Sakarya Üniversitesi Fen Bilimleri Dergisi Sakarya University Journal of Science

e-ISSN : 2147-835X Publisher : Sakarya University Vol. 29, No. 3, 250-257, 2025 DOI: https://doi.org/10.16984/saufenbilder.1603234

Research Article

The Use of Synthesized Zinc Oxysulphide Nanoparticles in Phosphate Phosphorus Removal from Synthetic Wastewater and Statistical Analysis

Nilüfer Ülgüdür

Düzce University, Faculty of Engineering, Department of Environmental Engineering, Düzce, Türkiye, niluferulgudur@duzce.edu.tr, ror.org/04175wc52

ARTICLE INFO	ABSTRACT
Keywords: Phosphorus Adsorption Regression Zinc oxysulfide	This study investigated the phosphate phosphorus (PO ₄ -P) removal potential of zinc oxysulfide (ZnO _x S _y) nanoparticles obtained by fifteen varying component ratios. The statistical meaning of the distinct synthesis compositions was evaluated by regression analysis based on the response of PO ₄ -P removal efficiencies. The results indicated that ZnO _x S _y nanoparticles could remove PO ₄ -P by 99.5% without optimization of the adsorption process (Initial PO ₄ -P concentration: 15 mg/L, adsorbent dose: 1 g/L, pH: 4.31, contact time: 2 hr). However, the synthesis
Article History: Received: 17.12.2024 Revised: 29.03.2025 Accepted: 08.05.2025 Online Available: 10.06.2025	The data could be interpreted by regression analysis with a high R^2 of 89.61% and p value of 0.000. The main component that positively affect the PO ₄ -P removal efficiency was hydrogen peroxide, whereas sodium sulfide component had a limited effect.

1. Introduction

Phosphorus is a nutrient for living things. However, it can be regarded as a pollutant when severe consequences of its prevalence in water bodies such as eutrophication is considered. Therefore, phosphorus pollution in water bodies should be controlled by eliminating the discharges of or treating phosphorus containing wastes and wastewaters [1, 2]. The oxidation states of phosphorus are +II, +III, +IV, and +V and the coordination numbers range from one to six [3]. The removal of phosphorus from water should have supposedly been simple depending on the positive charge related to the oxidation state of the phosphorus. Since the positively charged pollutants can be removed by conventional adsorbents such as zeolites and clay due to their opposite (negative) surface charges [4].

However, phosphorus forms oxyanions in water (i.e. dihydrogen phosphate- H2PO4⁻, hydrogen phosphate -HPO4²⁻ and phosphate- PO4³⁻), which can convert positively charged phosphorus element into negatively charged compounds by attracting oxygen elements in water depending on the pH value [5]. Thus, the removal of phosphorus from aqueous solutions become challenging.

Several methods have been offered for phosphorus removal from aqueous environment such as physico-chemical, biological and/or combinations [6, 7]. However, these methods have several limitations that can be regarded as the lack of cost-effectiveness and high removal efficiencies, the generation of toxic products or wastes which requires to be further handling [7]. Adsorption processes have been considered as a widely applicable pollutant removal process based on the high removal efficiencies, costeffectiveness and easy application [8-10]. Nanoparticles and the derivative composites are emerging adsorbents for phosphorus removal due to their reactivities, selectivity and high surface areas [11,12].

Cite as: N. Ülgüdür, "The use of synthesized zinc oxysulphide nanoparticles in phosphate phosphorus removal from synthetic wastewater and statistical analysis," Sakarya University Journal of Science, vol. 29, no. 3, pp. 250-257, 2025. https://doi.org/10.16984/saufenbilder.1603234

Lanthanum-zirconium binary metal oxide nanoparticles [10] and ceria-loaded biochar [12] are among the emerging adsorbents produced with the aim of phosphate phosphorus (PO4-P) removal. These adsorbents offer high removal efficiencies, selectivity for PO4-P and fast removal kinetics [11, 12]. However, the use of rare earth metals such as lanthanum and ceria, can increase the overall cost of the process due to their lower abundance and relatively high costs [13].

Relatively economical alternatives of the nanoparticles can also be used as PO₄-P adsorbents. Nanoscale zero valent iron (nZVI) has been widely used adsorbents in water treatment due to its reaction and reduction potential with most of the pollutants in aqueous environment. nZVI dose of 1 g/L can remove 76.8 mg PO₄-P when the initial concentration is 100 mg/L [14], while silica nanoparticles obtained from rice husk ash had PO₄ adsorption capacity of 9.08 mg/g [15]. Iron-manganese oxide spinel with MnFe₂O₄ structure exhibited PO₄-P adsorption efficiency of 98.52% (adsorbent dosage: 2.5 g/L, PO₄-P concentration: 10 ppm) [16].

These studies apparently demonstrate the efficiency of nanoparticles in PO₄-P removal from aqueous environment. However, the variability in synthesis conditions of nanoparticles can considerably affect the key features of the adsorbents such as particle size, shape and functional groups [17-19]. Therefore, the synthesis conditions should be optimized depending on the target pollutant to identify the critical components in the synthesis to reach an efficient treatment process.

Zinc (Zn) is one of the abundant, low-cost and environmentally friendly material [20], which can be used in adsorbent synthesis. Furthermore, Zn can improve the selectivity in adsorption processes for enhancing PO4-P removal [21, 22]. To date, Zn has been incorporated into nanoparticles and their composites such as in the form of CaZnFeZr; MgFeZr and MgZnFe [21]. On the other hand, zinc oxysulfide (ZnO_xS_y) nanoparticles have been synthesized and used for the removal of another oxyanion, i.e. arsenic, from aqueous solutions [23]. However, there is no study investigated PO₄-P removal using ZnO_xS_y nanoparticles.

This study aims at identification of the optimum chemical synthesis conditions of ZnO_xS_y nanoparticles for the removal of PO₄-P from aqueous environment. To this purpose, ZnO_xS_y nanoparticles were synthesized under varying compositions of the chemical components. Batch PO₄-P adsorption tests were performed for each synthesis. The results were evaluated by fitting a regression model to reach an efficient PO₄-P adsorbent.

1. General Methods

1.1. Synthesis of zinc oxysulfide particles

ZnO_xS_y particles were synthesized according to the method proposed by Uppal et al [23]. Briefly, zinc chloride (ZnCl₂) was dissolved in deionized water. Concentrated ammonium hydroxide solution (NH4OH, 25%, will be denoted as NH4) was added to the solution. Sodium sulfide nonahydrate (Na₂S.9H₂O, will be denoted as Na₂S) and hydrogen peroxide (H₂O₂, 30%) were added to the solution, respectively. The process for the formation of ZnOxSy was carried out under continuous stirring and at approximately 90°C. The formed precipitate was filtered and washed thoroughly with deionized water. ZnO_xS_y nanoparticles were then dried in the oven at 65°C overnight. Fifteen forms of ZnO_xS_y nanoparticles with varying components were synthesized and used in the study.

1.2. Batch adsorption tests

Synthetic phosphate solution was prepared by dissolving potassium dihydrogen phosphate (KH₂PO₄) in deionized water. The initial concentration of PO₄-P was set to 15 mg/L. The initial pH of the solution was 4.31. The adsorbent dose was 1 g/L. The batch adsorption experiment was performed for each adsorbent in a rotary mixer at 70 rpm using 50 mL centrifuge tubes. The solution was immediately filtered from 0.22 μ m pore-sized nylon syringe filters.

PO₄-P was measured spectrophotometrically by ascorbic acid method according to the Standard methods [24]. The following formula was used to

calculate the removal of the adsorption process [25]:

$$R(\%) = \frac{(C_o - C_e)}{C_o} x100 \tag{1}$$

where C_o and C_e represent the initial and final concentrations of PO₄-P in the solution (mg/L) and R represents the PO₄-P removal efficiency.

1.3. Regression model analysis

Minitab Statistical Software 22 was used to identify the optimum regression equation considering the system components. This equation representing the best correlation between the synthesis components and PO₄-P removal efficiency had a significant statistical meaning (p<0.05).

3. Results and Discussion

3.1. The synthesis of zinc oxysulfide particles and adsorption tests

The synthesis compositions of components of ZnCl₂, NH₄, Na₂S and H₂O₂ are given in Table 1. A white precipitate initially formed as NH₄ was added and then disappeared as more NH₄ was added. NH₄ of 0.5 mL was the initial point for the precipitate formation, whereas 3 mL represented the initial stage for precipitate disappearance. The amount of Na₂S were determined based on the weight ratios of 1:0.5 (Zn-1, Zn-2, Zn-4, Zn-11, Zn-13), 1:1 (Zn-3, Zn-5, Zn-6, Zn-12, Zn-14) and 1:5.25 (Zn-7, Zn-8, Zn-9, Zn-10, Zn-15). H₂O₂ was added in 0, 2 and 10 mL in different synthesis.

The PO₄-P removal efficiencies ranged approximately from 4.0% to 99.5% using fifteen individual syntheses (Table 1). This change indicated that the variances in synthesis conditions had significant effect on the removal efficiency of the target pollutant from aqueous solutions [17]. The adsorption test was conducted to compare the PO₄-P removal efficiency of ZnO_xS_y nanoparticles without any optimization of batch adsorption tests. Indeed, the high removal efficiency using Zn-2 nanoparticles (removal: 99.5%, initial PO₄-P concentration: 15 mg/L, adsorbent dose: 1 g/L, pH: 4.31, contact time: 2 hr) revealed that ZnO_xS_y had significant PO₄-P removal efficiency from aqueous environment. lowest PO₄-P removal The efficiency observed Zn-7 was using nanoparticles under the operating same conditions.

3.2. Evaluation of the regression model

Minitab Statistical Software 22 was used to obtain best applicable regression model. This method is particularly useful to define the relationship between one dependent parameter efficiency) and (removal one or more independent parameter (predictors) [26]. The independent parameters were determined as NH4, Na₂S and H₂O₂. The order of interactions and terms were adjusted in model, which enable the model to be flexible enough to capture complex, non-linear, and interactive effects of NH4, Na₂S and H₂O₂ on removal efficiency. The two-sided confidence interval (higher and lower) around the estimated value indicated that the true value would fall within this range with 95% probability. The 95% level of confidence is generally acceptable in most scientific and industrial applications. Each parameter was evaluated by Type III sum of squares to show the contribution of each parameter while accounting for all others [27].

Several regression models were obtained until the regression equation had a statistical meaning, which was regarded as a p value below 0.05 [28]. The statistically acceptable regression model equation (with a p value of 0.000) represented the mathematical relationship between the predictors of NH4, Na₂S and H₂O₂ and the response parameter (PO₄-P removal efficiency) according to analysis of variance (ANOVA) analysis. The regression model is presented in Equation 2.

$$R = 56.1 \text{ NH}_4 - 1.05 \text{ Na}_2\text{S} + 5.34 \text{ H}_2\text{O}_2$$
(2)
- 20.8 NH₄² + 1.093 NH₄³

where NH_4 in mL, Na_2S in g and H_2O_2 in mL, R in %.

Table 1. The components used in the synthesis of ZnO_xS_y nanoparticles and the adsorbent codes						
Adsorbent	ZnCl ₂ , g	NH4, mL	Na_2S, g	H_2O_2 , mL	PO ₄ -P removal, %	
Zn-1	3 g	0.50	1.50	10.00	90.024	
Zn-2	3 g	2.00	1.50	10.00	99.525	
Zn-3	3 g	0.50	3.00	10.00	98.575	
Zn-4	3 g	3.00	1.50	10.00	40.380	
Zn-5	3 g	2.00	3.00	10.00	80.523	
Zn-6	3 g	3.00	3.00	10.00	59.857	
Zn-7	3 g	2.00	15.75	0.00	4.038	
Zn-8	3 g	3.00	15.75	0.00	19.715	
Zn-9	3 g	2.00	15.75	2.00	18.290	
Zn-10	3 g	3.00	15.75	2.00	13.777	
Zn-11	3 g	16.00	1.50	0.00	65.321	
Zn-12	3 g	16.00	3.00	0.00	74.347	
Zn-13	3 g	16.00	1.50	2.00	12.352	
Zn-14	3 g	16.00	3.00	2.00	68.884	
Zn-15	3 g	16.00	15.75	10.00	73.159	

T]] 1 **T**

The regression model presented three different coefficient of determination (R^2) values as R-sq, R-sq(adj), and R-sq(pred) (Table 2). R-sq value was 89.61% which indicated that the model explained 89.61% of the variability in the removal efficiency based on the amounts of NH4, Na₂S, and H₂O₂ used. This suggested a strong correlation between the model and the input parameters. R-sq(adj) value (84.42%) took the number of predictors in the model into account, to prevent overfitting. R-sq(adj) value indicated that the model had a correlation of 84.42% among the parameters after adjusting the number of input parameters in the model [29].

The high R-sq(adj) value suggested that the model parameters were effective, and the model is not overfitted by including unnecessary predictors. R-sq(pred) was observed to be 71.44%, which was a value to assess the predictive power of the model for the data that was not included in modeling data set. Rsq(pred) is calculated by a formula that eliminates an observation from the data set, estimates the regression equation, and assesses how well the model predicts the eliminated observation [30]. Even though the predictive power was lower than R-sq, the values of R-sq and R-sq(pred) were compatible.

The normal probability plot of residuals (errors) indicates whether the residuals are approximately normally distributed or not, which represents one of the key assumptions of linear regression on model fitting to the data. The residuals of the data were mostly on or close to the redline (Figure 1a).

This fact indicated the residuals were almost normally distributed.

Table 2.	The regre	ession m	odel fi	tting n	arameters
	THE REAL			ung p	arameters

	R-sq		89.61%
Regression model	R-sq(adj)		84.42%
	R-sq(pred)		71.44%
Terms	Coefficient	T-Value	p-Value
NH ₄	56.1	1.97	0.077
Na ₂ S	-1.05	-0.87	0.402
H_2O_2	5.34	3.57	0.005
NH4 ²	-20.8	-1.94	0.081
NH4 ³	1.093	1.94	0.081

Additionally, the histogram of the residuals (Figure 1b) controls whether the residuals fit to the normal distribution. The residuals are not perfectly resembled a normal distribution as indicated also by the normal probability of the plot (Figure 1a). The most negative residual on the normal probability plot suggested the potential presence of an outlier. However, repeated synthesis and batch adsorption tests confirmed that this data point is a valid observation and not an outlier. This indicated that the observed deviation could stem from the inherent variability of the system. Alternatively, it could result from limitations in the model's ability to fully capture all underlying factors influencing the response. The residuals versus fits plot serves for comprehending how randomly residuals are distributed with respect to fitted values. The residuals versus fits plot (Figure 1c) showed a limited random distribution of residuals. This suggests that the predictive capability of the model can be improved through further refinement, such as additional synthesis

experiments or batch adsorption tests to better capture the variability in the system. The random distribution of the residual versus observation order plot (Figure 1d) indicated that there are no time- or order-related biases, and the performance of the model is consistent over the experimental sequences.

3.3. The effect of components used in the synthesis on removal efficiency

Linear NH₄ term had a p-value 0.077. This was slightly higher than the threshold of statistically meaningful data (0.05). It had a large coefficient in the regression model equation (56.1) (Table 2). The p values of the quadratic (NH_4^2) and cubic terms (NH4³) of NH4 (0.081) were also higher than 0.05. These facts suggested that NH₄ could have a significant positive but not a definite impact on the removal efficiency. The positive effect indicates that the larger the amount of NH₄, the more the removal of PO₄-P from the aqueous solution. However, the coefficients of NH_4^2 (-20.8) and NH_4^3 (1.093) revealed that as the volume of NH4 increased at very high levels, the positive impact on the removal of PO₄-P diminished or even turned to negative.

Na₂S having a p value of 0.402 was statistically insignificant, which reflected Na₂S did not have a considerable effect on the removal efficiency. However, it should be noted that the addition of Na₂S is a compulsory application to form ZnO_xS_y nanoparticles. Therefore, the evaluation of 'statistically insignificant' was based on the range of Na₂S amounts added during the synthesis. Na₂S has a little decreasing effect on removal efficiency, considering the coefficient in the regression equation (-1.05). H₂O₂ component influences the removal efficiency, based on the p value as statistically significant (p: 0.005). The positive coefficient of H2O2 in regression analysis (5.34) also indicated the addition of H₂O₂ improves the removal efficiency.

Pareto chart is the graphical representation on which factors have significant effects on the removal of PO₄-P. The related chart (Figure 2) also confirmed the outcomes derived from p values and coefficients of input parameters in regression analysis. H₂O₂ is the powerful component that positively effects the removal efficiency depending on the critical value above 2.228, which is indicated as the redline on Figure 2. The terms of NH4, NH4² and NH4³ can be interpreted as being close to the critical value of 2.228. Thus, NH4 could be taken as a component that have effect on the removal efficiency. The effect of Na₂S can be regarded as limited due to the standardized effect below the critical value. However, Na₂S is a compulsory component in the synthesis of ZnO_xS_y particles. Thus, its effect is limited in the concentration range applied during synthesis.

Figure 2. Pareto chart of the standardized effects

4. Conclusion

ZnO_xS_y nanoparticles were synthesized using different proportions of components and PO₄-P removal performance was tested. The PO₄-P removal efficiency was 99.5% when the initial PO₄-P concentration was 15 mg/L, adsorbent dose: 1 g/L, pH: 4.31, within a contact time of 2 hrs. The removal of PO₄-P was modelled by regression analysis with a high R^2 of 89.61% and p value 0.000. The main component that positively affect the removal performance was H₂O₂ by considering the statistical meaning. NH₄ component was close to the borderline of the statistical meaning, which indicated the importance of this component. Even though Na₂S component was found not to have statistically meaning, it should be noted that the model was composed and run in a pre-determined value.

Article Information Form

The Declaration of Conflict of Interest/ Common Interest

No conflict of interest or common interest has been declared by the author.

Artificial Intelligence Statement

No artificial intelligence tools were used while writing this article.

Copyright Statement

The author owns the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

References

- Y. Ren, W. Zheng, X. Duan, N. Goswami, Y. Liu, "Recent advances in electrochemical removal and recovery of phosphorus from water: A review," Environmental Functional Materials, vol. 1, no. 1, pp. 10–20, 2022.
- [2] C. Korkmaz, G. D. Değermenci N. Değermenci, "Removal of phosphate from aqueous solution using anion exchange resin: Equilibrium, isotherms and kinetics," Fibers and Polymers, vol. 24, pp. 3753–3760, 2023.
- [3] I. Haiduc, "Phosphorus–Nitrogen Compounds," in Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley & Sons, Ltd., 2006.
- [4] Z. Li, R. S. Bowman, "Sorption of chromate and PCE by surfactant-modified clay minerals," Environmental Engineering Science, vol. 15, no. 3, 1998.
- [5] U. Kafkafi, "Oxyanion Sorption on Soil Surfaces," in Inorganic Contaminants in the Vadose Zone. Ecological Studies, vol. 74, B. Bar Yosef, N. J. Barrow, and J. Goldshmid, Eds., Springer, Berlin, Heidelberg, 1989.
- [6] J. T. Bunce, E. Ndam, I. D. Ofiteru, A. Moore, D. W. Graham, "A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems," Frontiers in Environmental Science, vol. 6, no. 8, 2018.
- [7] J. Suazo Hernández, P. Sepúlveda, L. Cáceres Jensen, J. Castro Rojas, P. Poblete Grant, N. Bolan, M. L. Mora, "nZVI-based nanomaterials used for phosphate removal from aquatic systems," Nanomaterials, vol. 13, 2023.

- [8] C. Karaman, Z. Aksu, "Modelling of Remazol Black-B adsorption on chemically modified waste orange peel: pH shifting effect of acidic treatment," Sakarya University Journal of Science, vol. 24, no. 5, pp. 1135–1150, 2020.
- [9] İ. Konuk Akça, R. Köklü, "Removal of paracetamol by powdered activated carbon synthesized from orange peels," Sakarya University Journal of Science, vol. 27, no. 1, pp. 168–180, 2023.
- [10] F. Akti, "Effect of modifier agents on particle size and surface functional groups of calcined eggshell: Test in adsorption of remazol yellow," Sakarya University Journal of Science, vol. 24, no. 1, pp. 272– 280, 2020.
- [11] Y. Du, X. Wang, G. Nie, L. Xu, Y. Hu, "Enhanced phosphate removal by using La-Zr binary metal oxide nanoparticles confined in millimeter-sized anion exchanger," Journal of Colloid and Interface Science, vol. 580, pp. 234–244, 2020.
- [12] Y. Wang, X. Xie, X. Chen, C. Huang, S. Yang, "Biochar-loaded Ce³⁺-enriched ultra-fine ceria nanoparticles for phosphate adsorption," Journal of Hazardous Materials, vol. 396, p. 122626, 2020.
- [13] Y. Yu, L. Yu, K. Y. Koh, C. Wang, J. P. Chen, "Rare-earth metal based adsorbents for effective removal of arsenic from water: A critical review," Critical Reviews in Environmental Science and Technology, vol. 48, no. 22–24, pp. 1127–1164, 2018.
- [14] I. Maamoun, R. Eljamal, O. Falyouna, K. Bensaida, Y. Sugihara, O. Eljamal, "Insights into kinetics, isotherms and thermodynamics of phosphorus sorption onto nanoscale zero-valent iron," Journal of Molecular Liquids, vol. 328, 2021.
- [15] T. T. Nguyen, "Effective removal of phosphate from waste water based on silica nanoparticles," Hindawi Journal of Chemistry, vol. 2022, 2022.

- [16] W. Brontowiyono, I. Patra, S. A. Hussein, Alimuddin, A. B. Mahdi, S. E. Izzat, D. M. Al Dhalemi, A. K. O. Aldulaim, R. M. R. Parra, L. A. B. Arenas, Y. K. Mustafa, "Phosphate ion removal from synthetic and real wastewater using MnFe₂O₄ nanoparticles: A reusable adsorbent," Acta Chimica Slovenica, vol. 69, pp. 681–693, 2022.
- [17] S. Rathod, S. Preetam, C. Pandey, S. P. Bera, "Exploring synthesis and applications of green nanoparticles and the role of nanotechnology in wastewater treatment," Biotechnology Reports, vol. 41, p. e00830, 2024.
- [18] C. Quintero Quiroz, N. Acevedo, J. Zapata Giraldo, L. E. Botero, J. Quintero, D. Zárate Trivinõ, J. Saldarriaga, V. Z. Pérez, "Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity," Biomaterials Research, vol. 23, no. 27, 2019.
- [19] P. Szczyglewska, A. Feliczak Guzik, I. Nowak, "Nanotechnology–general aspects: A chemical reduction approach to the synthesis of nanoparticles," Molecules, vol. 28, p. 4932, 2023.
- [20] W. Nie, H. Cheng, Q. Sun, S. Liang, X. Lu, B. Lu, J. Zhou, "Design strategies toward high-performance Zn metal anode," Small Methods, vol. 8, 2024.
- [21] A. Drenkova Tuhtan, M. Sihtmäe, K. Uke, H. Vija, M. Oppmann, J. Prieschl, K. Mandel, A. Kahru, "Synthesis and ecotoxicity screening of reusable, magnetically harvestable metal oxide/hydroxide nanocomposites for safe and sustainable removal and recovery of phosphorus from wastewater," Journal of Cleaner Production, vol. 444, p. 141287, 2024.
- [22] M. Schneider, A. Drenkova Tuhtan, W. Szczerba, C. Gellermann, C. Meyer, H. Steinmetz, K. Mandel, G. Sextl, "Nanostructured ZnFeZr oxyhydroxide

precipitate as efficient phosphate adsorber in waste water: understanding the role of different material-building-blocks," Environmental Science: Nano, vol. 4, pp. 180–190, 2017.

- [23] H. Uppal, S. Chawla, A. G. Joshi, D. Haranath, N. Vijayan, N. Singh, "Facile chemical synthesis and novel application of zinc oxysulfide nanomaterial for instant and superior adsorption of arsenic from water," Journal of Cleaner Production, vol. 208, pp. 458–469, 2019.
- [24] APHA, Standard Methods for the Examination of Water and Wastewater, 23rd ed. American Public Health Association (APHA), 2017.
- [25] H. Wang, X. Liang, Y. Liu, T. Li, K. Y. A. Lin, "Recycling spent iron-based disposable-chemical-warmer as adsorbent for As(V) removal from aqueous solution," Resources, Conservation and Recycling, vol. 168, 2021.
- [26] S. Prasad, "Regression," in Advanced Statistical Methods, Singapore: Springer Nature Singapore, 2024.
- [27] L. R. LaMotte, "A formula for Type III sums of squares," Communications in Statistics- Theory and Methods, vol. 49, no. 13, pp. 3126–3136, 2020.
- [28] U. Knief, W. Forstmeier, "Violating the normality assumption may be the lesser of two evils," Behavior Research Methods, vol. 53, pp. 2576–2590, 2021.
- [29] L. Jerome, "Multiple linear and non-linear regression in Minitab," MSOR Connections, vol. 9, no. 3, 2009.
- [30] K. P. Burnham, D. R. Anderson, "Multimodel inference: Understanding AIC and BIC in model selection," Sociological Methods and Research, vol. 33, no. 2, pp. 261–304, 2004.