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Abstract1 

The aim of this study is to reveal the dynamics between climate policy uncertainty (CPU) 
and S&P Global Carbon Credit Index (CARBON), S&P Cryptocurrency DeFi Index (DeFi), and 
WilderHill New Energy Global Innovation Index (NEX) using data from December 2017 to 
March 2024 in the US. Fourier Bootstrap ARDL, Fourier Bootstrap quantile causality, and KRLS 
methods are used in the study. The findings reveal that there is a negative relationship between 
the CARBON and the CPU index in the long term. Although the DeFi does not have a statistically 
significant effect in the long term, it reveals that it has a negative effect on the CPU index in the 
short term. In contrast, the NEX has a positive relationship with the CPU index in both the short 
and long term. Moreover, there is a U-shaped non-linear relationship between the NEX and the 
CPU index, which weakens in moderate climate uncertainties and strengthens again in high 
uncertainty. Considering the causality results, there exists a causality from CARBON to CPU in 
the 2nd, 3rd, and 4th quantiles, and from CPU to CARBON in the 2nd and 3rd quantiles. Additionally, 
there is a causality from DeFi to CPU in the 8th quantile and from CPU to DeFi in the 1st 
quantile. Finally, there is a causal relationship from NEX to CPU in the 2nd, 3rd, 4th, and 5th 
quantiles and from CPU to NEX in the 9th quantile. 

Keywords: Climate Policy Uncertainty, Decentralized Finance (DeFi), Renewable 
Energy, Carbon Credit. 
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ABD İKLİM POLİTİKASI BELİRSİZLİĞİNİ ANLAMAK: KARBON 
PİYASALARI, MERKEZİYETSİZ FİNANS (DeFi) VE YENİLENEBİLİR 

ENERJİ İNOVASYONLARINDAN YENİLİKÇİ KANITLAR 

Öz 

Bu çalışmanın amacı, ABD’de Aralık 2017 ile Mart 2024 arasındaki verileri kullanarak 
iklim politikası belirsizliği (CPU) ile S&P Küresel Karbon Kredi Endeksi (CARBON), S&P 
Kripto Para DeFi Endeksi (DeFi) ve WilderHill Yeni Enerji Küresel İnovasyon Endeksi (NEX) 
arasındaki dinamikleri ortaya koymaktır. Çalışmada Fourier Bootstrap ARDL, Fourier 
Bootstrap kantil nedensellik ve KRLS yöntemleri kullanılmıştır. Bulgular, CARBON ile CPU 
endeksi arasında uzun vadede negatif bir ilişki olduğunu ortaya koymaktadır. DeFi’nin uzun 
vadede istatistiksel olarak anlamlı bir etkisi olmasa da, kısa vadede CPU endeksi üzerinde negatif 
bir etkisi olduğunu ortaya koymaktadır. Buna karşılık, NEX’in hem kısa hem de uzun vadede 
CPU endeksi ile pozitif bir ilişkisi vardır. Ayrıca, NEX ile CPU endeksi arasında ılımlı iklim 
belirsizliklerinde zayıflayan ve yüksek belirsizlikte tekrar güçlenen U şeklinde doğrusal olmayan 
bir ilişki vardır. Nedensellik sonuçlarını göz önünde bulundurarak, 2., 3. ve 4. kantillerde 
CARBON’dan CPU’ya ve 2. ve 3. kantillerde CPU’dan CARBON’a bir nedensellik vardır. Ek 
olarak, 8. kantilde DeFi’den CPU’ya ve 1. kantilde CPU’dan DeFi’ye bir nedensellik 
bulunmaktadır. Son olarak, 2., 3., 4. ve 5. kantillerde NEX’ten CPU’ya ve 9. kantilde CPU’dan 
NEX’e doğru bir nedensellik ilişkisi bulunmaktadır. 

Anahtar Kelimeler: İklim Politika Belirsizliği, Merkeziyetsiz Finans (DeFi), 
Yenilenebilir Enerji, Karbon Kredileri. 

 

INTRODUCTION 

Uncertainty in climate policy has been a characteristic that mainly caused an 
impact on a number of fields, ranging from financial markets to investment strategy 
(Tommaso et al., 2024, pp.1-2). Policy direction deviations, problems with regulation, 
and compliance costs-an incubator of market volatility-are the reasons for cautious 
investing behavior receiving a counterpart (Faccini et al., 2023, p.2; Hoque & Azlan 
Shah Zaidi, 2020, pp.53-54; Pástor et al., 2021, pp.1-3; Wu & Liu, 2023, pp.1-2). 
Regulatory uncertainty involves promoting carbon pricing and emission trading 
schemes, which substantially influences competition and tactical investments within the 
energy and renewable industries (Sautner et al., 2023, pp.1449-1452). With the 
outstanding performance of the green firms over the brown enterprises, this hopefully 
raises the investors’ awareness of climate risks. In this regard, the effect of uncertainty 
in climate policy on the stock market performance prediction is very high (Ghani et al., 
2024, pp.1-2; Pástor et al., 2021, pp.1-3). It is of greater importance in both developed 
and emerging markets because there is a search for a balance between energy 



 
 
 
 
 
 
Navigating Us Climate…                           DEU Journal of GSSS, Vol: 27, Issue: 2 
 

 813 

dependence and environmental sustainability (Syed et al., 2024, p.1). However, the 
attainment of reduction targets of carbon emissions largely depends on renewable energy 
investments. How climate policy uncertainty shapes investment in these sectors 
therefore comes out as an important issue (Ghani et al., 2024, pp.1-2; Hoque & Azlan 
Shah Zaidi, 2020, pp.53-54; Wu & Liu, 2023, pp.1-2). Besides that, the potential effect 
of Climate policy uncertainty on cryptocurrency markets would also become worthy of 
research concerning the consequence it has on the market’s volatility and investment 
decisions regarding the same. These rising global environmental hazards and climate 
transition risks bring up, besides mushrooming economic losses, the need to construct 
policies effectively towards a silent sustainable future. Thus, perception and 
management of Climate policy uncertainty become of prime need to achieve both 
financial as well as environmental stability (Ghani et al., 2024, pp.1-2; Su et al., 2024, 
pp.1-2). Against this backdrop, two of the most pertinent questions would relate to: How 
does one measure uncertainty in climate policy effectively? In what way do the financial 
markets of the United States, considering it has the largest economy in the world, 
influence climate policy uncertainty while trying to balance energy dependence with 
environmental sustainability? 

To solve this problem, Gavriilidis (2021, pp.1-9) suggested a newly constructed 
index of Climate Policy Uncertainty (CPU). It is measured by statements released from 
the US presidency combined with climate-related uncertainty as reported in US media 
coverage. In recent years, a growing body of literature has focused on studies related to 
the CPU index. A comprehensive review of these studies reveals a focus on the 
relationships between Climate Policy Uncertainty (CPU) and financial markets (Ameen 
& Afşar, 2022, pp.1-20; Bouri et al., 2022, pp.1-5; Du & Guo, 2023, pp.1-11; Ghani et 
al., 2024, pp.1-7; Huang, 2023, pp.1-3; Li et al., 2024, pp.1-8; Liang et al., 2022, pp.1-
13; Lv & Li, 2023, pp.1-13; Mao & Huang, 2022, pp.1-14; Ozkan et al., 2024, pp.1-15; 
Ren et al., 2022, pp.1-11; Su et al., 2024, pp.1-11; Tedeschi et al., 2024, pp.1-5; 
Tommaso et al., 2024, pp.1-10; Treepongkaruna et al., 2023, pp.1-8; Wu et al., 2022, 
pp.1-13; Xu et al., 2023, pp. 1-16; Zhang at al., 2023, pp.1-22; Zhao & Luo, 2024, pp.1-
6), decentralized finance (Dong et al., 2024, pp.1-10; Gürsoy et al., 2024, 1-14), 
corporate finance (Amin et al., 2023, pp.1-20; Hoang, 2022, pp.1-14; Vo et al., 2024, 
pp.1-10), renewable energy, and CO2 emissions (Amin et al., 2023, pp.1-20; Athari & 
Kirikkaleli, 2024, pp.1-19; Cavlak, 2022, pp.1-20; Guesmi et al., 2023, pp.1-20; Işık et 
al., 2024, pp.1-9; Sarker et al., 2023, pp.1-11; Syed et al., 2024, pp.1-6; Tian et al., 2024, 
pp.1-13; Xu et al., 2022, pp.1-8; Yousfi et al., 2023, pp.1-13; Zhou et al., 2023, pp.722-
732). However, most of these studies considered the impact of changes in the Climate 
Policy Uncertainty index on financial markets, while very few pieces of research have 
been conducted in US financial markets. In particular, studies investigating the impact 
of carbon markets and crypto markets on climate uncertainty are relatively scarce.  
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In this study, we aim to contribute to the literature in threefold. First, in this 
paper, the effects of S&P Global Carbon Credit Index (CARBON), which characterizes 
the price movement in the carbon credit market and represents a kind of permit 
purchased by U.S. companies to reduce carbon emissions, will be considered regarding 
CPU.  Furthermore, we analyze the influence of the S&P Cryptocurrency DeFi Index 
DeFi, which tracks the market performance of some digital assets making possible the 
provision of DeFi services/products on CPU. We also analyze the effect of WilderHill 
New Energy Global Innovation Index NEX, which gauges the activity of companies 
around the world involved in renewable energy and clean technology, on the CPU. This 
study aims to be the first to explore how firms focus on renewable energy and innovative 
technologies for carbon reduction, as well as those utilizing carbon credits, interact with 
climate policy uncertainty, alongside the still-ambiguous role of decentralized financial 
assets in this context. Accordingly, this paper utilizes the latest dataset and explores the 
short and long run relationships of the variables using the recently proposed Fourier 
Bootstrap ARDL cointegration test, which considers smooth transitions in structural 
breaks and further enhances the robustness of the estimated results. Therefore, the 
present study reinvestigates the low-medium-high quantile causal linkages of CARBON, 
DeFi, and NEX with CPU by applying the newly developed Fourier Bootstrap Quantile 
Causality test to give a current contribution to the literature. 

Our findings show that, though the long run cointegration is negative between 
the firm performance in the CARBON market and CPU, it is positive between firm 
performance investing in renewable energy and innovative technology, NEX. We find 
no evidence to support or establish the cointegration relationship in the long run between 
DeFi and climate policy uncertainty, CPU. On the other hand, the results indicate that in 
the short run, both in the current period and in the two-lagged periods, decentralized 
finance (DeFi) negatively impacts climate policy uncertainty (CPU), while in the short 
run, climate policy uncertainty (CPU) positively influences the performance of firms 
investing in renewable energy and innovative technology (NEX). In the short term, the 
performance of firms in the carbon credits (CARBON) market has no effect on the 
uncertainty about climate policy. Causality results we find evidence of causality from 
the performance of firms in the carbon credits (CARBON) market to climate policy 
uncertainty from the 2nd, 3rd, and 4th quantiles, and from climate policy uncertainty to the 
performance of firms in the carbon credits market from the 2nd and 3rd quantiles. There 
is a causal relationship from decentralized finance (DeFi) to climate policy uncertainty 
(CPU) in the 8th quantile, while there is a causal relationship from climate policy 
uncertainty (CPU) to decentralized finance (DeFi) in the 1st quantile. We find evidence 
of causality from the performance of firms that invest in renewable energy and 
innovative technology, NEX, to the uncertainty of climate policy, CPU, in the 2nd, 3rd, 
4th, and 5th quantiles and from CPU to NEX in the 9th quantile. 
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In the following sections of this study, the second section presents the literature 
review, the third section covers the dataset and methodology, the fourth section discusses 
the empirical findings, and the fifth section provides the conclusion and policy 
recommendations. 

LITERATURE REVIEW 

This study aims to analyze the effects and possible impacts that these following 
indices will produce on CPU: New Energy Global Innovations in the United States, the 
decentralized finance cryptocurrency system, and world carbon credits. Gavriilidis 
(2021, pp.1-9) has constructed a new Climate Policy Uncertainty-CPU index by using 
news reports about climate policy. This index indicates a robust negative relationship 
between climate policy uncertainty and carbon dioxide (CO2) emissions through the 
analysis of news reports that incorporate uncertainties related to climate policy events. 
The CPU Index indicates that emissions may decrease during periods of considerable 
uncertainty owing to changes in corporate financial behaviors or the government’s 
contradictory position. It is now an efficient proxy for the social and political turmoil 
about climate policy, indicating the role of the public conversation in policy output and 
environmental action. This indicator has gained momentum since events like the 
introduction of new emission standards to worldwide protests on climate change, and 
announcements by the U.S. This position highlights the substantial impact of political 
and social variables on the uncertainties surrounding climate policy. The literature has 
proposed the Climate Policy Uncertainty (CPU) index as a new tool for understanding 
uncertainties related to climate policy. Several studies have utilized the CPU index in 
recent years, garnering significant academic attention. The CPU index is influenced by 
pronouncements from the U.S. government and media reporting, raising the relevant 
research issue of whether these communications are affected by financial markets. This 
research comprehensively assesses the literature on the CPU index, classifying the 
associations between CPU and financial markets, decentralized finance, corporate 
finance, renewable energy, and CO2 emissions into four thematic categories. 

The first strand of the literature review, the works on the Climate Policy 
Uncertainty Index in the financial markets, can be considered along three subgroups: 
China, Europe, and the USA. Research on China has explored, quite comprehensively, 
the multifaceted effects of CPU on the country’s financial markets. Indeed, Zhao and 
Luo (2024, pp.1-6) focused on the green indices of China, and their findings revealed 
that local CPU and general climate uncertainty (CU) have significant effects on China’s 
green market movement, while the US’s CPU has not had a very crucial impact. This 
finding underscores the central role of China-specific climate policies in shaping local 
market dynamics. Li et al. (2024, pp.1-8) investigated stock price synchrony (SYN) in 
Chinese firms. Researchers have demonstrated a significant decrease in SYN owing to 
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CPU, especially in high-pollution industries. The effect has intensified after the 
ratification of the Paris Agreement, signifying the increasing influence of climate policy 
on market dynamics. Xu et al. (2023, pp.1-16) assessed the nonlinear and lagged effects 
of CPU indices on stock market behaviors in China and the U.S., finding significant 
cross-country differences between the influence of CPU on returns and volatility. In fact, 
Lv and Li (2023, pp.1-16) researched the predictive power of CPU over sector-specific 
market volatility in China and found that this factor has a great influence on the utilities 
sector. How large the impact varies significantly between different levels of volatility 
and at different moments in time, reflecting the unique way in which CPU influences 
sector dynamics.  Mao and Huang (2022, pp.1-14) investigated the influence of CPU on 
green innovation. The study suggests that CPU has impeded green innovation by 
intensifying funding limitations, whereas government subsidies somewhat alleviate 
these impacts. Ren et al. (2022, pp.1-11) investigated the impact of CPU on firm-level 
total factor productivity (TFP), determining that CPU adversely affects TFP, especially 
in non-state-owned and capital-intensive enterprises, by hindering R&D investments. 
Du and Guo (2023, pp.1-11) examined the role of green credit policy (GCP) in 
promoting green innovation and showed that while CPU supports GCP’s effectiveness, 
high levels of uncertainty weaken this relationship, potentially undermining green 
financing efforts. Lastly, Zhang et al. (2023, pp.1-22) assessed the negative impact of 
CPU on corporate investment efficiency (CIE), particularly in non-state-owned and 
technology-intensive firms. They also noted that leadership quality plays a crucial role 
in mitigating CPU’s adverse effects. 

Empirical evidence conducted in Europe takes a broader perspective on the 
effects of CPU on financial markets. Tommaso et al. (2024, pp.1-10) developed an Italy-
specific CPU index and demonstrated that rising uncertainty negatively impacts Italy’s 
financial market performance, leading to reduced market stability and performance. 
Tedeschi et al. (2024, pp.1-5) examined the influence of CPU on European stock 
markets, revealing a positive effect on clean energy stock returns and a negative impact 
on crude oil stocks, particularly following the COVID-19 pandemic. Their findings 
indicate that CPU promotes investment in sustainable assets and highlights the 
significance of CPU in risk mitigation strategies during periods of uncertainty. Su et al. 
(2024, pp.1-11) investigated the influence of CPU on the European Union Emissions 
Trading System (EU ETS) and identified a positive correlation with carbon trading 
prices (CTP) in the medium to long term, although short term effects were mixed. The 
above points to the importance of CPU in determining carbon market stability and the 
roles of pricing strategies. Wu et al. (2022, pp.1-11) applied the EGARCH-MIDAS-CPU 
in predicting the volatility of EUAF and proved that CPU dampens volatility, hence 
stable policies can work in ensuring carbon market stability. This paper investigates the 
impact of CPU on European markets by means of a variety of financial instruments. 
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Moreover, the issue of CPU has been addressed in many studies conducted 
solely in the US context regarding green financial markets. Ghani et al. (2024, pp.1-7) 
conducted an analysis of the ESG and CPU indices to ascertain and analyze the influence 
both factors have on volatility within the United States stock market with regard to 
predictive performance outputs. It was from these analyses that the two indices were 
significant in predicting the financial market risk involved during situations of 
uncertainty and thus indicated the importance of CPU in financial risk management. 
Huang (2023, pp.1-3) examine the stifling effect of CPU on the green patenting activity 
of U.S. firms and showed how such uncertainty tends to crowd out investments in low-
carbon innovations that are an essential ingredient of technological progress. Husain et 
al. (2022, pp.1-15) studied the sensitivity of the U.S. green markets towards CPU and 
noticed that the green equities were pretty responsive compared to green bonds, 
particularly so in bear market conditions, pointing toward possible portfolio 
diversification benefits. Ameen and Afşar (2022, pp.1-20) analyzed the impact of CPU 
on the US petroleum market. Their findings reveal that there is no causality between 
CPU and petroleum market indices, indicating a low level of interaction and slow market 
efficiency in response to climate-related risks. Ozkan et al. (2024, 1-15) reveal that the 
interconnectedness between clean energy, green, and sustainable markets and found that 
the CPU enhances interconnectedness between these markets. This finding then implies 
the spillover effects of the CPU factor across segments. In fact, using U.S. stocks, 
Treepongkaruna et al. (2023, pp.1-8) have documented that a CPU factor outperforms 
conventional size and value factors in terms of cross-sectional variation in U.S. stock 
returns. They emphasized the significance of CPU in asset pricing models, particularly 
in a world characterized by climate uncertainty. Liang et al. (2022, pp.1-13) discovered 
that CPU serves as a highly effective predictor of renewable energy market volatility, 
surpassing other uncertainty indices, and is thus a crucial factor in improving renewable 
energy market stability. Bouri et al. (2022, pp.1-5) present evidence illustrating the 
substantial impact of CPU on the performance of green and brown energy equities. They 
documented that investors regard green assets as safe haven asset in during crises, 
highlighting the significant influence of CPU on investor preferences and market 
strategies. 

A second strand of the literature review shows the relationships between CPU 
and energy prices, carbon emissions, and Bitcoin dynamics. Gürsoy et al. (2024, pp.1-
14) investigate interdependencies between CPU variables, clean energy prices, carbon 
allowance prices, and returns of the Bitcoin currency. Their findings indicate that there 
is a positive relationship between BTC with carbon emission prices and CPU, while it is 
negatively associated with clean energy prices. These results show that the higher carbon 
costs and regulatory uncertainties could affect Bitcoin returns, which thus appear 
somewhat sensitive to climate policy. Dong et al. (2024, pp.1-10) discuss the 
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determinants of the Bitcoin carbon footprint, which tends to prove that the US dollar 
decreases the BCF more significantly in comparison with other assets, while fossil fuels 
increase BCF at low quantiles. Renewable energy, in turn, cut BCF consistently across 
all levels. On the other hand, the indices of economic policy uncertainty, CPU, and 
market volatility have been found to have a negative impact on BCF, especially in 
extreme quantiles; thus, such uncertainties indirectly restrain the environmental impact 
of mining Bitcoins. These studies, together, put the sources of energy and policy 
uncertainties at the heart of shaping Bitcoin’s returns and carbon footprint, with multi-
faceted impacts of the regulatory and market factors on crypto-currency-related 
environmental outcomes. 

In the third strand of the literature review, a critical review is given with respect 
to how CPU influences CSR, tax avoidance, and R&D investments. Vo et al. (2024, 
pp.1-10), in studying the effects of CSR investments, indicate that CPU persuades 
companies to increase their CSR activities as a means of reduction of policy-related risks 
and reducing their debt. This is particularly true of those industries that are highly carbon 
intensive. Therefore, companies view CSR as a method of reducing uncertainties and 
possible regulatory limitations. Amin et al. (2023, pp.1-20) also find that firms adopt 
more aggressive corporate tax avoidance strategies due to higher levels of CPU. The 
cash savings due to reduced tax payments are utilized for dividends and not for 
investment-a prudent strategy, considering the uncertainty of the policy situation. On the 
other hand, Hoang (2022, pp.1-14) presents the fact that CPU exerts a negative impact 
on R&D investments by high emission US enterprises because the latter are induced to 
adopt a “wait-and-see” attitude, whereas general firms prefer to expand R&D under 
CPU. The impact of CPU on R&D investments is also contingent upon technological 
uncertainty, management sentiment, managerial ability, and firm maturation. This 
suggests that leadership qualities have a substantial impact on strategic responses to 
policy uncertainty. These studies demonstrate that CPU exerts a multifaceted influence 
on CSR, tax strategies, and R&D spending. They emphasize the necessity for robust 
climate regulations to mitigate the adverse effects of CPU on sustainable innovation, 
particularly in high-emission industries. 

The fourth strand of the literature review: we explore the relationship between 
climate policy uncertainty and Renewable Energy (RE), and these press for direct effects 
and nuanced effects of CPU on energy policy. Tian et al. (2024, pp.1-13) examine the 
asymmetric effects of AI and CPU on the development of RE in China, showing that AI 
has a positive effect on RE, especially under an unfavorable economy, and reduced CPU 
significantly enhances the RE investment by enabling a favorable policy environment 
that can promote such investment. In this respect, Athari and Kirikkaleli (2024, pp.1-19) 
use the wavelet power spectrum and wavelet coherence methods in order to show the 
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time-varying causality between CPU and the Renewable Energy and Clean Technology 
Index. They underline that RECT caused CPU until 2018, while thereafter CPU started 
to affect RECT, reflecting an increase in interdependence between policy and clean 
energy sectors. Zhou et al. (2023, pp.722-732) estimate a time-varying parameter model 
and find evidence that CPU generally increases the price of oil and renewable energy 
consumption, with heterogeneous effects across the different renewables. Sarker et al. 
(2023, pp.1-20) also show asymmetric impacts of CPU, geopolitical risk, and oil price 
on clean energy return and volatility; the increase in CPU thus indicates stronger positive 
short run impacts on clean energy returns, while its decline negatively shocks the prices 
of clean energy, thus showing the complicated nexus between uncertainty and energy 
market behavior. Along the same vein, Xu et al. (2022, pp.1-8) demonstrate that the CPU 
index is an effective predictor of global RE market returns and that its predictive power 
increased after the Paris Agreement, thus indicating the importance of CPU in asset 
allocation decisions for energy markets. Cavlak (2022, pp.1-20) also finds asymmetric 
impacts of increasing and decreasing renewable energy consumption and oil price on 
CPU, which shows that energy market dynamics significantly influence uncertainties 
related to climate policy. Finally, Syed et al. (2024, pp.1-6) find that CPU exerts a 
negative impact on renewable and non-renewable energy productions across various 
quantiles and time frequencies of the U.S., thus justifying the fact that high CPU 
diminishes investments and their productions in the energy sectors. Besides results of 
previous studies, these findings underline that clearly defined and stable climate policies 
are urgently required to avoid uncertainty deterring renewable energy development and 
point to complex interdependencies of policy uncertainty, the dynamics of energy 
markets, and renewable progress. 

On the other hand, the literature comprehensively discusses not only how 
climate policy uncertainty influences CO₂ emissions but also under what conditions and 
to what extent. Işık et al. (2024, pp.1-9) suggest the ratio of domestic exports/re-exports 
as a new determinant of environmental pollution models and recognize that higher shares 
of re-exports reduce CO₂ emissions in the U.S., while CPU does not have an effective 
impact on the variation of CO₂ levels. That means an increase in CPU within the U.S. 
does not directly affect raising or lowering the levels of emissions. This simply shows 
that policy uncertainties have limited direct influences on pollution. Yousfi et al. (2023, 
pp.1-13) investigate the nexus of business conditions and changing climate policy with 
CO₂ emissions. They find that such a relationship is pre-set by economic conditions, and 
it becomes more complex, even bidirectional, when the economy goes through crisis 
modes such as the COVID-19 pandemic. They find that the changes in climate policy 
have higher impacts on CO₂ emissions across fluctuating business conditions; hence, 
policy stability is crucial in controlling the United States’ emissions. Guesmi et al. (2023, 
pp.1-20) apply a Factor-Augmented Vector Autoregressive model in quantifying the 
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impacts of climate risk and CPU on CO₂ emission within the U.S. and find out that 
political disagreements and natural disaster costs have major roles in determining 
reductions for emissions and renewable energy consumption. They have seen political 
conflicts increased, leading to an improvement in CO₂ emissions and hence explaining 
the variability in the use of renewable energy since partisan dynamics influence energy 
and emission performance. In addition, natural disasters heighten conflictive CPU and 
political consensus, an indication of the disrupting role of climate events in stability and 
consensus in policy making. All these studies together provide detailed evidence on how 
the CPU impacts CO₂ emissions and show just how different economic and political 
factors mold the relationship. 

DATA AND METHODOLOGY 

Data 

In this study, we examine the effects of the S&P Global Carbon Credit Index, 
the S&P Cryptocurrency DeFi Index-USD, and the WilderHill New Energy Global 
Innovation Index on Climate Policy Uncertainty Index (CPU) using monthly time series 
data between December 2007 and March 2024. We use Climate Policy Uncertainty 
Index (CPU) as a dependent variable. Gavriilidis (2021, pp.1-9) calculated the Climate 
Policy Uncertainty (CPU) index as the ratio of the number of news articles containing 
specific climate – related terms and policy statements to the total number of news articles 
in eight major newspapers in the US since April 1987. The author created a monthly 
CPU index by normalizing these data obtained from newspapers over their standard 
deviation and mean values. The first independent variable of this study, the S&P Global 
Carbon Credit Index (CARBON), is an index that measures price movements in the 
carbon credit market. Carbon credits are permits purchased by companies to limit or 
reduce their carbon emissions (carbon footprint). This index tracks the cost of carbon 
credits and market trends for companies seeking to reduce their carbon emissions and 
combat climate change through carbon trading. The second independent variable, S&P 
Cryptocurrency DeFi Index-USD (DeFi), is an indicator of decentralized finance. This 
index tracks the performance of cryptocurrencies within the decentralized finance DeFi 
ecosystem. This index also reflects the price changes of cryptocurrencies (e.g., 
Ethereum, Chain-link, etc.) that are important in the DeFi space and show the 
performance of these assets for investors. DeFi is based on block chain technologies that 
enable the delivery of traditional financial services through decentralized platforms. The 
third independent variable, the WilderHill New Energy Global Innovation Index (NEX), 
measures the performance of companies operating globally in renewable energy and 
clean technology. This index includes companies operating in clean energy sectors such 
as solar, wind, and biofuels and tracks the overall trend of investments in these sectors. 
The Climate Policy Uncertainty Index (CPU), the S&P Global Carbon Credit Index 
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(CARBON), the S&P Cryptocurrency DeFi Index-USD (DeFi), and the WilderHill New 
Energy Global Innovation Index (NEX) are compiled from their official websites and 
they are shown in table 1. 

 
Table 1: Variables and Databases 

 
 
Proxy 

 
 
Variables 

 
 
Database 

CPU Climate Policy Uncertainty Index https://www.policyuncertainty.com/climate_uncertainty.html, 
(accessed on 3 August 2024). 

CARBON S&P Global Carbon Credit Index https://www.spglobal.com/spdji/en/indices/commodities/sp-
global-carbon-credit-index/#overview, (accessed on 3 August 
2024). 

DeFi S&P Cryptocurrency DeFi Index https://www.spglobal.com/spdji/en/indices/digital-assets/sp-
cryptocurrency-defi-index/#overview, (accessed on 3 August 
2024). 

NEX WilderHill New Energy Global 
Innovation Index 

https://cleanenergyindex.com/, (accessed on 3 August 2024). 

 

The mean and median values of CPU and NEX have the highest value in the 
dataset. The lowest average and widest range occur for the DeFi index, so we can say 
that it is extremely volatile. This same fact is supported by the large standard deviation 
for DeFi. In doing so, there is more variation in CARBON and DeFi relative to other 
indices. Skewness and kurtosis reveal that DeFi follows a positively skewed and 
leptokurtic distribution; hence, there exist extreme values. Moreover, the Jarque – Bera 
test statistic has ensured that none of the indices are normally distributed (p > 0.05). 
From the analysis of correlation, it is observed that CPU depicts a positive and 
significant association, as evidenced by CARBON and NEX. In addition, CARBON 
shares the strongest positive correlation with NEX, and DeFi shows significant negative 
correlations with other indices, such as with CPU. From these results, we can indicate 
that there is no high correlation among the independent variables; thus, suitability for 
the regression analysis process is ensured. 

 

Table 2: Descriptive Statistics and Correlation Matrix 

  CPU CARBON DeFi NEX 

Mean 201.54 441.88 56.06 270.56 

Median 203.61 365.38 32.96 246.15 

Maximum 411.29 740.98 286.25 494.29 

Minimum 79.47 122.86 15.07 148.54 

https://www.policyuncertainty.com/climate_uncertainty.html
https://www.spglobal.com/spdji/en/indices/commodities/sp-global-carbon-credit-index/%23overview
https://www.spglobal.com/spdji/en/indices/commodities/sp-global-carbon-credit-index/%23overview
https://www.spglobal.com/spdji/en/indices/digital-assets/sp-cryptocurrency-defi-index/%23overview
https://www.spglobal.com/spdji/en/indices/digital-assets/sp-cryptocurrency-defi-index/%23overview
https://cleanenergyindex.com/
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Std. Dev. 61.68 209.07 54.49 95.21 

Skewness 0.59 0.13 2.22 0.54 

Kurtosis 3.91 1.35 8.36 2.07 

Jarque-Bera 6.97** 8.87*** 153.26*** 6.50** 

Probability 0.031 0.012 0.000 0.039 

Sum 15317 33583 4261 20563 

Sum Sq. Dev. 285293 3278177 222657 679940 

Observations 76 76 76 76 

CPU 1.000    
CARBON 0.381*** 1.000   
DeFi -0.237*** -0.218*** 1.000  
NEX 0.366*** 0.535*** 0.210* 1.000 

Note: “*”, “**” and “***” indicates statistical significance at 10, 5 and 1% level, 
respectively. The Climate Policy Uncertainty Index, S&P Global Carbon Credit Index, S&P 
Cryptocurrency DeFi Index, and WilderHill New Energy Global Innovation Index represent 
CPU, CARBON, DeFi, and NEX, respectively. 

 

Methodology 

In econometric analyses, whether a series or multiple series fluctuates around 
some type of mean, in other words, whether they are stationary, is of paramount 
importance in properly choosing the appropriate tests and analyses. There have been 
tests carried out with several methods both without as well as with structural breaks. 
New approaches recently used include tests incorporating Fourier functions. One such 
test is the Fourier ADF unit root test devised by Enders and Lee (2012). The Fourier 
series defined as an expansion of a periodic function “yt” into the sum of cosines and 
sines. The main strength of this test lies in its consideration of structural breaks with 
smooth transitions, by which one can observe and identify abrupt changes in the series, 
too. Christopoulos and León-Ledesma (2010) and Yilanci and Eris, (2013) further 
support these strengths of the Fourier ADF test; hence, this study has chosen to conduct 
the test with the following model specification: 

𝑦! =λ" +λ# sin '
$%&'
(
( +λ$ cos '

$%)'
(
( + 𝑣!    

 (1) 

Where, “T” represents the sample size, “λ1” and “λ2” are the Fourier 
coefficients, “π” is the constant 3.1416, and “k” is the frequency value used to find the 
optimal value that minimizes the sum of squared residuals. 
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The equation λ" +λ#sin	 '
$%&'
(
( +λ$cos	 '

$%)'
(
( has been developed as a 

Fourier function form capable of capturing several smooth structural breaks in yt 
unknown form. In Equation 1, “k=1,2,3….” represents the number of frequencies in the 
Fourier function, “t”, denotes the trend term, “T”, stands for the sample size, and 𝜋 is 
the mathematical constant approximately equal to 3.1416. According to Equation 1, the 
null hypothesis assumes that 𝑣! has a unit root, while the alternative hypothesis suggests 
that 𝑣! exhibits linear or nonlinear stationarity (Zhou & Kutan, 2014). 

In the time series analyses, there are two critical issues: stationarity tests or, in 
other words, whether the series has a unit root, and analysis of whether there is a 
cointegration relationship among the series when there exists a unit root. If the series are 
stationary at different levels, traditional time series analysis is not appropriate (Fendoğlu 
& Gökçe, 2021). To solve this problem, Pesaran et al. (2001) put forward the ARDL 
bounds testing approach. This test allows researchers to use a dependent variable in I(1) 
form and independent variables in I(1) and I(0) forms. The ARDL approach is essentially 
based on F and t statistics. It specifically considers the upper and lower critical bounds, 
defined as I(1) and I(0), respectively. Where the critical value of the upper bound is 
surpassed by the test statistic from the ARDL, the null hypothesis would be rejected. 
The null essentially postulates that no cointegration relationship exists. The following 
can be expressed using the ARDL model developed by Pesaran et al. (2001): 

 ∆𝐶𝑃𝑈! =	𝛽" + 𝛽#𝐶𝑃𝑈!*# + 𝛽$𝐶𝐴𝑅𝐵𝑂𝑁!*# +	𝛽+𝐷𝑒𝐹𝑖!*# +	𝛽,𝑁𝐸𝑋!*# +
	∑ 𝜑-.
/*#
-0# ∆𝐶𝐴𝑅𝐵𝑂𝑁!*- +	∑ 𝜃-.

/*#
-0# ∆𝐷𝑒𝐹𝑖!*- +	∑ 𝜔-.

/*#
-0# ∆𝑁𝐸𝑋!*- +	𝑒!   (2) 

Where, Δ represents the first-difference operator, and p denotes the lag length, 
while 𝑒𝑡  represents the error term. The optimal lag length is determined based on the 
Akaike Information Criterion (AIC). According to Pesaran et al. (2001), to establish the 
existence of a cointegration relationship using the ARDL approach, the null hypotheses 
𝐻"1: 𝛽# = 𝛽$ = 𝛽+ = 0 and 𝐻"2: 𝛽# = 0 must be rejected, taking into account the F and 
t test statistics (Fendoğlu & Gökçe, 2021). 

In the ARDL process, test statistics obtained from both bounds upwards and 
downwards do not conclude with certainty whether there is cointegration between the 
series. Therefore, to overcome this limitation, Pesaran et al. (2001) extended the ARDL 
model by incorporating hypothesis 𝐻"3: 𝛽$ = 𝛽+ = 0and computed F-statistic (Fb) 
through bootstrapping methods (McNown et al., 2018). Through this approach, one is 
required to reject all the three hypotheses in order to conclude the existence of the 
cointegration relationship between the series. This newly proposed method also 
underlines that ARDL approach does not impose any restriction on the different 
integration orders of the explanatory variables and provides more robust results as 
compared to traditional ARDL approaches (McNown et al., 2018). 
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Although the Fourier function incorporated into the ARDL method has 
strengthened the test, structural changes in the time series can negatively affect the 
strength of the relationship between the series. To address these adverse effects of 
structural breaks on the Fourier ARDL test, Yilanci et al. (2020) introduced several 
enhancements, thereby improving the robustness of the Fourier ARDL test. The Fourier 
function in sine and cosine formats, as proposed by Yilanci et al. (2020) for the ARDL 
model, is expressed as follows: 

 𝑑(𝑡) = ∑  4
&0# 𝑎&sin	 '

$%&!
(
( + ∑  4

&0# 𝑏&cos	 '
$%&!
(
(   (3) 

Here, “k” represents the selected specific frequency number, “n” denotes the 
frequency number, “𝜋 = 3,1416” is the mathematical constant, “t” indicates the trend 
term, and “T” represents the sample size. In the model, the single-frequency framework 
proposed by Becker et al. (2006) and Ludlow and Enders, (2000) is considered, as 
described below (Fendoğlu & Gökçe, 2021): 

𝑑(𝑡) = 𝛾#sin	 '
$%&!
(
( + 𝛾$cos	 '

$%&!
(
(     (4) 

 Within the framework of the model established in this study, the Fourier ARDL 
model developed by Yilanci et al. (2020) is expressed as follows: 

 ∆𝐶𝑃𝑈! =	𝛽" + 𝛾# sin '
$%&!
(
( + 𝛾$ cos '

$%&!
(
( + 𝛽#𝐶𝑃𝑈!*# + 𝛽$𝐶𝐴𝑅𝐵𝑂𝑁!*# +

	𝛽+𝐷𝑒𝐹𝑖!*# +	𝛽,𝑁𝐸𝑋!*# +	∑ 𝜑-.
/*#
-0# ∆𝐶𝐴𝑅𝐵𝑂𝑁!*- +	∑ 𝜃-.

/*#
-0# ∆𝐷𝑒𝐹𝑖!*- +

	∑ 𝜔-.
/*#
-0# ∆𝑁𝐸𝑋!*- +	𝑒!       (5) 

Since this study analyzes the stationarity and cointegration relationships of the 
series with Fourier functions, the causality relationships between the series are also 
investigated using the Fourier Quantile Causality test developed by Cheng et al. (2021) 
abbreviated as BFGC-Q. This test has been designed to specifically respond to the 
shortcomings of the Fourier Toda-Yamamoto causality test as set forth by Nazlioglu et 
al. (2016), which does not take into account nonlinear causalities and tail-causality 
relationships revealed by Akyol et al. (2023). This methodology is critically contributing 
to the literature with respect to a robust causality test to complement a number of tests 
stemming from the standard Granger causality framework that Fareed et al. (2021) have 
mentioned. 

The null hypothesis of the Fourier Quantile Causality (BFGC-Q) test, stated as 
“does not cause” is tested using two procedures. In the first stage, to control smooth 
transitions in structural breaks, the deterministic term d(t), which is part of the Fourier 
expansion function as shown in Equation (2), is incorporated into the Granger causality 
equation as follows: 
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𝑌! = 𝛾" + 𝛾#sin	 '
$%&!
(
( + 𝛾$cos	 '

$%&!
(
( + ∑  /56

-0# 𝜃-𝑌!*- + ∑  7
80# ∑  /56

-0# 𝜗8,-𝑋8,!*- + 𝜀!
  (6) 

Here, Y and X represent the dependent and independent variables, respectively, 
“p” denotes the lag length, “h” represents the maximum order of integration, and “m” 
refers to the number of covariates. To estimate Equation (2), the optimal value of “k” is 
identified as 𝑘∗; “s”, and the appropriate lag length is denoted as 𝑝∗. After this process, 
for each “(i = 1,2,3,…,p)”, the Akaike Information Criterion (AIC) is used to determine 
the appropriate lag length 𝑝∗ and to select the 𝑘 = 𝑘∗ value that minimizes the Sum of 
Squared Residuals SSR. In this stage, the null hypothesis 𝛾# = 𝛾$ = 0 is tested using the 
standard restricted F test statistic. Once 𝑘∗ and 𝑝∗ are selected, Equation (2) is estimated 
not use the OLS estimator but instead with quantile regression, as expressed below: 

𝑄;!(𝜏 ∣ Z) = 𝛾"(𝜏) + 𝛾#(𝜏)sin	 '
$%&∗!
(
( + 𝛾$(𝜏)cos	 '

$%&∗!
(
(

+∑  /∗56
-0# 𝜃-(𝜏)𝑌!*- +∑  /∗56

-0# 𝜗8,-(𝜏)𝑋8,!*- + 𝜀!
  (7) 

The Z value represents the entire covariance matrix of regression Equation (7). 
Using this approach, Equation (7) is estimated via the quantile regression method, 
allowing for testing at different quantiles, 𝜏 ∈ (0,1). The null hypothesis, “no causality 
(X↛⊖Y)” can then be tested as follows: 

H": �̂�8,#(𝜏) = �̂�8,$(𝜏) = ⋯ = �̂�8,/∗(𝜏) = 0, 	∀𝜏 ∈ (0,1)   (8) 

The null hypothesis of “no causality” (X↛⊖Y) is tested under the constraint of 
Hypothesis (8) using the Wald test, which is calculated as follows: 

 Wald = _T ab�̂�8(𝜏)c
.
(Ω̂(𝜏))*#b�̂�8(𝜏)cde /𝜏(1 − 𝜏)    (9) 

Here, “�̂�8(𝜏)”) represents the estimated coefficient vector for the 𝜏 quantile, and 
Ω̂(𝜏) is the consistent estimator of the variance-covariance matrix for �̂�8(𝜏). Cheng et 
al. (2021) emphasize that during the development of the Fourier Quantile Causality test, 
issues such as autoregressive conditional heteroscedasticity (ARCH) effects—
commonly observed in data—could lead to deviations from asymptotic distributions of 
the Wald statistic, particularly when the data do not exhibit normal distribution (Hatemi-
J & Uddin, 2012). To overcome this issue, the approach includes critical values at the 
10%, 5%, and 1% significance levels obtained from empirical distributions underlying 
the their method. In addition, a simulation method using 10,000 iterations tests the null 
hypotheses of sine and cosine terms in Equation, which uses a restricted F statistic. 

To give the robustness to the results, we also use KRLS (kernel-based 
regularized least squares) method developed by Hainmueller and Hazlett, (2014). The 
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machine learning-based KRLS approach has gained much popularity in finance due to 
its several advantages. For instance, its applicability for nonlinear models, flexibility in 
accommodating classical regression assumptions, interpretation of complex 
relationships, the computing of marginal effects efficiently on its radial basis functional 
structure, optimization model performance based on the metric of leave-one-out loss, 
automatic selection of hyper parameters, such as kernel bandwidth and regularization 
parameter, applicability to small samples and high-dimensional datasets, and finally 
being able to allow for heterogeneity of effects of independent variables on the 
dependent variable make the KRLS approach robust method in quantitative research. 
The partial derivatives taking part in the KRLS approach can be represented in an 
elaborate, short mathematical form shown in equation 10: 

<#∧

<=%
(') =

*$
>)
∑  - 𝑐-𝑒

*+,*+,
)

-) '𝑥-
(@) − 𝑥8

(@)(    (10) 

Here, <#.

<=%
(/) is the derivative of the Climate Policy Uncertainty (CPU), with respect to the 

S&P Global Carbon Credit Index (CARBON), S&P Cryptocurrency DeFi Index-USD 
(DeFi), WilderHill New Energy Global Innovation Index (NEX) have evaluated at a 
given point. 𝑐- represents scaled and weighted predictors. Meanwhile, 𝜎$ is the kernel 
bandwidth; “i” is the total number of observations, while “j” is an individual observation. 
In order to analyze the marginal effects of the input variables in the KRLS method, one 
calculates the partial derivatives of the dependent variable individually for each 
independent variable. The estimation of KRLS is expressed in equation (11): 

CPU$! = ꓘ	𝐶𝑃𝑈$!*0 + 𝛿# CARBON !*# + 𝛿$ DeFi !*# + 𝛿+ NEX !*#
+𝜐!

  (11) 

KRLS models provide a closed-form estimation of pointwise marginal derivatives and 
assess the marginal effects of covariates for each individual data point (Kartal et al., 
2023). In equation (11), ꓘ and 𝛿# to 𝛿+ represent the mean marginal effects calculated 
through the KRLS method. 𝜐!, is the error term of the machine learning model 
estimation. Additionally, the KRLS approach enables the visualization of increasing or 
decreasing returns through graphical representations of average binary marginal effects. 
This method effectively captures and highlights the interactions between the pointwise 
marginal derivatives of a variable and other parameters (Choi & Lee, 2020). 
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EMPIRICAL RESULTS 

In the first step of the analysis, we explored the stationarity level of the series. 
We conducted Fourier ADF unit root tests for stationarity and presented them in Table 
3. Due to the findings, strongly non-stationary variables of CPU, DeFi, and NEX 
variables were in constant and constant & trend models. From the constant model, at 5% 
and 10%, respectively, we could observe that the CARBON variable is stationary. 
However, in a constant and trend model, it is not stationary at all levels. Thus, we 
realized that there is a high tendency of non-stationarity of the CARBON variable. 
Moreover, the analyzed results depict that all series are not stationary at the first 
deference from the constant and constant & trend model. We therefore concluded that 
all series are stationary at the I(1). 

 

Table 3: Fourier ADF Unit Root Test Results 

Variables 
Test Stats. Critical values Test Stats. Critical values 

Constant ψ 1% 5% 10% Constant  
& Trend ψ 1% 5% 10% 

CPU -2.66 3 −3.77 −3.07 −2.71 -2.27 3 −4.45 −3.78 −3.44 
CARBON -3.89** 1 −4.42 −3.81 −3.49 -3.25 1 −4.95 −4.35   −4.05 
DeFi -2.31 2 −3.97 −3.27 −2.91 -1.51 2 −4.69 −4.05 −3.71 
NEX -2.96 1 −4.42 −3.81 −3.49 -2.90 1 −4.95 −4.35   −4.05 
∆CPU -13.29*** 5 −3.58 −2.93 −2.60 -13.21*** 5 −4.20 −3.56 −3.22 
∆CARBON -9.07*** 2 −3.97 −3.27 −2.91 -9.15*** 1 −4.95 −4.35   −4.05 
∆DeFi -3.69*** 4 −3.64 −2.97 −2.64 -4.81** 1 −4.95 −4.35   −4.05 
∆NEX -8.25*** 1 −4.42 −3.81 −3.49 -8.21*** 1 −4.95 −4.35   −4.05 

Note: “*”, “**” and “***” indicates statistical significance at 10, 5 and 1% level, respectively. 
“Ψ” represent Fourier number. The null of the Fourier ADF unit root test would be designed as 
“there exists a unit root=the series is not stationary.” The test statistics computed hereby are then 
compared to the critical values provided by the study of Enders and Lee (2012) in order to analyze 
whether a unit root exists. If the absolute value of the Fourier ADF test statistics are less than the 
critical values, the null hypothesis of non-stationarity cannot be rejected. Otherwise, in the case 
where the test statistic in absolute value is greater than the critical values, the null hypothesis of 
non-stationarity is to be rejected against all the alternatives, indicating that the series is stationary. 

 

Table 4: Fourier Bootstrap ARDL Test Results 

FARDL Model a: (1,0,0,1)         

FARDL Model b: (1,0,0,1)   k=3.20  

FARDL Model c: (1,0,0,1)   AIC: 0.224866 
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FARDL Model d: (1,2,1,1)       

   Bootstrap Critical Values 
   Test Statistics 10% 5% 1% 

Fa 8.06 4.85 5.47 7.38 
t -5.54 -3.88 -4.25 -5.07 
Fb 3.60 5.01 5.93 7.91 

Note: “*”, “**” and “***” indicates statistical significance at 10, 5 and 1% level, 
respectively. “k” represents the optimal number of frequencies; and “AIC” refers to the Akaike 
information criterion test statistic. The null hypothesis of the FARDL cointegration test, similar 
to the classical ARDL test, is formulated as “Ho: There is no cointegration relationship between 
the series.” If the FARDL test statistic is greater in absolute terms than the bootstrap critical 
values, it can be concluded that there is a cointegration relationship between the series; otherwise, 
no cointegration relationship is present. 

According to the Fourier ADF unit root test results, the fact that all series are 
stationary at the I(1) level raises the question of whether there is a cointegration 
relationship among the series. In the second stage of the analysis, we examined the 
existence of a long term relationship between CPU and CARBON, DeFi, and NEX using 
the Fourier ARDL bootstrap cointegration test, and the results are presented in Table 4. 
The results show that there exists a cointegration relationship between the series, 
according to the “Fa” test statistic (8.06), which has surpassed the bootstrap critical 
values at 10%, 5%, and 1% levels of significance, which are represented by 4.85, 5.47, 
and 7.38, respectively. Also, the “t” test statistic (-5.54) has exceeded the bootstrap 
critical values at 10%, 5%, and 1% significance levels represented by -3.88, -4.25, and -
5.07, respectively, thus inferring that there is a cointegration relationship among the 
series. However, because the ‘Fb’ test statistic (3.60) is below the bootstrap critical 
values at 10%, 5%, and 1% significance levels, which are 5.01, 5.93, and 7.91 
correspondingly, one can claim no cointegration relationship between the series. In 
summary, according to the results of “Fa” and “t” tests, it can be said that there is a 
cointegration relationship between CPU and CARBON, DeFi, and NEX. 

 

Table 5: Fourier ARDL Long and Short – term Coefficient Test Results 

Variables 
FARDL Long Term Cointegration Results 

Coefficient Standard Errors T- Stat. p- value 

CARBON -0.852** 0.391 -2.178 0.033 
DeFi  0.080 0.112 0.713 0.478 
NEX  0.369* 0.203 1.813 0.075 
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FARDL Short Term Cointegration and ECT Results 

Variables Coefficient Standard Errors T- Stat. p- value 

Constant Term  6.159*** 0.788 7.816 0.000 
@TREND  0.020*** 0.003 6.938 0.000 
∆DeFi -0.237** 0.113 -2.098 0.040 
∆DeFi t-1 -0.170 0.104 -1.636 0.107 
∆DeFi t-2 -0.249** 0.106 -2.339 0.023 
∆NEX  1.098*** 0.399 2.750 0.008 
SİN -0.039 0.047 -0.824 0.413 
COS -0.158*** 0.051 -3.127 0.003 
ECTt-1 -0.863*** 0.109 -7.908 0.000 

 Model Specification Test Results 

Heteroscedasticity Test Stat 1.115 
[0.347] Jargue - Bera Test Stat. 3.357 

[0.186] 

Serial Correlation LM Test Stat. 0.469 
[0.628] Ramsey Reset Test  2.355 

[ 0.081] 
Note: “*”, “**” and “***” indicates statistical significance at 10, 5 and 1% level, 

respectively. The estimation method have been constructed using Huber-White-Hinkley (HC1) 
heteroscedasticity consistent standard errors and covariance.  
 

In the third stage of the analysis process, we derive the long run and short run 
coefficient estimation results of the Fourier ARDL cointegration test and illustrate them 
in Table 5. Considering the FARDL long run coefficient estimates, there is a statistically 
significant long run cointegration relationship between CARBON and CPU index at the 
5% significance level, and the coefficient estimate is estimated at -0.852. Hence, a 1% 
increase in the CARBON variable is associated with a 0.85% decrease in the CPU index 
in the long run. This indicates that increases in price movements in the carbon credit 
market serve a mitigating function in climate uncertainty in the long run. These findings 
of the study corroborate the study of Wu et al. (2022), which asserts that there is a 
negative relationship between European Union allowance futures and CPU. On the other 
hand, this study does not support the idea put forward by Su et al. (2024) that there is a 
positive relationship between the European Union Emissions Trading System and high 
quantiles of the CPU. This implies that the long run effects of changes in carbon markets 
on climate uncertainty in the EU countries are still ambiguous. However, based on the 
results of this study, the carbon market in the U.S. is increasingly comprehended by 
regulatory frameworks at the global level, and carbon trading is acknowledged as an 
investment instrument. This may signal that the carbon market in the U.S. has gained an 
institutionalized structure and may reduce climate uncertainty. When we look at the short 
run relationship, changes in carbon markets do not have any impact on the CPU. 
Therefore, policymakers need to implement the strategy of reducing climate policy 
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uncertainty via adjustments in carbon markets in a long term rather than a short term 
framework. Drawing on these results, this study aims to be the first in investigating the 
short term effects of fluctuations in carbon market dynamics on climate policy 
uncertainty (CPU).  

Moreover, we identify that the impact of DeFi on climate policy uncertainty 
(CPU) varies in the short and long run. In the long run, the coefficient of DeFi on CPU 
is positive yet statistically insignificant. This could suggest that the financial innovations 
and uncertainties created by the DeFi may not have a lasting impact on the long term 
objectives and strategic frameworks of climate policies. Moreover, the advancement of 
DeFi markets and the establishment of regulatory frameworks may have diminished the 
influence on climate policy uncertainty insignificantly. Considering the short term 
dynamics (the dataset is structured at a monthly frequency), the effect of the current 
period change in DeFi (∆DeFi) on CPU is significant at the 5% level and its coefficient 
is -0.237. Notably, the current period change in DeFi corresponds to a 0.237% reduction 
in CPU. Moreover, the effect of the change in DeFi two months ago (∆DeFi t-2) on CPU 
is statistically significant at the 5% level, and its coefficient is -0.249. This finding 
suggests that the change in the DeFi two months ago decreased the CPU by 0.249%. 
Although the one-month lagged change in (∆DeFi t-1) is not statistically significant 
(p>0.10), it appears to exert a negative impact on CPU. This study corroborates the 
perspective that climate uncertainty negatively affects bitcoin carbon footprint as 
proposed by Dong et al. (2024), but does not corroborate the view that bitcoin returns 
increase climate uncertainty as proposed by Gürsoy et al. (2024). 

Finally, we examine the long term and short term effects of NEX. NEX is 
statistically positive and significant at 10% for CPU in the long run, and its coefficient 
is 0.369. This finding suggests that the current period change in NEX results in a 0.369% 
rise in CPU. A similar result is observed within the short term framework. The monthly 
fluctuation in NEX (∆NEX) is statistically significant at the 1% level for CPU, and its 
coefficient is 1.098. From this result, we can conclude that the monthly variation in the 
NEX variable induces a 1.098% increment on the CPU. These results suggest that 
investors increase demand for clean energy stocks during periods of heightened climate 
uncertainty. This approach supports studies claiming that climate uncertainty increases 
stock returns in Europe (Tedeschi et al., 2024); climate policy uncertainty is a strong 
indicator of renewable energy market volatility in the US (Liang et al., 2022); and green 
investments are perceived to be safer in uncertain environments (Bouri et al., 2022). 
Consequently, it is evident that we perceive that investors increase their investments in 
green energy, which are sustainable assets, with a “strategic market” approach during 
periods of increased climate policy uncertainty in the US. 
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Figure 1: CUSUM and CUSUM of Square Test Results 

 

 
 

To ensure the consistency of the results, this study also evaluates the model 
specification tests using the FARDL test. The heteroscedasticity test (test stat. 1.115, 
p>0.05) demonstrates that the variance of the error terms is constant and there is no 
heteroscedasticity problem in the model. The Jarque-Bera test (test stat.: 3.357, p>0.05) 
confirms that the residuals satisfy the assumption of normal distribution. The LM test 
for serial correlation (test statistic: 0.469, p>0.05) reveals that there is no serial 
correlation between the residuals. Finally, the Ramsey RESET test (test statistic: 2.355, 
p>0.05) shows that there is no specification error in the model at 1% and 5% significance 
levels. All these results imply that the model satisfies the basic assumption and is 
methodologically robust for use. One of the key assumptions for the model validity is 
that the coefficient of the error correction term (ECT) must exhibit a negative sign and 
attain statistical significance. The ECT coefficient of the FARDL model derived in this 
analysis is -0.863 and p<0.01. This finding demonstrates that the discrepancies arising 
among the variables in the model in each period are adjusted by 86.3% in the next period 
and converge towards the long run equilibrium. This indicates that the discrepancies 
diminish over time and the model functions efficiently in resolving inconsistencies. 
Finally, Figure 1 shows the CUSUM and CUSUM of square test results. Both results 
validate the parameter stability and reliability of the model. These results suggest that 
the long run performance of the model is consistent and that there are no structural 
breaks. 

 

ROBUSTNESS CHECK 

To give robustness to the results of the study, we present the KRLS (kernel-
based regularized least squares) non-linear machine learning test results in Table 7 and 
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the marginal effects obtained with the derivative in Figures 2, 3, and 4, respectively. 
Moreover, this study investigates the causal relationship between CARBON, DeFi, 
NEX, and CPU with a novel Fourier bootstrap quantile causality test and shows it in 
Table 8. 

Table 7: KRLS Non – linear Machine Learning Test Results 

Variables Avg. SE t P>t P25 P50 P75 

Lltolerans: (.20)        
CARBON  0.057 0.129 0.441 0.660 -0.549 0.321 0.466 
DeFi -0.289*** 0.062 -4.704 0.000 -0.796 -0.205 0.193 
NEX  0.909*** 0.167 5.443 0.000 0.481 0.900 1.310 

Ltolerans: (.40)        
CARBON  0.057 0.129 0.441 0.660 -0.549 0.321 0.466 
DeFi -0.289*** 0.062 -4.704 0.000 -0.796 -0.205 0.193 
NEX  0.909*** 0.167 5.443 0.000 0.481 0.900 1.310 

Ltolerans: (.60)        
CARBON  0.045 0.120 0.378 0.706 -0.495 0.270 0.433 

DeFi -0.280*** 0.060 -4.707 0.000 -0.767 -0.210 0.189 
NEX  0.851*** 0.159 5.340 0.000 0.477 0.841 1.223 

Ltolerans: (.80)        
CARBON  0.033 0.109 0.297 0.767 -0.455 0.223 0.403 
DeFi -0.267*** 0.057 -4.677 0.000 -0.727 -0.212 0.177 
NEX  0.778*** 0.150 5.183 0.000 0.452 0.750 1.068 

Note: “*”, “**” and “***” indicates statistical significance at 10%, 5% and 1% level, 
respectively. 

The results of the Table 7 nonlinear machine learning test show that there is no 
statistically significant relationship between carbon and CPU at all tolerance levels, 
which is consistent with the long term results of the FARDL. This suggests that the 
relationship between carbon credit and climate policy uncertainty has a short term effect. 
On the other hand, the relationship between DeFi and CPU is statistically significant at 
the 1% level. These results support the related results in FARDL short term. Hence, it 
reveals that DeFi has a short term rather than a long term relationship. Finally, the 
relationship between NEX and CPU is positively significant at the 1% level. This result 
corroborates both the long run and short run findings of FARDL. In addition to these 
results, the relationship between DeFi and CPU and between NEX and CPU is examined 
with “lowess smoother” plots, assessing the impacts of DeFi and NEX derivatives at 
low, medium, and high values of CPU (since CARBON is not statistically significant, 
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the graph for this variable is ignored). Figure 2 shows the relationship between the 
marginal effects of DeFi and NEX (variations in their respective derivatives) and CPU. 

 

Figure 2: DeFi and NEX Marginal Effect on CPU 

 

Considering Figure 2(a), DeFi has a negative and statistically significant effect 
on CPU. However, the strength of this effect varies depending on the CPU level. At low 
CPU levels, the impact of DeFi is weaker, whereas the negative impact becomes stronger 
as uncertainty increases. During periods of low climate policy uncertainty in the US, the 
attractiveness of DeFi declines as investors turn to traditional markets. In contrast, 
during periods of high uncertainty, investors gravitate toward DeFi, which initially 
increases market volatility. However, as uncertainty deepens, DeFi markets act as a kind 
of “challenging market,” reacting to inadequate policy interventions and pricing 
mechanisms that reflect stronger signals. Figure 2(b) shows that there is a U-shaped 
relationship between NEX and CPU. As CPU increases, the positive effect of the 
relationship between NEX and CPU decreases. The relationship in question attains its 
minimum positive correlation at the intermediate CPU level. However, with further 
increases in CPU, the relationship between NEX and CPU reverts to a positive point as 
time progresses. These findings reinforce our idea that investors increase their 
investments in green energy as a sustainable asset with a “strategic market” approach 
during periods of increased uncertainty in climate policies in the US. 

In this context, DeFi and NEX respond to climate policy uncertainty clearly 
demonstrate that investors diversify their portfolios between these two markets. DeFi 
may function as a “challenging market” against inadequate climate policy. In conditions 
of high uncertainty, NEX commence to play the role of a “strategic market”. However, 
strong uncertainty in climate policy leads to heightened volatility in the NEX markets, 
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which may exacerbate climate uncertainty. For this reason, US policymakers need to 
develop more predictable and effective policies on climate issues; these would contribute 
to balancing the market’s immediate reactions and investor behavior. 

 

Table 8: Fourier Bootstrap Quantile Causality Test Results 
CARBON → CPU        CPU → CARBON       
 Optimum lags and frequency 

 (1, 2.70)     
Optimum lags and frequency 
(1,2)     

Quantiles Walt  
Stats. 

  
(%10

) 

BCV 
( %5) 

 
(%1) 

Quantile
s 

Walt  
Stats. 

 
(%10

) 

BCV 
( %5) 

 
(%1) 

Q10 4.788  4.878 5.311 8.669 Q10 2.418 2.857 4.119 9.179 
Q20 5.355*  5.179 7.562 12.18 Q20 3.714** 2.331 3.319 6.822 

Q30 
7.033*
* 

 
4.037 6.260 10.98 Q30 1.583* 1.193 1.983 5.912 

Q40 
7.523*
* 

 
4.461 5.814 9.203 Q40 0.524 1.143 1.832 2.734 

Q50 3.200  4.009 4.736 8.447 Q50 0.557 1.341 1.954 2.833 
Q60 1.357  3.873 5.712 7.852 Q60 0.779 1.387 2.082 3.720 
Q70 1.274  4.007 5.215 9.671 Q70 1.464 1.829 2.041 3.263 
Q80 0.398  4.820 7.196 10.84 Q80 1.878 1.977 2.874 5.763 
Q90 4.248  5.658 7.724 14.89 Q90 0.004 2.815 4.962 8.039 

DeFi → CPU     CPU → DeFi    
 Optimum lags and frequency (1, 

0.80)     
Optimum lags and frequency 
(4, 1.80)     

Quantiles Walt  
Stats. 

  
(%10

) 

BCV 
( %5) 

 
(%1) 

Quantile
s 

Walt  
Stats. 

 
(%10

) 

BCV 
( %5) 

 
 (%1) 

Q10 0.413 
 

3.721 4.376 
13.46
5 Q10 

13.59**
* 8.535 9.694 13.50 

Q20 0.136  3.047 3.928 6.877 Q20 5.328 7.383 8.345 8.896 
Q30 0.413  2.461 3.611 5.743 Q30 2.988 5.937 7.960 11.15 
Q40 0.169  2.374 3.191 5.555 Q40 2.025 5.504 7.101 11.05 
Q50 0.260  1.975 3.766 5.585 Q50 3.080 5.893 6.917 11.45 
Q60 0.450  2.107 2.575 3.807 Q60 2.882 6.469 6.931 11.53 
Q70 1.541  2.019 3.179 4.346 Q70 5.474 6.800 8.530 12.28 

Q80 
3.124*
* 

 
2.195 3.114 5.445 Q80 2.964 8.933 

10.45
8 12.96 

Q90 0.106 
 

3.777 4.174 7.746 Q90 0.573 11.93 
15.90
2 21.41 

NEX → CPU     CPU → NEX    
 Optimum lags and frequency (1, 

0.80)     
Optimum lags and frequency 
(1, 0.70)     

Quantiles Walt  
Stats. 

  
(%10

) 

BCV 
( %5) 

 
(%1) 

Quantile
s 

Walt  
Stats. 

 
(%10

) 

BCV 
( %5) 

 
(%1) 

Q10 1.323  4.087 6.821 13.44 Q10 0.892 3.245 4.357 7.682 

Q20 
6.410*
* 

 2.997 4.650 8.770 Q20 0.026 1.926 2.258 3.342 

Q30 3.347*  2.951 3.890 5.048 Q30 0.167 1.645 2.342 4.749 
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Q40 3.266*  2.546 3.456 5.978 Q40 0.007 1.500 2.664 5.666 

Q50 
3.757*
* 

 2.241 3.347 4.947 Q50 0.110 1.590 2.923 5.109 

Q60 0.287  3.023 4.809 6.727 Q60 0.001 1.774 2.904 5.542 
Q70 0.717  3.998 6.038 8.668 Q70 0.008 2.607 3.593 6.722 
Q80 1.698  3.531 6.851 9.341 Q80 0.295 3.165 3.897 7.676 
Q90 0.046  4.166 6.550 10.02 Q90* 4.417 4.100 5.477 10.28 

Note: “*,” “**,” and “***” indicate statistical significance at the 10%, 5%, and 1% 
levels, respectively. BCV, CPU, CARBON, DeFi, NEX represent Bootstrap Critical Value, 
Climate Policy Uncertainty, S&P Global Carbon Credit Index, S&P Cryptocurrency DeFi Index, 
and WilderHill New Energy Global Innovation Index, respectively. 
 

Table 8 shows the Fourier bootstrap quantile causality test results. The initial 
finding is that there exists a causality from CARBON to CPU in the 2nd, 3rd, and 4th 
quantiles, and from CPU to CARBON in the 2nd and 3rd quantiles. This indicates that in 
the long run, the development of carbon markets and the clarification of the rules and 
framework for climate policies may mitigate climate policy uncertainty. However, in the 
medium term, price volatility in carbon markets may amplify uncertainty, especially in 
the intermediate quantiles of the CPU. The causality from CPU to CARBON suggests 
that policy uncertainty leads to volatility and price volatility in carbon markets. Next, 
we identify that there is a causality from DeFi to CPU in the 8th quantile and from CPU 
to DeFi in the 1st quantile. The causality from DeFi to CPU is clear in the upper 
quantiles. This finding suggests that increased market volatility in crypto markets may 
amplify uncertainty by exerting pressure on regulatory authorities. The causality from 
CPU to DeFi shows the negligible influence of policy uncertainty on DeFi markets at 
lower quantiles. Finally, there is a causal relationship from NEX to CPU in the 2nd, 3rd, 
4th, and 5th quantiles and from CPU to NEX in the 9th quantile. This shows that investors’ 
risk perception is shaped during periods of moderate levels of climate uncertainty. From 
this point on, investors aim to invest in green energy technologies, which are sustainable 
assets in the long run. On the other hand, climate uncertainty can only affect these 
markets when they are at its highest levels. 

 

CONCLUSION AND POLICY IMPLICATIONS 

This study aims to investigate the effects of carbon credits (S&P Global Carbon 
Credit Index), decentralized finance (S&P Cryptocurrency DeFi Index), and the market 
dynamics of renewable energy-focused global companies (WilderHill New Energy 
Global Innovation Index) on climate policy uncertainty (CPU) in the US. Fourier ADF, 
Fourier Bootstrap ARDL, and Fourier Bootstrap Quantile causality analyses are 
conducted using monthly data for the period December 2017–March 2024. In addition, 
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to enhance the robustness of the study, the results are analyzed in depth with KRSL tests 
developed based on machine learning, which reveal non-linear dynamics. 

The results indicate a negative long run relationship between carbon credits 
(CARBON) and CPU. This would suggest that institutionalization of the carbon markets 
in the legislative framework creates an uncertainty-reducing effect. However, in the 
short run, no significant effect of changes in CARBON on CPU is detected. In addition, 
nonlinear machine learning techniques (KRLS) support these views. These findings are 
consistent with the results of Wu et al. (2022), but do not corroborate the results of Su et 
al. (2024). Moreover, the results indicate that the impact of DeFi on CPU is insignificant 
statistically and thereby implies that DeFi does not have a long run effect on climate 
policies. In the short run, the relationship is negative and statistically significant. These 
results are supported by Dong et al. (2024), who argue that market volatility has a 
negative impact on climate uncertainty during periods of high climate uncertainty. This 
study additionally finds that the impact of DeFi on CPU varies with different levels of 
climate uncertainty. For example, we find that the impact of DeFi on climate uncertainty 
weakens when climate uncertainty is low and the impact of DeFi strengthens when 
climate uncertainty increases. According to these results, during periods of high climate 
uncertainty, DeFi functions as a “challenging market” for investors as a substitute for 
traditional markets and responds more strongly to deepening uncertainties. Finally, NEX 
has a positive and significant impact on climate policy uncertainty (CPU) in both the 
short and long run. These findings are corroborated by existing literature (Bouri et al., 
2022; Liang et al., 2022; Tedeschi et al., 2024). Specifically, however, this study finds 
that during periods of heightened climate policy uncertainty, investors tend to allocate 
more capital toward renewable energy stocks, which are sustainable assets. Moreover, 
the reactivity of renewable energy stocks with respect to climate uncertainty is 
moderated during medium climate uncertainty periods and rises when uncertainty is 
high. Here, DeFi is a “challenging market” vis-à-vis inadequate climate policies, while 
the volatility of renewable energy stocks becomes a sort of “strategic market” during 
periods of higher uncertainty. 

Regarding policy recommendations, this study offers many recommendations 
for the carbon credits strategy, cryptocurrency DeFi markets and global new energy 
innovations for the US. First, given the uncertainty-reducing effect of carbon markets in 
the long run, these markets need to be more institutionalized and regulated. Carbon 
credits should be priced transparently, and market operations should be reinforced by 
domestic and transnational legislative frameworks. Institutionalization efforts and a 
review of pricing policy will enhance investor trust and ensure conformity with 
ecological objectives. Second, Volatility in the DeFi markets is demonstrated to exert a 
negative impact on the CPU in the short term. Therefore, it is imperative that DeFi 



 
 
 
 
 
 
Navigating Us Climate…                           DEU Journal of GSSS, Vol: 27, Issue: 2 
 

 837 

markets are reorganized, legislative frameworks are prioritized within legislative 
discourse, and investors are informed with a transparent management approach. These 
regulations should foster investor confidence and protect their interests, while at the 
same time being flexible in a way that does not hinder innovation. Aligned with the US 
climate policy goals for 2026, the integration of WEFI into carbon markets and 
sustainable finance can also make a substantial impact on achieving these goals. Finally, 
at the global level, US-led countries, international cooperation, and long term strategic 
policies should be developed to manage the positive impact of NEX on the CPU and 
promote sustainable energy investments. In particular, the renewable energy sector and 
carbon markets should be integrated with international standards, as in DeFi. In addition, 
global funding mechanisms should be established to support clean technology 
innovations, and access to green financing instruments from international financial 
institutions should be facilitated. In this process, the US should legislate tax incentives 
and R&D investment incentives for innovation-based energy solutions. Finally, energy 
projects should be promoted to the public, and the participation of local communities in 
these projects should be increased. 

There are two limitations to this study. First, the results of this study are assessed 
for a single national context because the climate uncertainty index was developed for the 
United States. Second, since the climate uncertainty index is a newly developed index, 
the time series comprises only 76 observations. In further studies, the factors affecting 
the climate uncertainty index can be examined for different country groups. In addition, 
the financial markets and indices affected by the index in question are limited due to the 
specifications of the newly developed Fourier function methodologies in our study. The 
findings and claims of our study can be revalidated with different methods. 
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