereas the KNN model 

yielded the poorest results. As detailed in Section 3, we employed BioBERT and ClinicalBERT embeddings with 

the labeled data available to us. Tables 4 and 5 illustrate that the application of BioBERT and ClinicalBERT  

embeddings led to improvements in all models. 

Tables 6 and 7 present the results of incorporating hard voting and soft voting mechanisms into the BioBERT and 

ClinicalBERT embeddings, respectively. For hard voting, we employed a majority voting approach, while for soft 

voting, we utilized a weighted voting strategy. The performance of soft voting has proven to be superior compared 

to hard voting. Soft voting involves considering the probabilities associated with each class rather than merely the 
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Figure 1. Our proposed method. 

predicted class labels. By taking into account the likelihoods, soft voting offers a more comprehensive approach 

to decision-making. This probabilistic perspective allows soft voting to leverage the uncertainty inherent in the 

predictions of individual models, thereby enhancing overall predictive performance. Consequently, the results 

demonstrate that incorporating class probabilities allows soft voting to achieve greater accuracy and robustness in 

classification tasks. 

Table 3. Initial comparison of ML algorithms. 
ML Model Precision Recall F1-Score 

KNN 0.70 0.68 0.68 

Decision Tree 0.82 0.78 0.78 

Random Forest 0.79 0.79 0.79 

SGD 0.77 0.78 0.77 

SVM 0.78 0.78 0.78 

Table 4. BioBERT. 
ML Model Precision Recall F1-Score 

KNN 0.70 0.68 0.68 

Decision Tree 0.82 0.78 0.78 

Random Forest 0.79 0.79 0.79 

SGD 0.77 0.78 0.77 

SVM 0.78 0.78 0.78 

Table 5. ClinicalBERT. 
ML Model Precision Recall F1-Score 

KNN 0.75 0.74 0.74 

Decision Tree 0.89 0.87 0.87 

Random Forest 0.89 0.89 0.89 

SGD 0.83 0.84 0.83 

SVM 0.86 0.86 0.86 

The results in Table 3 show that the RF model achieved the highest F1-score of 0.79, whereas the KNN model 

yielded the lowest with an F1-score of 0.68. While models like SVM and SGD performed decently, they still didn't 

perform as well as RF. This initial comparison highlights the varying effectiveness of traditional machine learning 

models when trained on raw datasets without any domain-specific embeddings.  

However, when domain-specific embeddings such as BioBERT and ClinicalBERT were introduced, as shown in 

Tables 4 and 5, there was a significant improvement in the performance across all models. For instance, the F1-

score of the KNN model improved from 0.68 (Table 3) to 0.76 and 0.74 in the BioBERT and ClinicalBERT 

embeddings, respectively. This increase indicates that incorporating domain knowledge via embeddings helps even 

weaker models like KNN capture more relevant features from the dataset, thereby enhancing performance. 

The most substantial improvement can be seen in the DT and RF models, where the F1-scores jumped from 0.78 

and 0.79 (Table 3) to 0.88 and 0.89, respectively, when BioBERT was applied (Table 4). Similar trends are 

observed with ClinicalBERT, where the F1-score for these models remains at 0.87 and 0.89 (Table 5), further 

validating that both embeddings significantly benefit models that rely heavily on structured decision-making 

processes. 
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Table 6. Hard voting. 
ML Model Precision Recall F1-Score 

KNN 0.75 0.75 0.74 

Decision Tree 0.87 0.85 0.85 

Random Forest 0.86 0.86 0.86 

SGD 0.83 0.84 0.83 

SVM 0.84 0.84 0.84 

Table 7. Soft voting. 
ML Model Precision Recall F1-Score 

KNN 0.77 0.77 0.76 

Decision Tree 0.89 0.87 0.87 

Random Forest 0.90 0.90 0.90 

SGD 0.85 0.85 0.84 

SVM 0.87 0.87 0.86 

Moreover, the results in Tables 6 and 7 demonstrate the added value of voting mechanisms. Hard voting (Table 

6), while improving the performance of models like KNN and Decision Tree, did not outperform the individual 

best-performing models. For example, the RF model with hard voting achieved an F1-score of 0.86, which is 

slightly lower than its performance with BioBERT and ClinicalBERT embeddings. The reason for this could be 

that hard voting does not effectively utilize the probabilities associated with each model's predictions. Instead, it 

simply chooses the most common class label among the models, which may not capture the nuances of the 

predictions, especially in complex datasets. As a result, hard voting might not leverage the strengths of individual 

models to their fullest extent. 

However, soft voting (Table 7) yielded the best overall results, particularly for the RF, which achieved the highest 

F1-score of 0.90. This improvement illustrates the effectiveness of using probability-based ensemble methods, as 

soft voting allows the model to consider the confidence levels of predictions across different classes. The increase 

in performance, especially for models like RF and SVM, demonstrates that soft voting not only enhances 

robustness but also enables the model to make more accurate decisions by leveraging the uncertainties of individual 

classifiers. 

BioBERT and ClinicalBERT embeddings significantly boost the performance of individual models, incorporating 

soft voting further enhances classification outcomes, making it the most effective approach among the strategies 

tested. The results suggest that combining domain-specific embeddings with ensemble methods provides a robust 

solution for improving predictive performance in medical classification tasks. 

Table 8 provides a summary of the hyperparameters for BioBERT and ClinicalBERT models. The 

hyperparameters include the optimizer, learning rate, decay, batch size, number of epochs, max sequence length, 

number of classification layer, number of neurons in classification layer, activation. Table 9 provides a summary 

of the hyperparameters used for the Random Forest model that achieved the best F1-score. The hyperparameters 

include the n_estimators, criterion, min_samples_split, min_samples_leaf. 

Table 8. Hyperparameter settings of BioBERT and ClinicalBERT. 
Hyperparameter Value 

Optimizer  Adam 

Learning Rate 1e-5 

Decay 1e-6 

Batch Size 16 

Number of Epochs 25 

Max Sequence Length 384 

Number of Classification Layer 1 

Number of Neurons in Classification Layer 512 

Activation ReLU 

Table 9. Hyperparameter settings of Random Forest. 
Hyperparameter Value 

n_estimators 100 

criterion gini 

min_samples_split 2 

min_samples_leaf 1 

5. DISCUSSION  

Table 10 provides a comparative summary of key studies in the field of medical text classification, highlighting 

the architectures, augmentation techniques, voting mechanisms, datasets, target variables, and performance 

measures. The table illustrates a diverse range of methodologies applied to various datasets, demonstrating the 

evolution of medical text classification. Studies employed a variety of neural network architectures, ranging from 
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preliminary models like RNN [26], CNN [27] and LSTM [28] to transformer-based models such as BioBERT, 

ClinicalBERT, GPT-2, and GPT-3.5 in more recent works [29-31]. Transformer-based models, particularly 

BioBERT and its variants, have shown superior performance across different tasks, indicating their effectiveness 

in understanding medical texts. 

Earlier studies did not leverage augmentation, relying solely on original datasets. While later studies increasingly 

utilized synthetic text generation techniques, particularly with models like GPT-2 and GPT-3.5, these efforts 

primarily focused on generic applications of augmentation [29-31]. In our study, we took a distinct approach by 

combining BioBERT and ClinicalBERT with carefully designed augmentation techniques, specifically tailored 

for medical text classification. This novel integration yielded superior results, highlighting the effectiveness of our 

methodology and improving model performance for specialized medical datasets. 

Among the reviewed studies, only one explicitly employed a voting mechanism, highlighting its rarity and 

significance in medical text classification tasks. In addition to this, our study also utilizes a carefully designed 

ensemble voting mechanism, further demonstrating its potential to improve performance and address the 

complexities of medical datasets. This distinguishes our methodology by demonstrating how voting can 

complement augmentation and transformer-based models, yielding robust and reliable results, particularly in 

addressing the complexities of medical datasets. This dual focus on augmentation and voting highlights the unique 

contributions of our study compared to others. 

For data augmentation, more advanced and modern models such as GPT-4 can be utilized to generate high-quality 

synthetic text tailored to the domain. Additionally, implementing adaptive ensemble voting could enhance 

performance by assigning greater weight to models that excel in specific classes or tasks. Furthermore, 

incorporating other domain-specific transformer models, such as BiomedBERT and PubMedBERT, alongside 

BioBERT and ClinicalBERT, can diversify the ensemble and improve overall classification accuracy across a 

wider range of medical text classification tasks. 

While the methodology in our study demonstrates promising results, successful deployment would require 

addressing key factors such as ensuring data privacy and security, optimizing computational efficiency for 

scalability, and adapting the models to the specific needs of different institutions. Additionally, providing 

explainable predictions to build trust among clinicians and integrating the system seamlessly into existing EHR 

workflows are critical for ensuring reliability and compliance with medical and technical standards. These 

challenges are generally applicable to all studies involving medical text classification, as they share common issues 

related to handling sensitive data, managing computational resources, and ensuring practical integration into 

clinical environments. 

Table 10. Comparison of studies on medical text classification. 
Study Architecture Augmentation Voting 

Mechanism 

#Documents 

Considered 

Target 

Variable 

Performance 

Measures  

[26] RNN - - 

263,706 patients, 

~54.61 visits per 

patient 

Medication 

code 
Recall: 85.53% 

[27] CNN - - 300,000 patients 
Unplanned 

readmission 
AUC: 0.819 

[28] LSTM - - 
7,191 patients, 

53,208 admissions 

Unplanned 

readmission 
F1-Score: 0.79 

[29] 
GPT-2, 

BioBERT 

 

+ 

 

- 

55,404 discharge 

summaries 

(MIMIC-III dataset) 

Unplanned 

readmission 

AUC 0.669,  

F1-Score 

0.3115 

[23] 
GPT-2, 

ClinicalBERT 

 

+ 

 

- 
48,393 generated 

documents 

Unplanned 

readmission 
AUC: 0.822 

[24] 

BERT, 

BioBERT, 

PubMedBERT 

 

+ 

 

 

+ 

 

Not specified 
Document 

classification 

F1-Score: 

0.908 

[25] BioBERT 

 

+ 

 

- 3,140 admissions 

Medical 

specialty 

classification 

Micro-F1: 

0.882 

[30] 

GPT-2, 

BioBERT, 

BiomedBERT, 

ClinicalBERT 

 

+ 

 

- 

73,671 

cerebrovascular 

disease reports 

Intracerebral 

hemorrhage 

classification 

F1-Score: 0.81 

[31] 
GPT-3.5, 

RoBERTa 

 

+ 

 

- 
3,219 radiology 

reports 

Radiology 

chapter 

classification 

Micro-F1: 

0.8846 

Our Study 

BioBERT, 

ClincalBERT, 

Random Forest 

+ + 

14438 initial 

records, 28.880 

augmented records 

Medical 

specialty 

classification 

F1-Score: 0.90 
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6. CONCLUSION 

In this study, we tackled the challenges of medical text classification by employing semi-supervised learning and 

BERT-based models to overcome the limitations of labeled data scarcity. Our results demonstrated that integrating 

domain-specific embeddings such as BioBERT and ClinicalBERT with ensemble methods like soft voting 

significantly enhances classification performance. For instance, soft voting achieved the highest F1-score of 0.90 

with the Random Forest model, underscoring the effectiveness of leveraging probabilistic decision-making in 

classification tasks. 

The results showed a clear enhancement in performance when domain knowledge was integrated through 

embeddings. For instance, the incorporation of these models allowed even weaker classifiers like KNN to identify 

more relevant features, improving their overall effectiveness. Additionally, our analysis of different voting 

mechanisms revealed that while hard voting improved performance for some models like KNN and DT, it did not 

surpass the best individual model performances. This may be attributed to hard voting’s reliance on the most 

common class labels, which might overlook valuable information encoded in the probabilities of model 

predictions. In contrast, soft voting proved to be a more effective approach, leading to superior accuracy, 

particularly for models such as RF. This underscores the importance of leveraging the probabilistic nature of model 

outputs, which enhances decision-making and ultimately leads to better classification outcomes. 

Our results indicate that the combination of data augmentation and contextual BERT-based models effectively 

addresses the challenges of limited labeled data in medical text classification. We have significantly improved the 

performance and accuracy of medical text classification tasks by incorporating voting strategies, paving the way 

for more effective applications in the healthcare domain. Additionally, the models are optimized for the specific 

vocabulary of clinical contexts, which highlights their potential for domain-specific applications. While the scope 

is centered on leveraging a specific medical dataset from Kaggle, the methodology and findings provide a strong 

foundation for further exploration and adaptation to other datasets and domains. Future work could extend these 

approaches to broader datasets and diverse medical settings. 
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