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Abstract  Öz  

Water is essential for the sustainability of life and the 

healthy functioning of ecosystems. Increasing pollution 

poses a serious threat to the world's waters, making the 

monitoring and protection of water quality a strategic 

imperative. Chlorophyll-a is one of the most important 

indicators of water quality and ecosystem health, as it is a 

measure of photosynthetic activity and phytoplankton 

density, the lifeblood of aquatic ecosystems. Remote 

sensed data provide a unique opportunity to analyse 

chlorophyll-a changes in lake ecosystems.  In this study, 

chlorophyll-a concentration was modelled by machine and 

deep learning techniques using chlorophyll-a 

measurements, Landsat-8 surface reflectance values and 

spectral indices of Lake Mogan between 2018 and 2024. 

The RF, ANN, and CNN models achieved R² values of 

0.84, 0.85, and 0.92, respectively. With its ability to learn 

spectral relationships, identify patterns in complex datasets, 

and its superior ability to process remote sensing imagery, 

thematic maps were generated using the CNN model, 

which performed best in the study. The results of the study 

demonstrate the potential of remote sensing-based deep 

learning approaches for monitoring chlorophyll-a. With its 

ability to produce highly accurate results, this study 

provides the literature with an effective tool for future 

strategic monitoring studies. 

 Su, yaşamın sürdürülebilirliği ve ekosistemlerin sağlıklı 

işleyişi için kritik öneme sahiptir. Artan çevresel kirlilik, 

dünyadaki su kütlelerine yönelik ciddi tehditler 

oluşturmakta olup, su kalitesinin izlenmesi ve korunmasını 

stratejik bir zorunluluk haline getirmiştir. Klorofil-a, su 

ekosistemlerinin yaşam kaynağı olan fotosentetik aktivenin 

ve fitoplankton yoğunluğunun bir göstergesi olarak, su 

kalitesini ve ekosistem sağlığını şekillendiren en kritik 

göstergelerden biridir. Uzaktan algılama tabanlı veri setleri, 

göl ekosistemlerindeki klorofil-a değişimlerini analiz 

etmek için eşsiz bir fırsat sunmaktadır. Bu çalışmada, 

Mogan Gölü'nün 2018-2024 yılları arasındaki klorofil-a 

ölçümleri, Landsat-8 yüzey yansıma değerleri ve spektral 

indeksleri kullanılarak klorofil-a konsantrasyonu makine 

ve derin öğrenme teknikleri ile modellenmiştir. RF, ANN 

ve CNN modelleri sırasıyla 0.84, 0.85 ve 0.92 R2 

değerlerine ulaşmıştır. Spektral ilişkileri öğrenme 

kapasitesi, karmaşık veri setlerindeki desenleri tanımlama 

becerisi ve uzaktan algılama görüntülerini işleme 

konusundaki üstün yetenekleriyle, araştırmada en iyi 

performansı gösteren CNN modeli kullanılarak tematik 

haritalar üretilmiştir. Çalışma sonuçları, klorofil-a 

parametresinin izlenmesinde uzaktan algılama tabanlı derin 

öğrenme yaklaşımlarının potansiyelini ortaya koymaktadır. 

Bu çalışma, yüksek doğruluklu sonuçlar üretme yeteneği 

ile gelecekteki stratejik izleme çalışmaları için literatüre 

etkili bir araç sunmaktadır. 

Keywords: Chlorophyll-a, Deep learning, Landsat-8, 

Remote sensing, Spectral indices 

 Anahtar kelimeler: Derin öğrenme, Klorofil-a, Landsat-8, 

Spektral indeks, Uzaktan algılama   

1 Introduction 

Monitoring water quality is crucial for safeguarding 

ecosystems and supporting human well-being [1]. It is very 

important to minimize water pollution and develop 

controllable pollution mechanisms in water bodies [2]. 

Water quality analyses are carried out with fixed monitoring 

stations as well as traditional methods that require field 

observations. Traditional methods are labor intensive as they 

require field observations. Additionally, it is costly and lacks 

a regular sampling interval. Although fixed monitoring 

stations have regular temporal sampling, the limited number 

of samples causes both approaches to be spatially and 

temporally inadequate in analyzing water quality [3].      

Satellite imagery has great potential for monitoring and 

assessing lake water quality on a regional scale. Indeed, the 

use of satellite imagery in the estimation of water quality 

parameters allows synoptic estimates for large regions with 

its continuous spatial coverage. In addition, it allows water 

quality estimation in inaccessible areas. Archived satellite 

imagery, such as Landsat, enables retrospective water quality 

determination in cases where field observations cannot be 

made [4].  

The concentration of chlorophyll-a plays a significant 

role in assessing water quality dynamics [5]. Chlorophyll-a 

https://orcid.org/0000-0003-0351-7075
https://orcid.org/0000-0001-8361-1306


 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(2), 615-629 

O. Karakoç, İ. Buğdaycı 

 

616 

is a critical pigment present in all phytoplankton and plays a 

pivotal role in the process of photosynthesis. Quantifying the 

concentration of chlorophyll-a in water serves as a pivotal 

approach for evaluating phytoplankton biomass, as well as 

for assessing the degree of eutrophication in water bodies 

and for maintaining lake water quality [6]. Although several 

methods are available to determine phytoplankton biomass, 

the most practical approach is to measure chlorophyll a 

concentration. Phytoplankton biomass is produced by 

photosynthetic reactions; therefore, determination of 

pigment concentration alone is sufficient to assess biomass. 

This method differs from other parameters related to 

phytoplankton metabolism. In this context, chlorophyll-a 

analysis is an effective tool for estimating the trophic state of 

a lake. In addition, chlorophyll-a measurement is faster, 

easier and more economical than estimating phytoplankton 

biomass by microscopic analysis. Therefore, chlorophyll-a 

concentration can be used as an important indicator to 

determine the eutrophication level of the lake [7]. High 

levels of chlorophyll-a indicate overproduction of algae, 

leading to algal blooms [8]. 

Satellite sensors provide an affordable and efficient 

method for monitoring and mapping chlorophyll-a 

concentrations, which serve as an indicator of phytoplankton 

biomass in lakes [9-11]. Chlorophyll-a estimation with 

satellite spectral data is mainly based on the absorption and 

scattering of certain wavelengths of radiation through 

phytoplankton [12]. Tarı and Kıyak [13] modeled 

chlorophyll-a concentrations in Lake Van, the largest 

alkaline lake in the world, using Landsat-8 satellite imagery 

and geographic information system technologies in an 

integrated manner. The results of the study show that 

chlorophyll-a concentrations were obtained with sufficient 

accuracy and high resolution despite the limited data set. Nas 

et al. [14] spatially modeled the chlorophyll-a parameter in 

Lake Beyşehir, the largest freshwater lake in Turkey and also 

an important source of drinking water, using Terra ASTER 

satellite imagery and simultaneous measurement results 

using regression technique. The coefficient R2 > 0.86 

calculated as a result of the research shows the relationship 

between remote sensing data and chlorophyll-a 

measurements. In addition to the research on monitoring 

chlorophyll-a concentration, more comprehensive and large 

amounts of data on water quality can be obtained due to the 

developments in remote sensing technology. In recent years, 

the application of machine learning techniques for predicting 

water quality parameters has become increasingly popular.  

Machine learning techniques can identify potential 

relationships between variables by analyzing the features of 

input data and minimize the gap between predictions and 

actual observations through model parameter optimization 

[15-17].  

In the literature, studies combining remote sensing 

technology with machine learning and deep learning 

techniques for estimating chlorophyll-a parameters have 

achieved highly successful results. Freddy et al. [18] 

Measurement data from the country's monitoring network 

were used to estimate water quality parameters in two lakes 

in Mexico. In the study using Landsat-8 data, six different 

machine learning algorithms were developed for 

chlorophyll-a estimation. In two lakes, R2 = 0.60, RMSE = 

48.06 mg/m3, MAE = 37.98 mg/m3 and R2 = 0.71, RMSE = 

6.16 mg/m3, MAE = 4.97 mg/m3, respectively. Lien et al. 

[19] Four advanced machine learning models were used to 

predict chlorophyll-a concentration in Lake Ranco, Chile. 

Data from three sampling stations from 1987 to 2020 were 

used as the dataset. Three different cases were considered in 

the study: using only in situ data (Case-1), using integrated 

in situ data and meteorological data (Case-2), and using 

satellite images, in situ data and meteorological data together 

(Case-3). In all three cases, machine learning methods gave 

successful results in the estimation of the chlorophyll-a 

parameter. In Case-3, the Temporal Convolutional Network 

(TCN) model was very successful in predicting chlorophyll-

a with R2=0.96, RSME=0.13, MSE= 0.33 and MAE= 0.06. 

The findings of the study indicate that incorporating a 

broader range of variables related to chlorophyll-a, either 

directly or indirectly, enhances the predictive performance of 

the algorithm. Fangling et al. [20] A hierarchical CNN was 

designed to identify the relationship between Landsat-8 

imagery and water quality parameters in Erhai and Chaohu 

Lake. A transfer learning strategy was developed in the CNN 

model to complement the shortcomings of the in situ data. 

After training the CNN model for Lake Erhai with Landsat-

8 imagery and in situ water quality data, the water quality 

was classified. This model trained on Lake Erhai can be used 

to classify the water quality of Lake Chaohu. The results 

show that the CNN model outperforms traditional machine 

learning methods. Haibo et al.  [21] Using Landsat, Sentinel-

2 and GaoFen-2 data from Baiyangdian Lake with Spatial 

Temporal Fusion (STF) method, an inversion model for 

chlorophyll-a parameter was designed with CNN. A 

correlation of R2=0.80 was calculated between measured and 

predicted chlorophyll-a. Karul et al. [22] Artificial neural 

networks were used for eutrophication modeling in Mogan 

and Eymir Lakes. The eutrophication status in Mogan and 

Eymir lakes was successfully determined due to their small 

area and more homogeneous structures. The results of the 

research revealed that the parameter best calculated by 

artificial neural networks was chlorophyll-a. All of these 

studies show that the integration of remote sensing 

techniques with machine and deep learning techniques gives 

successful results in chlorophyll-a estimation. 

Lake Mogan, is located in the borders of Gölbaşı District 

in the south of Ankara Province. Mogan is within the 

“Gölbaşı Special Environmental Protection Zone” declared 

by the Council of Ministers Decree No. 90/1117 [23]. 
Gölbaşı Special Environmental Protection Area is an 

environmentally, biologically and culturally rich area with a 

registered protection status. Mogan Lake and its 

surroundings are used as a shelter, breeding and resting area 

for birds and is one of the most important bird habitats 

designated as a Ramsar candidate in Turkey. In addition, 

Centaurea tchihatcheffii, one of the endemic plant species, 

grows naturally in and around Lake Mogan. As Lake Mogan 

is an important part of the wetland ecosystem and provides 

various ecosystem services to the people of the region, its 

protection and regular monitoring is very important. 
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However, unplanned construction prior to the protection date 

and human activities that continue today are increasing 

pollution pressures in and around the lake. For all these 

reasons, Lake Mogan was selected as the study area in this 

study. 

The aim of this study is to model chlorophyll-a 

concentration in Lake Mogan using chlorophyll-a 

measurements, Landsat-8 satellite data and deep learning 

techniques. Within the scope of the research, chlorophyll-a 

measurement results measured between 2018 and 2024 were 

obtained from the Ministry of Environment, Urbanization 

and Climate Change (MEUCC) General Directorate for the 

Protection of Natural Assets (GDPA). Using Landsat-8 

satellite images, the relationship between the chlorophyll-a 

parameter and satellite image bands and spectral indices was 

tested with RF machine learning method and the dataset was 

expanded. Deeper models were built with ANN model and 

CNN to estimate the chlorophyll-a parameter affecting the 

water quality in Lake Mogan. As a result of the research, 

chlorophyll-a related thematic maps of Lake Mogan were 

produced with the CNN model, which provides the highest 

accuracy with deep learning success. 

Remote sensing research on chlorophyll-a analysis 

typically uses empirical methods and traditional regression-

based methods. However, these methods may not be 

sufficient to analyze complex and multidimensional 

relationships and increase model accuracy. The integrated 

application of machine learning and deep learning 

techniques to chlorophyll-a estimation is rare in the 

literature. In particular, there is no comprehensive study of 

advanced modeling techniques in Lake Mogan. In this study, 

chlorophyll-a analysis was performed with high accuracy 

using advanced modeling techniques such as RF, ANN and 

CNN. These approaches provide fast and reliable results in 

monitoring chlorophyll-a concentration and have significant 

potential for developing autonomous systems for future 

monitoring studies.  

2 Materials and methods  

2.1 Study area 

Lake Mogan, is located at 39°47′ North Parallel, 32°47′ 

East Meridian in the borders of Gölbaşı District in the south 

of Ankara Province, is a shallow freshwater lake with an 

average surface area of 6 km2 (Figure 1). The maximum 

depth of the lake is 4 meters and the average depth is 3 

meters. The lake, which has an average height of 973 meters 

above sea level, has taken its current shape by undergoing 

changes over time [23]. The streams feeding Lake Mogan 

come mostly from the south and west. Gölcük and Tatlım in 

the west, Bağırsak in the northwest, Çolakpınar and Çayır in 

the southwest, Gölova in the south and Sukesen, Kepir, 

İğdeli, Başpınar and Yağlıpınar in the east. These streams 

and the valley floors that harbor them are vital for the 

survival of the lake. However, negative interventions on 

these streams and their beds may further reduce the already 

limited water volume of the lake, leading to deterioration of 

water quality and increased pollution [23].  

 

Figure 1. Study area. 

 

Lake Mogan is fed by small streams in its northern and 

western parts, which often dry up in summer. The water of 

the lake reaches Eymir Lake through a regulator and a 

concrete canal and then reaches Ankara Stream through 

Imrahor Stream [24]. Mogan Lake is located within the 

"Gölbaşı Special Environmental Protection Area" declared 

by the Council of Ministers Decree No. 90/1117. The 

Presidency of the Special Environmental Protection 

Authority defines Special Environmental Protection Zones 

as "areas that have integrity in terms of historical, natural, 

cultural, etc. values and have ecological importance both at 

the national and world level" [25]. It is very important to 

protect and regularly monitor Lake Mogan and its 

surroundings, which are of strategic importance to Turkey as 

they are an important part of the ecosystem. A Ramsar 

candidate and protected wetland, Lake Mogan attracts 

attention for its ecological diversity, endemic species and 

ecosystem services. Strategically important for tourism and 

the local economy, the lake and its surroundings face 

environmental threats due to unplanned development. The 

conservation, regular monitoring and management of the 

lake, located in the capital of Turkey, has the potential to 

serve as a model for all other wetlands. For these reasons, 

Lake Mogan was selected as the study area. 

2.2 Water quality parameters 

The results of chlorophyll-a measurements between 2018 

and 2024 were obtained from the MEUCC to be used in the 

study. The water samples used in this study were collected, 

stored and analyzed under the coordination of the Ministry 

in accordance with the provisions of the Water Pollution 

Control Regulation and the Communiqué on Sampling and 
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Analysis Methods in force in Turkey. The locations of the 

water samples in Mogan Lake are shown in Figure 2. Water 

samples taken from three points: the northern end, the 

southern end and the middle.  

 

 

Figure 2. Sampling measurement locations. 

 

Sampling procedures were carried out to represent the 

physical, chemical and biological characteristics of the lake 

water. The preservation and transportation processes of the 

samples collected from the lake were based on TS EN ISO 

5667-3 standard. According to this standard, the samples 

were transported under 4°C temperature and in a dark 

environment to preserve their properties. They were stored 

in suitable containers to protect them from external 

contamination during transportation. Samples delivered to 

the laboratory were analyzed within the periods specified in 

the legislation to ensure reliable results. All processes from 

the sampling stage to the laboratory analysis stage were 

carried out in accordance with the Water Pollution Control 

Regulation and international standards and analysis results 

were obtained. 

The current three sampling sites are sufficient to give an 

idea of the overall water quality status of the lake. However, 

in order to obtain a high accuracy of water quality and a more 

homogeneous representation of the lake, more sampling 

points should be sampled and the sampling frequency should 

be increased. Kırtıloğlu and Karabörk [26] collected a total 

of 26 water samples from 13 fixed stations on two different 

dates to estimate the chlorophyll a concentration in Lake 

Bafa. The large data set used in the study allowed the 

performance evaluation of different algorithms to be 

performed accurately and the remote sensing data to be 

calibrated with high accuracy. Kavurmacı et al. [27] modeled 

the chlorophyll-a parameter in Hirfanlı Dam Lake using 

water quality measurements collected from 54 different 

points in the lake. Due to the high number of sampling points 

and the homogeneous distribution over the lake surface, the 

calculated correlation coefficient of 0.97 for chlorophyll-a 

was successfully obtained. These studies show that the 

number of sampling points increases the accuracy of results 

in remotely sensed water quality monitoring studies. 

Although water quality measurements are aimed to be 

made on a monthly basis, measurements could not be made 

in some months due to various reasons such as adverse 

weather conditions. For this reason, there are no 

measurement results on some dates in the data provided for 

2018-2024. Missing measurement data has the potential to 

adversely affect seasonal analysis and model performance. 

Polatgil [28], in his research, examined the success of 

machine learning techniques in completing missing data. As 

a result of the research, it was concluded that the completion 

of missing data using appropriate methods positively affects 

the model performance. Döş and Uysal [29] focused on the 

classification of remote sensing data using deep learning 

techniques. The research results revealed the potential of 

deep learning algorithms to improve the classification 

performance of remote sensing data. These studies show the 

impact of the missing data problem on model performance 

and the potential of machine and deep learning methods to 

overcome these deficiencies. In this study, machine and deep 

learning techniques are integrated with remote sensing data 

to address the problem of limited and missing data. A dataset 

was created using chlorophyll a measurement data between 

2018 and 2024. 

2.3 Satellite data 

It is very important to obtain satellite images closest to 

the chlorophyll-a measurement dates used in the study. On 

the other hand, another factor affecting the accuracy of the 

study is that the satellite images to be used should be cloud-

free. Researchers worldwide have employed a variety of 

methods to identify water quality parameters using Landsat 

images across different regions [30-34]. Landsat-8 OLI 

sensors provide successful data for water quality monitoring 

with their radiometric and temporal resolution [35]. For this 

reason, Landsat-8 satellite images were used in this study. 

Table 1 shows the spectral bands of Landsat-8 satellite.  

Satellite images for the study area between 2018 and 

2024 were filtered through USGS (United States Geological 

Survey). Simultaneous and close-time satellite images were 

identified with the chlorophyll-a measurement dates 

obtained from the MEUCC.  Since water quality parameters 

are directly affected by atmospheric conditions, it was 

ensured that the satellite images covering the study area were 

cloudless. As a result of detailed analysis, Landsat-8 satellite 

images from eight different dates were matched with the 

measurement data. The satellite images used in the study are 

given in Table 2. 
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Table 1. Landsat-8 satellite spectral bands. 

Bands 

Defined 

Spectral 

Position 

Band 

Range 

(μm) 

Spatial 

Resolution 

(m) 

Sensor 

Band-1 Coastal Aerosol 0.43 – 0.45 30 OLI 

Band-2 Blue 0.45– 0.51 30 OLI 

Band-3 Green 0.53 – 0.59 30 OLI 

Band-4 Red 0.64 – 0.67 30 OLI 

Band-5 Near Infrared 0.85 – 0.88 30 OLI 

Band-6 SWIR-1 1.57– 1.65 30 OLI 

Band-7 SWIR-2 2.11– 2.29 30 OLI 

Band-8 Panchromatic 0.50 – 0.68 15 OLI 

Band-9 Cirrus 1.36– 1.38 30 OLI 

Band-10 TIRS-1 10.60 – 11.19 100 TIRS 

Band-11 TIRS-2 11.50 – 12.51 100 TIRS 

 

Table 2. Landsat-8 satellite images used. 

DATE 
PATH 

/ROW 

CLOUD 

COVER 

(%) 

ID 

18/04/2018 177/32 0.13 
LC08_L2SP_177032_ 
20180418_20201015_02_T1 

23/07/2018 177/32 8.8 
LC08_L2SP_177032_ 
20180723_20200831_02_T1 

27/10/2018 177/32 0.34 
LC08_L2SP_177032_ 

20181027_20200830_02_T1 

31/07/2021 177/32 1.08 
LC08_L2SP_177032_ 
20210731_20210804_02_T1 

16/08/2021 177/32 0.3 
LC08_L2SP_177032_ 
20210816_20210826_02_T1 

17/09/2021 177/32 11.75 
LC08_L2SP_177032_ 

20210917_20210925_02_T1 

05/07/2023 177/32 0.18 
LC08_L2SP_177032_ 

20230705_20230717_02_T1 

08/08/2024 177/32 1.71 
LC08_L2SP_177032_ 
20240808_20240814_02_T1 

 

In this study, Collection-2 images from the Landsat-8 

satellite were used. These images are geometrically and 

atmospherically corrected by the USGS through pre-

processing steps. Atmospheric correction is performed using 

LaSRC (Land Surface Reflectance Code) to account for 

various atmospheric effects such as water vapor, aerosols, 

and ozone. Geometric correction is performed using a Level-

1 L1TP (Land Precision) process with DEM (Digital 

Elevation Models).  Since the satellite imagery used is 

atmospherically and geometrically corrected, no additional 

pre-processing steps were applied. Erdas Imagine software 

was used to clip Landsat-8 satellite images to cover the study 

area and organize the bands to be used for chlorophyll-a 

analysis. In addition, Digital Number (DN) values were 

converted into reflectance values and made available in the 

data set. Spectral reflectance values were extracted for Band 

4 (Red) and Band 5 (NIR) bands of the satellite images used. 

2.4 Spectral indices 

The Normalized Difference Vegetation Index (NDVI), 

widely used in areas with extensive vegetation cover, is a 

frequently used method for analyzing vegetation cover [36]. 

There are significant relationships between chlorophyll-a 

concentrations in water bodies and NDVI values [37]. 

NDVI, commonly utilized for chlorophyll-a estimation, was 

created by analyzing the significant absorption of 

chlorophyll in the red wavelengths and its strong reflectance 

in the near-infrared region [38]. The NDVI index is derived 

from the red and near-infrared (NIR) spectral bands and its 

formula is given in Equation-1. 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (1) 

 

Modified Normalized Difference Water Index (MNDWI) 

is a special adaptation of the Normalized Difference Water 

Index (NDWI) index, specifically designed for the detection 

of water bodies. It provides valuable information for 

analyzing water bodies using remote sensing techniques 

[39]. The MNDWI index was developed to overcome the 

shortcomings of the NDWI index in urban water bodies and 

to achieve more successful results. In the research conducted 

by Xu [40], it was found that the MNDWI index performed 

better than the NDWI index in detecting water bodies in 

urban areas. MNDWI allows for more accurate mapping of 

water bodies by preventing them from mixing with other 

areas. The MNDWI index is calculated using the green and 

Shortwave Infrared (SWIR) bands and its formula is given 

in Equation-2. 

 

𝑀𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅
 (2) 

 

In this study, NDVI and MNDWI indices, which have 

been proven in the literature to provide successful solutions 

in water quality analysis, were selected due to their positive 

effects on model performance. NDVI is an index that 

captures the spectral characteristics of vegetation and is 

directly related to the chlorophyll-a parameter. Since 

phytoplankton in water bodies show strong absorption in the 

red wavelength range and high reflectance in the near 

infrared wavelength range, it is known that areas with high 

NDVI values also have high chlorophyll-a concentrations.  

Praeger et al. [41] show in their research that there is a strong 

relationship between NDVI and algal density and the success 

of the index in predicting algal density. Yeonwoo et al. [42] 

investigated the relationship between chlorophyll a 

concentrations and NDVI values. As a result of the research, 

it was found that the NDVI index can be used in water quality 

management and algal monitoring. The significant 

relationship between NDVI and chlorophyll-a has been 

confirmed by several studies in the literature. For this reason, 

the NDVI index was calculated to improve the model 

performance and improve the prediction performance. On 

the other hand, the MNDWI index is very important for 

identifying non-water features in water bodies. Xu [40] and 
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Feyisa et al. [43] used the MNDWI index to obtain a water 

mask. It was concluded that the MNDWI index outperforms 

the NDWI in identifying complex water bodies and improves 

model performance. Therefore, the MNDWI index was 

included in the study. NDVI and MNDWI spectral indices 

were calculated for all satellite images to be included in the 

dataset. ArcGIS software was used to calculate the spectral 

indices. The workflow diagram showing all steps of the 

study methodology is shown in Figure 3. 

 

 

Figure 3. Research workflow diagram. 

 

2.5 Creating the data set  

Reflectance values (B4, B5), spectral indices (NDVI, 

MNDWI) obtained from Landsat-8 satellite images were 

matched with chlorophyll-a measurement data obtained from 

the MEUCC. A dataset containing a total of 24 measurement 

data was created. 

2.6 Machine and deep learning methods 

2.6.1 Random forest method 

The random forest algorithm is a machine learning 

method based on decision trees. This algorithm randomly 

selects parameters from the input parameter set and creates 

multiple decision trees based on these parameters. The 

decision trees are combined to obtain the classification 

output of the algorithm. With this approach, independent or 

irrelevant parameters can be analyzed with different decision 

trees and with this feature, it provides high accuracy results 

[44].  

In order to successfully expand the limited data set 

created in the study, the Random Forest method, which gives 

successful results with limited data, was used. In the training 

of the model, chlorophyll-a measurement data were 

determined as the dependent variable, while NDVI, 

MNDWI, B4 and B5 were determined as independent 

variables. The data set was randomly split into 80% training 

and 20% for testing. The number of trees (n_estimators) was 

set to 100 and the randomness control (random_state) was 

set to 42. In order to prevent the model from overlearning, 

the depth was limited and automatic. In the RF model, the 

choice of 100 trees balances model accuracy and 

computational efficiency, while the depth of the trees is 

unlimited to capture the complex relationships between input 

features. Breiman [45] states that 100 trees provides a 

balance in model accuracy. To better analyze high-

dimensional and complex remotely sensed data, and to allow 

the model to best learn the relationships, the depth setting is 

left unrestricted. In the model, the minimum number of data 

points that each leaf should contain is set to 1, and the 

minimum number of samples required to split a node is set 

to 2. These settings ensure that all points are represented, and 

the model gains depth and best fits the data by preventing 

oversimplification of the model in a limited data set. After 

the training was completed, the model was validated. An 

extended data set was created by generating chlorophyll-a 

estimates covering the entire lake using the trained model. 

This data set was then used as the basic input data for ANN 

and CNN models. 

2.6.2 Artificial neural networks (ANN) 

ANN are a subset of machine learning, which is inspired 

by the human mind and forms the basis of deep learning 

methods [46] ANNs are complex, non-linear systems 

consisting of multiple processing units designed to emulate 

the behavior of biological neurons. An ANN generally 

consists of three primary layers: the input layer, hidden 

layers, and the output layer, with each layer containing a 

variable number of neurons or nodes. These neurons are 

interconnected through various mathematical functions, 

enabling the network to process and learn from data [47]. 

Figure 4 shows the basic architecture of the ANN. 

 

 

Figure 4. ANN basic architecture [48]. 

 

The ANN model was chosen to obtain more accurate 

predictions using the expanded dataset. The chlorophyll-a 

value estimated for each pixel from the RF model was used 

as the dependent variable in the ANN model. NDVI, 

MNDWI, B4 and B5 values are the independent variables of 

the model. Since there was a need to scale the features in the 

ANN model, the independent variables were brought to the 

range of 0-1 with Min-Max normalization. A total of 6344 

data points were used for the ANN model. The data set was 

randomly split into 80% for training and 20% for testing. The 

training data consists of 5075 data points and the test data 

consists of 1269 data points. Adam optimization and 100 



 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(2), 615-629 

O. Karakoç, İ. Buğdaycı 

 

621 

epochs were used in model training.  The model is structured 

with 64 neurons in a hidden layer and a ReLU activation 

function. ReLU was chosen because of its success in 

modeling nonlinear relationships and the fast and stable 

optimization properties of the Adam algorithm. These 

hyperparameters are optimized to increase the generalization 

capacity and accuracy of the model. The ANN model 

provided high accuracy in chlorophyll-a estimation. The 

generalization ability of the model increased the accuracy of 

the predicted values across the lake. 

2.6.3 Convolutional neural networks (CNN) 

CNNs are artificial intelligence systems consisting of 

multilayer neural networks. They are capable of detecting, 

recognizing, classifying and parsing objects [49]. CNNs 

have been developed especially for processing and analyzing 

visual data. They are highly effective in tasks such as image 

recognition and classification. These networks are 

considered one of the basic building blocks of computer 

vision and image processing [50]. Figure 5 shows the basic 

architecture of the CNN model. 

In order to better learn the hidden spatial relationships 

between the spectral features in the data set extended with 

the RF model and to increase the prediction accuracy, the 

CNN model was used. 2-D CNN is successful in learning 

hidden spatial relationships in spatially dependent data sets, 

especially in data obtained from satellite images. 

 

 

Figure 5. Basic architecture of the CNN model [51]. 

 

The dependent variable of the model is the chlorophyll-a 

measure and the independent variables are NDVI, MNDWI, 

B4 and B5. Since the CNN requires scaling of the features, 

all independent variables were set to the 0-1 range.  The data 

set was divided into 80% training and 20% test data set. Out 

of a total of 6344 data points, 5075 were divided as training 

data set and 1269 as test data set. The data set used for the 

CNN model was transformed into a 2D matrix to be 

compatible with the model. Each data sample was organized 

into 5x5 spatial blocks to fit the CNN input format. In the 

first convolution layer, 32 filters and a 3x3 kernel were 

applied. In the second layer, more complex features were 

learned with 64 filters and 3x3 kernels. ReLU (Rectified 

Linear Unit) function was used as the activation function.  

The 3x3 and 5x5 kernel configurations were chosen to most 

effectively capture complex structures. The 3x3 kernels 

capture small-scale details and subtle structural features, 

while the 5x5 kernels allow for the detection of larger-scale 

patterns [52]. The combination of these two dimensions 

increases the learning capacity and improves the learning of 

relationships at different spatial scales [53]. The Adam 

algorithm is used to optimize the CNN model. This 

algorithm is an extension of the scotastic gradient descent 

method and provides fast and stable optimization during the 

learning phase. The Adam algorithm updates by taking into 

account the mean and variance of past gradients. Thanks to 

this feature, it produces more successful results in deep 

learning models [54]. The CNN model was optimized as the 

best performing structure after intensive testing of different 

hyperparameter combinations. During model training, the 

learning rate was set to 0.001 and the maximum epoch limit 

was set to 100. To prevent overlearning, an early stopping 

method was applied and model training was stopped when 

no improvement was observed. MSE was used as the loss 

function. To prevent overfitting, 50% dropout layers were 

added to different layers to prevent the model from 

overlearning. As part of the data augmentation method, 

random rotation, noise addition, and horizontal-vertical 

translation were applied to the data set to increase the 

diversity of the training data. These methods took into 

account the limited size of the dataset and allowed the model 

to better generalize to different data distributions.  However, 

cross-validation methods were not applied due to the limited 

size of the dataset. The final model is the result of these 

extensive optimizations. The developed CNN model showed 

superior performance in predicting chlorophyll-a 

concentration. After the training process, the model 

produced chlorophyll-a estimates covering the entire lake. 

The obtained predictions were exported in raster format and 

used to create thematic maps. Python programming language 

and necessary libraries were used to manage the data 

processing and modeling processes of RF, ANN and CNN 

models. 

2.7 Accuracy assessment 

Coefficient of Determination (R2), Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE) and Mean 

Absolute Percentage Error (MAPE) metrics were used to 

evaluate the accuracy of the models. These metrics are 

frequently used to evaluate the accuracy of estimation of 

water quality parameters with remote sensing techniques 

[55-57]. R² indicates the model's ability to make predictions. 

As the predicted values align more closely with the actual 

data, the R² value approaches 1, reflecting a stronger 

predictive performance of the model. RMSE reflects the 

difference between the predicted values and the actual 

values. A lower RMSE indicates higher prediction accuracy 

of the model. MAE represents the average of the absolute 

differences between the predicted values and the actual 

values, indicating the error magnitude [58]. MAPE is the 

average absolute percentage difference between model 

predicted values and actual values. The mathematical 

formulas of these parameters used in the accuracy 

assessment of the models in the study are given in Equation-

3, Equation-4, Equation-5 and Equation-6 [59]. 
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𝑅2 = 1 −
∑ (𝑋𝑖 − 𝑌𝑖)2𝑚

𝑖=1

∑ (Ȳ − 𝑌𝑖)2𝑚
𝑖=1

 (3) 

 

               𝑅𝑀𝑆𝐸 =  √
1

𝑚
∑(𝑋𝑖 − 𝑌𝑖)2

𝑚

𝑖=1

 (4) 

 

              𝑀𝐴𝐸 =  
1

𝑚
∑ |𝑋𝑖 − 𝑌𝑖

𝑚

𝑖=1

| 

 

(5) 

 

 

              𝑀𝐴𝑃𝐸 =  
1

𝑚
∑ |

𝑌𝑖−𝑋𝑖

𝑌𝑖
|𝑚

𝑖=1                                          (6) 

 

It's here; 

 

Xi = Estimated value 

Yi = Actual value 

m = Number of samples 

Ȳ = It is the average of actual values. 

 

3 Results and discussions 

3.1 Evaluation of model performances 

In this study, RF, ANN and CNN models were developed 

for chlorophyll-a estimation and their performance analysis 

was evaluated with R2, RMSE, MAE and MAPE metrics.  

The RF model provided reliable results with R2=0.88 

(training) and R2=0.84 (test), RMSE=0.15 (training) and 

RMSE=0.18 (test), MAE=0.14 (training) and MAE=0.17 

(test) and MAPE=38.50% (training) and MAPE=42.22% 

(test) for lake-wide chlorophyll-a estimation. This model 

was a strong starting point due to its ability to generalize with 

a limited number of measurement data. 

The ANN model slightly improved the accuracy with R2= 

0.89 (training) and R2=0.85 (test) using the data set extended 

with the RF model. However, RMSE=0.25 (training) and 

RMSE=0.29, MAE= 0.21 (training) and MAE=0.24 (test), 

and MAPE=39.80% (training) and MAPE=43.13% (test) 

which are higher than the RF model. The ANN model 

slightly improved the performance thanks to its capacity to 

learn non-linear relationships, but it was less effective 

compared to the RF model. 

The CNN model showed to be the most effective method 

for chlorophyll-a estimation, providing the highest accuracy 

among all models. With the CNN model, R2=0.96 (training) 

and R2=0.92 (test), RMSE=0.16 (training) and RMSE=0.20 

(test), MAE=0.10 (training) and MAE=0.12 (test) and 

MAPE=35.50% (training) and MAPE=41.22% (test). The 

CNN model produced very successful results compared to 

other methods thanks to its capacity to learn spatial 

relationships. Table 3 shows the model accuracies. 

Partial dependence plots were created to visualize the 

effects of the RF model and features such as NDVI, 

MNDWI, B4 and B5 on chlorophyll-a detection. These plots 

isolate the effect of each independent variable on the 

predicted chlorophyll-a value with other traits held constant 

and are given in Figure 6. 

 

Table 3. Model accuracy. 

Metric RF ANN  CNN 

R2 (Training) 0.88 0.89 0.96 

R2 (Test) 0.84 0.85 0.92 

RMSE (Training) 0.15 0.25 0.16 

RMSE (Test) 0.18 0.29 0.20 

MAE (Training) 0.14 0.21 0.10 

MAE (Test) 0.17 0.24 0.12 

MAPE (Training) 38.50 39.80 35.50 

MAPE (Test) 42.22 43.13 41.22 

 

 

Figure 6. Partial dependency graphs. 

 

A decrease in chlorophyll-a values is observed with the 

increase in NDVI. This indicates that chlorophyll-a 

concentration is suppressed with increasing vegetation 

density. With the increase in MNDWI, chlorophyll-a values 

first increase and then tend to reach a constant level. While 

there was no significant fluctuation in the B4 value, it was 

observed that the chlorophyll-a concentration decreased 

rapidly with the increase in the B5 value. In order to analyze 

the importance of each feature in the chlorophyll-a 

prediction of the RF model in more detail, the graph showing 

the importance of the features is shown in Figure 7. 
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Figure 7. Importance of features. 

 

Among the independent variables used in the RF model, 

B5 is the most effective feature in model predictions. This 

feature is followed by MNDWI, NDVI and B4, respectively. 

Feature B5, NIR, has a strong relationship with the 

reflectance characteristics of vegetation. Therefore, it plays 

a critical role in chlorophyll-a estimation. In the literature, 

the NIR band of Landsat-8 satellite is frequently used for 

chlorophyll-a estimation [60-61]. Although the Landsat-8 

satellite imagery used in this study has great advantages for 

monitoring large areas, its 30-meter spatial resolution can 

impose various limitations on the detailed analysis of 

relatively small water bodies such as lakes. Therefore, the 

use of satellite imagery with higher spatial resolution can 

have a positive impact on model performance. Sentinel-2 

satellite imagery, with its 10-meter spatial resolution and 

wide spectral bandwidth, is an alternative that allows for 

more precise results in the analysis of water quality 

parameters. Mandanici and Bitelli [62] analyzed the spatial 

and spectral characteristics of Landsat-8 and Sentinel-2 

satellite imagery. The results show that Sentinel-2 satellite 

imagery performs better in monitoring small and complex 

areas. Seleem et al. [63] compared the performance of 

Landsat-8 and Sentinel-2 satellite imagery in monitoring 

lake water quality. Sentinel-2 satellite imagery, with its 

higher spatial resolution, provided greater accuracy in 

detecting water quality parameters. In this study, Landsat-8 

satellite imagery was preferred because of its reliability in 

the literature and its extensive use in monitoring chlorophyll-

a concentrations. In future studies, satellite imagery with 

higher spatial resolution, such as Sentinel-2, can be used to 

improve model accuracy. Figure 8 shows the error analysis 

of all models, Figure 9 shows the error analysis of all models 

scatter and line graphs are shown. 

MNDWI, the second most important parameter of the 

model, is an important indicator for analyzing the optical 

properties and areas of water bodies. Vivek et al. [64] In their 

research conducted in Bangalore, the capital of India, they 

used the MNDWI index to monitor changes in water. 

The NDVI index ranks third in importance. Akgün [37] 

In a study conducted in the Kura River, it was found that 

there were statistically significant relationships between 

chlorophyll-a values and NDVI index values. The data set 

was expanded by generating predictions for each pixel to 

cover the entire lake area with the random forest model. The 

expanded data set was checked with chlorophyll-a 

measurement values that were not included in the model. It 

was seen that the prediction values produced with RF were 

compatible with the actual measurement values. This 

expanded data set was used for training ANN and CNN 

models to increase the prediction accuracy. 

 

 

Figure 8. Error analysis of models for chlorophyll-a 

predictions. 

 

The results show the advantages of machine and deep 

learning methods in chlorophyll-a estimation. The RF model 

is characterized by low error values as it was developed using 

a limited number of measurement data. The ANN model 

provided some improvement in accuracy by training with an 

expanded data set. RF and ANN models are frequently used 

in water quality monitoring studies. Dewi et al. [65] RF and 

ANN models were used to estimate the Water Quality Index 

(WQI). MAE= 121.40 and RMSE= 215.04 for the ANN 

model and MAE= 7.87 and RMSE= 28.99 for the RF model. 

As a result of the research, it was found that the RF model 

outperformed the ensemble of decision trees and was more 

reliable for modeling complex patterns. 
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Figure 9. Scatter and line graphs of models. 

The research results support the results obtained in this 

study. Ming et al. [66] In their research, they used four 

popular machine learning methods to obtain an optimal 

chlorophyll-a algorithm. RF was the machine learning 

method that provided the highest accuracy for chlorophyll-a. 

He mapped the changes in chlorophyll-a concentration 

between 2016 and 2020 for 163 large lakes in eastern China 

using the RF model. The CNN model showed the best 

performance in chlorophyll-a estimation with the highest R2 

and the lowest MAE value. In addition, a lower RMSE value 

was obtained with CNN model than ANN. CNN models 

have been popularly used in remote sensing and water 

quality monitoring studies in recent years. To cope with the 

limited prediction ability of traditional machine learning 

methods, deeper neural networks are used to achieve high 

accuracy results. Syariz et al. [67] Based on the fact that the 

ANNs proposed in previous studies do not represent the 

spatial features of satellite images in predicting chlorophyll-

a concentrations, a new CNN model called WaterNet is 

proposed.  

In the study, it was concluded that chlorophyll-a 

concentrations decreased to the range of RMSE= 0.509-

0.975 μg/L with the activation of the CNN model.  

As a result of the research, it was found that the CNN 

model gave better results and superior performance than all 

other models in chlorophyll-a estimation. Zhang et al. [68] 

several CNN models were developed to reconstruct 

chlorophyll-a concentrations. The RMSE values ranging 
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from 0.2916-0.3744 calculated for different inputs show the 

superior performance of the model. 

3.2 Production of thematic maps 

In the study, the CNN model, which provides the highest 

pryaediction accuracy, was used to produce chlorophyll-a 

forecasts for simultaneous dates with satellite images. The 

forecast data was exported in raster format using Python 

software language. Thematic maps showing the chlorophyll-

a concentration in Lake Mogan for 8 different dates were 

produced by classifying the raster images with ArcGIS 

software. Thematic maps showing the distribution of 

chlorophyll-a in Lake Mogan are given in Figure 10. 

The thematic maps produced within the scope of the 

study are very important in terms of monitoring the 

chlorophyll-a change in Lake Mogan. Thematic maps reveal 

the distribution of chlorophyll-a parameter on the lake 

surface area. In addition, thematic maps are extremely 

important in explaining the effect of natural events or human 

activities on chlorophyll-a change. 

The forecast data obtained with the CNN model are based 

on the data obtained from the MEUCC.  Chlorophyll-a 

measured values were compared. The thematic maps were 

found to be in agreement with the actual measured values. 

The results of the study reveal the superior success of CNN 

in predicting water quality parameters.  

When the change in chlorophyll-a concentration in Lake 

Mogan between 2018 and 2024 is analyzed, it is seen that the 

chlorophyll-a concentration in the lake has increased from 

past to present. Although Lake Mogan and its surroundings 

are located in a special environmental protection zone, the 

intense urbanization pressure in the region has negatively 

affected the water quality from past to present. Since 

traditional monitoring methods are both costly and time 

consuming, monitoring water quality with remote sensing 

techniques offers very successful solutions. This study 

provides results that will shed light on future studies in Lake 

Mogan, which is located in a special environmental 

protection zone and has a critical importance in terms of 

continuous monitoring of water quality. 

4 Conclusions 

In this study, the chlorophyll-a concentration in Lake 

Mogan was estimated using Landsat-8 satellite imagery, 

machine learning and deep learning techniques. R2 values of 

0.84, 0.85 and 0.92 were calculated from RF, ANN and CNN 

models, respectively. The CNN model showed higher 

accuracy compared to the other models, and thematic maps 

of chlorophyll-a distribution were generated using the model 

predictions. The model performances show that there are 

significant relationships between remote sensing data and 

chlorophyll-a values. The research provides a successful 

solution for chlorophyll-a analysis and gives promising 

results for the autonomization of future monitoring studies. 

 

 
Figure 10. Chlorophyll-a thematic maps. 
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In light of the results obtained, the use of Landsat-8 

satellite imagery with a spatial resolution of 30 meters in the 

study may limit the detection of rapid changes in water 

quality or fine details. In future studies, higher resolution 

satellite imagery, such as Sentinel-2, can be used for detailed 

analysis. In addition, gaps in the data set have the potential 

to negatively affect model performance. Model performance 

can be improved by filling the gaps in the data set with 

regular monitoring studies or measurements scheduled to 

coincide with the satellite imagery data. 
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