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Abstract

This paper aims to study a generalized split quasi-inverse tensor variational inequality
(GSQITVI) in tensor spaces. Building on the concept of well-posedness, we establish
several metric-based features that provide necessary and sufficient conditions for the well-
posedness of the GSQITVI. By utilizing the measure of non-compactness and the correla-
tion theorem, we also derive results concerning the well-posedness of the problem. These
findings emphasize the key properties of the GSQITVI and offer an analysis of the con-
vergence of its solutions.
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1. Introduction
Let C[Vi,hi] be the set of all tensors of orders Vi and dimensions hi, for all i = 1, 2.

Consider two set-valued mappings, J : C[V1,h1] × C[V2,h2] ⇒ C[V1,h1] and M : C[V1,h1] ×
C[V2,h2] ⇒ C[V2,h2], with values that are nonempty, closed, and convex. Let j : C[V1,h1] ×
C[V2,h2] → C[V1,h1] and m : C[V1,h1] × C[V2,h2] → C[V2,h2] be tensor mappings, and h :
C[V1,h1] × C[V2,h2] → R, θ : C[V1,h1] × C[V2,h2] → R, and τ : C[V1,h1] × C[V2,h2] → R be
given functions. Using these assumptions, in this paper, we study a generalized split
quasi-inverse tensor variational inequality (GSQITVI) as follows:
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Problem 1.1. Find A∗ ∈ C[V1,h1] and B∗ ∈ C[V2,h2] such that
j (A∗, B∗) ∈ J (A∗, B∗) ,
m (A∗, B∗) ∈ M (A∗, B∗) ,
h (A∗, B∗) ≤ 0,
⟨j′ − j (A∗, B∗) , A∗⟩C[V1,h1] + θ (j′) − θ (j (A∗, B∗)) ≤ 0,∀j′ ∈ J (A∗, B∗) ,
⟨m′ −m (A∗, B∗) , B∗⟩C[V2,h2] + τ (m′) − τ (m (A∗, B∗)) ≤ 0, ∀m′ ∈ M (A∗, B∗) .

In particular, if J and M are two nonempty, closed, and convex subsets of C[V,h]. Then,
the GSQITVI become to the following generalized split inverse tensor variational inequality
problem (for brevity, GSITVI):

Problem 1.2. Find A∗ ∈ J , B∗ ∈ M , such that
j (A∗, B∗) ∈ J,
m (A∗, B∗) ∈ M,
h (A∗, B∗) ≤ 0,
⟨j′ − j (A∗, B∗) , A∗⟩C[V1,h1] + θ (j′) − θ (j (A∗, B∗)) ≤ 0, ∀j′ ∈ J,
⟨m′ −m (A∗, B∗) , B∗⟩C[V2,h2] + τ (m′) − τ (m (A∗, B∗)) ≤ 0, ∀m′ ∈ M.

The study of variational inequality theory in finite-dimensional spaces began in 1980.
Since then, the theory has experienced rapid development. For an overview of recent
advancements in variational inequality problems and methods, as well as related applica-
tions, readers are referred to [12]. Notably, Noor [16] introduced an iterative algorithm
and a projection technique for obtaining approximate solutions to general variational in-
equalities. Let H be a real Hilbert space, and let g and T be two continuous mappings
where g : H → H and T : H → H. Also, let K be a nonempty, closed, and convex subset
of H. The problem is to find u ∈ K such that

⟨g(u) − g(v), T (u)⟩ ≤ 0, ∀g(u), g(v) ∈ K, (1.1)

which is referred to as the general nonlinear variational inequality problem. If g(u) = u
and g(v) = v, the classical variational inequality problem (for brevity, VIP) is defined as
finding u ∈ K such that

⟨u− v, T (u)⟩ ≤ 0, ∀v ∈ K. (1.2)
Noor [17, 18] introduced the basic concepts of variational inequalities and utilizes various
methods to present the main results related to generalized variational inequalities.

At the same time, variational inequalities have found diverse applications, and their
rapid development has led to increasingly comprehensive research into various aspects.
While we know that in variational inequalities the constraint set is independent of the vari-
able, in quasi-variational inequalities the constraint set depends on the variable. Therefore,
quasi-variational inequalities be said generalize variational inequalities. Let T : H → H
be a mapping and H a real Hilbert space. Let C be a subset of H and K : C ⇒ C a
set-valued mapping. The quasi-VI problem is then to find u ∈ K(u) such that

⟨u− v, T (u)⟩ ≤ 0, ∀v ∈ K(u). (1.3)

In real-life scenarios, most optimization problems are typically constrained by multiple
variables. Kanzow-Steck [11] analyzed such optimization problems by focusing on two
key properties: the pseudo-monotonicity of the variational operator and the Moscow-type
continuity of the feasible-set mapping. Their paper proposes that these assumptions can
be used to establish the existence of a solution and its computability through appropriate
approximation techniques.

The concepts of well-posedness to split variational inequalities, inverse variational in-
equalities and tensor variational inequality are significant and intriguing subjects in the
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exploration of variational problems. In [14, 15], Lignola-Morgan introduced specific no-
tions regarding the well-posedness of quasi-VI with unique solutions, providing equiv-
alent characterizations of these concepts and discussing the well-posedness of quasi-VI.
Censor-Gibali-Reich [5] developed an iterative algorithm to study split variational in-
equalities under suitable conditions, which includes a prototype split inverse problem and
a newly introduced variational problem. He-Ling-Xu [6] explored split-variable inequal-
ities within the framework of product spaces. By leveraging the split structure of these
inequalities, they proposed a projection method that is straightforward to implement and
ensures global convergence. We can also find the study on generalized split variational
inequalities in [9,10]. Hu-Fang [7] broadened the concept of well-posedness to include split
inverse variational inequality problems, establishing well-posedness characterizations in
the style of Furi-Vignoli. Crespi-Guerraggio-Rocca [4] introduced well-posedness concepts
for vector optimization problems and differential vector variational inequalities, further
examining the well-posedness of vector optimization problems within the framework of
c-quasiconvexity. Wang-Huang-Qi [20] investigated the global uniqueness and solvability
of tensor variational inequalities under appropriate assumptions. Specifically, a tensor
variational inequality is defined by the following problem: Let C be a tensor space and H
a subset of C[V,h], with J : H −→ C[V,h]. The goal is to find A ∈ H such that

⟨A−B, J(A)⟩ ≤ 0, ∀B ∈ H. (1.4)

Additionally, Barbagallo-Mauro [2] investigated the behavior of control policies in oligopolis-
tic market equilibrium problems through the use of inverse tensor variational inequalities.
Let K be a subset of the tensor space C[V,h] and j : C[V,h] −→ C[V,h] be a tensor mapping.
Anceschi-Barbagallo-Bianco [1] introduced a class of inverse variational inequalities of the
tensor type, which consists of finding u∗ ∈ K such that

j (u∗) ∈ K, ⟨u∗, J − j(u∗)⟩ ≤ 0, ∀J ∈ K. (1.5)

Some results of the well-posedness analysis are also established in [1]. With the advance-
ment of quasi-variational inequalities, Cao-Kong-Zeng [3] introduced the concept of a
generalized split inverse variational inequality in the context of Hilbert space, also defin-
ing relevant notions of well-posedness and generalized well-posedness. The well-posedness
of the generalized split quasi-variational inequality is then examined using the theory
of noncompactness measures and the generalized Cantor theorem. Some results on well-
posedness and generalized well-posedness for various kinds of quasi-variational inequalities
have been developed recently, see, e.g., [8, 19] and the references therein.

Motivated by previous articles, the innovation of this article lies in considering a new
class of split quasi-inverse tensor variational inequalities, Problem 1.1, that involves two
independent variables, where the constraint set simultaneously depends on both of these
variables. Aims to explore some results on the well-posedness of the GSQITVI under
specific assumptions. The structure of the paper is as follows: Section 2 presents some
essential concepts that are vital for the subsequent proofs. In Section 3, we will outline
the key findings related to the well-posedness of the GSQITVI. Also, we will focus on the
generalized well-posedness of the GSQITVI and derive relevant metric characterizations.
Finally, some remarks and conclusions are given in Section 4.

2. Preliminaries
In general, we will denote by C[V,h] the set of all V -order h-dimensional tensors. We

assume that V and h are integers with V, h > 2, unless stated otherwise; in this context,
we will only consider real tensors. Occasionally, we will refer to h1 ×h2 ×h3 × . . .×hV as
the size of C[V,h]. This section focuses on revisiting some fundamental concepts, properties,
and important results related to tensor spaces C[V,h].
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Definition 2.1 ([12]). For tensors A,B ∈ C[V,h], we specify the inner product between
C[V,h] × C[V,h] and R as:

⟨A,B⟩ =
h∑

i1=1
. . .

h∑
iV =1

ai1,...,iV bi1,...,iV .

The norm that arises from this inner product is denoted as follows:

∥A∥ =

√√√√ h∑
i1=1

· · ·
h∑

iV =1
|ai1,...,iV |2,

which is termed the Frobenius norm. Additionally, within the category of C[V,h] the
distance between A and B is stipulated as dC[V,h](A,B) := ∥A−B∥.

We now introduce several core concepts to facilitate proving well-posedness results for
the GSQITVI.

Definition 2.2 ([12]). Let W be a nonempty subset of C[V,h] and let A ∈ C[V,h]. Then
(a) the diameter of W is defined by

diamW = sup{∥A−B∥ : A,B ∈ W};

(b) the distance between the tensor A and the set W is defined by

d(A,W) = inf{∥A−B∥ : B ∈ W}.

We recall the definitions of the measure of noncompactness and the Hausdorff distance
as stated in tensor spaces

Definition 2.3 ([12]). Let H be a non-empty subset of C[V,h]. The non-compactness
measure µ for the set H is stipulated as

µ(H) := inf
{
ϵ > 0 : H =

n⋃
i=1

Hi, diam(Hi) < ϵ, i = 1, 2, . . . , n
}
,

where every Hi (i = 1, . . . , n) is a finite covering of the set H.

Next, we introduce the Hausdorff distance for use in well-posedness analysis.

Definition 2.4 ([12]). Let Ω1 and Ω2 be two non-empty subsets of the tensor space C[V,h].
The Hausdorff metric between Ω1 and Ω2 is defined in the following way

H(Ω1,Ω2) = max {e(Ω1,Ω2), e(Ω2,Ω1)} ,

where e(Ω1,Ω2) is given by

e(Ω1,Ω2) = sup
A∈Ω1

inf
B∈Ω2

∥A−B∥.

The following definitions generalize the concepts of topological and closedness, lower
semicontinuity, and upper semicontinuity properties to set-valued tensor mappings.

Definition 2.5. A set-valued mapping Ξ : C[V,h] ⇒ S[M,n] is said to be:
(i) closed if, for arbitrary sequence An → A in C[V,h] and Bn → B in S[M,n] where Bn ∈
Ξ (An), we have B ∈ Ξ(A).

(ii) lower semicontinuous if, for any sequence An → A in C[V,h] and any B ∈ Ξ(A) , there
exists a sequence {Bn} such that Bn ∈ Ξ (An) and Bn → B in S[M,n].

(iii) upper semicontinuous if, for every sequence {An} converging in C[V,h] and any sequence
{Bn} ⊆ S[M,n] with Bn ∈ Ξ (An) besides Bnk → B∗ in S[M,n].
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3. Main results
In this section, we will provide the results of well-posedness for the GSQITVI by estab-

lishing metric characterizations and specific conditions. We also study the well-posedness
in the generalized sense of the GSQITVI which gives a metric characterization employing
the Hausdorff metric between the approximating solution set and the solution set of the
GSQITVI. To begin, we will introduce the concept of the approximating sequence of the
GSQITVI.

Definition 3.1. A sequence {(An, Bn)} in C[V1,h1]×C[V2,h2] is said to be an approximating
sequence of the GSQITVI, if there is a positive sequence {ϵn} where ϵn → 0 as n approaches
infinity such that

dC[V1,h1](j(An, Bn), J(An, Bn)) ≤ ϵn,
dC[V2,h2](m(An, Bn),M(An, Bn)) ≤ ϵn,
h (An, Bn) ≤ ϵn,
⟨j′ − j (An, Bn) , An⟩C[V1,h1] + θ (j′) − θ (j (An, Bn)) ≤ ϵn, ∀j′ ∈ J (An, Bn) ,
⟨m′ −m (An, Bn) , Bn⟩C[V2,h2] + τ (m′) − τ (m (An, Bn)) ≤ ϵn, ∀m′ ∈ M (An, Bn) .

Remark 3.2. If J(A,B) = J and M(A,B) = M for each (A,B) ∈ C[V1,h1]×C[V2,h2], where
J and M are two nonempty, closed, and convex subsets of C[V,h], then the approximating
sequence {(An, Bn)} of GSITVI is given by

j (An, Bn) ∈ J,
m (An, Bn) ∈ M,
h (An, Bn) ≤ ϵn,
⟨j′ − j (An, Bn) , An⟩C[V1,h1] + θ (j′) − θ (j (An, Bn)) ≤ ϵn, ∀j′ ∈ J,
⟨m′ −m (An, Bn) , Bn⟩C[V2,h2] + τ (m′) − τ (m (An, Bn)) ≤ ϵn, ∀m′ ∈ M,

where {ϵn} is a positive sequence such that ϵn → 0 as n → ∞.

Let S denote the solution set of the GSQITVI. We now introduce the concept of well-
posedness and generalized well-posedness to the GSQITVI.

Definition 3.3. (i) The GSQITVI is said to be well-posed if S = {(A∗, B∗)} is one-
point, and each approximating sequence {(An, Bn)} for the GSQITVI converges
to (A∗, B∗);

(ii) The GSQITVI is said to be generalized well-posed if S ̸= ∅ and each approximating
sequence of the GSQITVI has a subsequence that converges to an element within S.

Let us consider the definition of the approximating solution set of the GSQITVI.

Definition 3.4. For every ϵ > 0, the approximating solution set T (ϵ) of the GSQITVI
defined by

T (ϵ) =



(A,B) ∈ C[V1,h1] × C[V2,h2] :
dC[V1,h1](j(A,B), J(A,B)) ≤ ϵ,
dC[V2,h2](m(A,B),M(A,B)) ≤ ϵ,
h(A,B) ≤ ϵ,
⟨j′ − j (A,B) , A⟩C[V1,h1] + θ (j′) − θ (j (A,B)) ≤ ϵ, ∀j′ ∈ J(A,B),
⟨m′ −m (A,B) , B⟩C[V2,h2] + τ (m′) − τ (m (A,B)) ≤ ϵ, ∀m′ ∈ M(A,B)


.

Remark 3.5. If ϵ1 > ϵ2, then T (ϵ1) −T (ϵ2) > 0, so T (ϵ) is monotonous of the GSQITVI.
Since ϵ → 0, we can get T (ϵ) → T (0), that means T (0) = S.

Remark 3.6. If J(A,B) = J and M(A,B) = M for each (A,B) ∈ C[V1,h1]×C[V2,h2], where
J and M are two nonempty, closed, and convex subsets of C[V,h], then the approximating
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solution set T ∗(ϵ) of GSITVI is given by

T ∗(ϵ) =


(A,B) ∈ C[V1,h1] × C[V2,h2] : j (A,B) ∈ J, m (A,B) ∈ M, h(A,B) ≤ ϵ,

⟨j′ − j (A,B) , A⟩C[V1,h1] + θ (j′) − θ (j (A,B)) ≤ ϵ, ∀j′ ∈ J,
⟨m′ −m (A,B) , B⟩C[V2,h2] + τ (m′) − τ (m (A,B)) ≤ ϵ, ∀m′ ∈ M

 .

3.1. The descriptions of well-posedness features for the GSQITVI

We now provide the first main result on the equivalence between the well-posedness and
the existence of solutions for the GSQITVI under suitable conditions.

Theorem 3.7. Let J : C[V1,h1] × C[V2,h2] ⇒ C[V1,h1] and M : C[V1,h1] × C[V2,h2] ⇒ C[V2,h2]

be two set-valued mappings. Then GSQITVI is well-posed, precisely if and only if the
solution set of GSQITVI is nonempty, and

lim
ϵ→0

diam(T (ϵ)) = 0.

Proof. Necessity: Assume that GSQITVI is well-posed, which suggests that there exists
a singular solution (A∗, B∗) ∈ C[V1,h1] × C[V2,h2]. Consequently, we have S = {(A∗, B∗)},
meaning S is nonempty. Now, suppose for contradiction that diam(T (ϵ)) ̸= 0 as ϵ → 0.
There exists a constant β > 0 and a positive sequence {ϵn} with ϵn → 0 such that there
are points

(
A1

n, B
1
n

)
,
(
A2

n, B
2
n

)
∈ T (ϵn) satisfying∥∥∥(

A1
n, B

1
n

)
−

(
A2

n, B
2
n

)∥∥∥
C[V1,h1]×C[V2,h2]

> β > 0, ∀n ∈ N.

Since
(
A1

n, B
1
n

)
,
(
A2

n, B
2
n

)
∈ T (ϵn), we get that

dC[V1,h1](j(Ai
n, B

i
n), J(Ai

n, B
i
n)) ≤ ϵn,

dC[V2,h2](m(Ai
n, B

i
n),M(Ai

n, B
i
n)) ≤ ϵn,

h
(
Ai

n, B
i
n

)
≤ ϵn,〈

j′ − j
(
Ai

n, B
i
n

)
, An

〉
C[V1,h1] + θ (j′) − θ

(
j

(
Ai

n, B
i
n

))
≤ ϵn, ∀j′ ∈ J

(
Ai

n, B
i
n

)
,〈

m′ −m
(
Ai

n, B
i
n

)
, Bn

〉
C[V2,h2] + τ (m′) − τ

(
m

(
Ai

n, B
i
n

))
≤ ϵn, ∀m′ ∈ M

(
Ai

n, B
i
n

)
fo all i = 1, 2. This implies that

{(
A1

n, B
1
n

)}
and

{(
A2

n, B
2
n

)}
are two approximating

sequences for the GSQITVI. Based on the definition of the well-posedness (where every
approximating sequence converges to the exclusive point), we have

lim
n−→∞

(A1
n, B

1
n) = lim

n−→∞
(A2

n, B
2
n) = (A∗, B∗).

From this, we deduce:

0 < β <
∥∥∥(
A1

n, B
1
n

)
−

(
A2

n, B
2
n

)∥∥∥
C[V1,h1]×C[V2,h2]

≤
∥∥∥(
A1

n, B
1
n

)
− (A∗, B∗)

∥∥∥
C[V1,h1]×C[V2,h2]

+
∥∥∥(
A2

n, B
2
n

)
− (A∗, B∗)

∥∥∥
C[V1,h1]×C[V2,h2]

→ 0.

This contradiction indicates that limϵ→0 diam(T (ϵ)) = 0 must hold.

Sufficiency: Now assume S ̸= ∅ and that limϵ→0 diam(T (ϵ)) = 0 for every ϵ > 0. From
the definition, we know S ⊂ T (ϵ) for all ϵ > 0, so S is a singleton. Let {(An, Bn)} be an
approximating sequence of the GSQITVI. There exists a strictly positive sequence {ϵn}
with the property that ϵn tends to zero as n goes to infinity such that

dC[V1,h1](j(An, Bn), J(An, Bn)) ≤ ϵn,
dC[V2,h2](m(An, Bn),M(An, Bn)) ≤ ϵn,
h (An, Bn) ≤ ϵn,
⟨j′ − j (An, Bn) , An⟩C[V1,h1] + θ (j′) − θ (j (An, Bn)) ≤ ϵn, ∀j′ ∈ J (An, Bn) ,
⟨m′ −m (An, Bn) , Bn⟩C[V2,h2] + τ (m′) − τ (m (An, Bn)) ≤ ϵn, ∀m′ ∈ M (An, Bn)
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which implies that
(An, Bn) ∈ T (ϵn) ∀n ∈ N.

Let (A∗, B∗) be the unique solution of the GSQITVI. By the approximating set’s defi-
nition, we know (A∗, B∗) ∈ T (ϵn). Thus, we have

∥(An, Bn) − (A∗, B∗)∥C[V1,h1]×C[V2,h2] ≤ diam(T (ϵn)) → 0.
This means that {(An, Bn)} converges to the unique solution (A∗, B∗) as n → ∞. This
proves that GSQITVI is well-posed. □

The following result gives the equivalence between the well-posedness and the existence
of solutions for GSITVI, which is derived directly from Theorem 3.7.

Corollary 3.8. Let J and M be two non-empty, closed, and convex subsets of C[V,h]. Then
GSITVI is well-posed, precisely if and only if the solution set S∗ of GSITVI is nonempty
and

lim
ϵ→0

diam(T ∗(ϵ)) = 0.

The next result examines the well-posedness of the GSQITVI without using the con-
dition that the solution set S ̸= ∅ in Theorem 3.7. To do this, we need to introduce the
following relevant assumptions:

H(j,m, h): The functions j : C[V1,h1] × C[V2,h2] → V[V1,h1],m : C[V1,h1] × C[V2,h2] →
C[V2,h2], and h : C[V1,h1] × C[V2,h2] → R are continuous.

H(J,M): The set-valued mappings J : C[V1,h1] ×C[V2,h2] ⇒ C[V1,h1] and M : C[V1,h1] ×
C[V2,h2] ⇒ C[V2,h2] have closed, lower semicontinuous, and upper semicontinuous
convex values.

H(θ, τ): The functions θ : C[V1,h1] × C[V2,h2] → R and τ : C[V1,h1] × C[V2,h2] → R are
continuous.

Theorem 3.9. Under the conditions H(j,m, h),H(J,M), and H(θ, τ), the GSQITVI is
well-posed if and only if the

lim
ϵ→0

diam(T (ϵ)) = 0, and T (ϵ) ̸= ∅, ϵ > 0. (3.1)

Proof. The necessity follows directly from Theorem 3.7. Now, we will verify the suffi-
ciency.

Suppose that (3.1) holds. Let {(An, Bn)} ⊂ C[V1,h1] × C[V2,h2] be an approximating
sequence for the GSQITVI. By definition, there exists a sequence {ϵn} with ϵn > 0 for
every n ∈ N and ϵn → 0 as n → +∞ such that

dC[V1,h1](j(An, Bn), J(An, Bn)) ≤ ϵn,
dC[V2,h2](m(An, Bn),M(An, Bn)) ≤ ϵn,
h (An, Bn) ≤ ϵn,
⟨j′ − j (An, Bn) , An⟩C[V1,h1] + θ (j′) − θ (j (An, Bn)) ≤ ϵn, ∀j′ ∈ J (An, Bn) ,
⟨m′ −m (An, Bn) , Bn⟩C[V2,h2] + τ (m′) − τ (m (An, Bn)) ≤ ϵn, ∀m′ ∈ M (An, Bn) .

This implies that
(An, Bn) ∈ T (ϵn) ∀n ∈ N.

Since limϵ→0 diam(T (ϵn)) = 0 as n → +∞, we can conclude that {(An, Bn)} is a Cauchy
sequence. Therefore, in accordance with the definition of a Cauchy sequence, (An, Bn) →
(A∗, B∗) in C[V1,h1] × C[V2,h2] as n → +∞. Now, we will show that (A∗, B∗) is the unique
tensor solution of the GSQITVI.

• First, we show that j (A∗, B∗) ∈ J (A∗, B∗) ,m (A∗, B∗) ∈ M (A∗, B∗), and h (A∗, B∗)
≤ 0. Indeed, for each n ∈ N , this approximating sequence satisfies the inequality

h (An, Bn) ≤ ϵn,
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and since (An, Bn) → (A∗, B∗) ∈ C[V1,h1] × C[V2,h2] and ϵn → 0, by the continuity of h, we
obtain

h (A∗, B∗) = lim
n→∞

h (An, Bn) ≤ lim
n→∞

ϵn = 0.

Therefore, h (A∗, B∗) ≤ 0.

Next, by assuming condition H(j,m) holds, we have j (An, Bn) → j (A∗, B∗) and
m (An, Bn) → m (A∗, B∗) as n → ∞. We now prove

dC[V1,h1] (j (A∗, B∗) , J (A∗, B∗)) ≤ lim inf
n→∞

dC[V1,h1] (j (An, Bn) , J (An, Bn)) ≤ lim
n→∞

ϵn = 0.
(3.2)

Assuming the left inequality of (3.2) fails, there exists a constant r greater than zero
such that

lim inf
n→∞

dC[V1,h1] (j (An, Bn) , J (An, Bn)) < r < dC[V1,h1] (j (A∗, B∗) , J (A∗, B∗)) .

This implies that there exists a subsequence {(Ank
, Bnk

)} of {(An, Bn)} converging to a
point (A∗, B∗) and a sequence {wnk

} with wnk
∈ J (Ank

Bnk
) such that

∥(j(Ank
, Bnk

) − wnk
∥C[V1,h1] ≤ r − 1

nk
∀k ∈ N.

Since J is upper semicontinuous, assume wnk
→ w∗ in C[V1,h1]; by the closedness of J , we

have w∗ ∈ J (A∗, B∗). By the continuity of j, we get j (Ank
, Bnk

) → j(A∗, B∗) as k → ∞.
Then, we obtain

r < dC[V1,h1] (j (A∗, B∗) , J (A∗, B∗)) ≤ ∥j (A∗, B∗) − w∗∥C[V1,h1]

≤ lim inf
k→∞

∥j (Ank
, Bnk

) − wnk
∥C[V1,h1]

≤ r.

This contradiction confirms that j (A∗, B∗) ∈ J (A∗, B∗). By similar reasoning, we also
get m (A∗, B∗) ∈ M (A∗, B∗).

• Secondly, we show the following:
⟨j′ − j (A∗, B∗) , A∗⟩C[V1,h1] + θ (j′) − θ (j (A∗, B∗)) ≤ 0, ∀j′ ∈ J (A∗, B∗) ,
⟨m′ −m (A∗, B∗) , B∗⟩C[V2,h2] + τ (m′) − τ (m (A∗, B∗)) ≤ 0, ∀m′ ∈ M (A∗, B∗) .

For any j′ ∈ J (A∗, B∗), since J is lower semicontinuous, there is a sequence {j′
n} with

j′
n ∈ J (An, Bn) such that j′

n → j′ in C[V1,h1]. Using the continuity of θ and j, we conclude:〈
j′ − j (A∗, B∗) , A∗〉

C[V1,h1] + θ
(
j′) − θ (j (A∗, B∗))

≤ lim inf
n→∞

[〈
j′

n − j (An, Bn) , An
〉
C[V1,h1] + θ

(
j′

n

)
− θ (j (An, Bn))

]
≤ lim inf

n→∞
ϵn = 0,

and so 〈
j′ − j (A∗, B∗) , A∗〉

C[V1,h1] + θ
(
j′) − θ (j (A∗, B∗)) ≤ 0.

Similarly, we also obtain〈
m′ −m (A∗, B∗) , B∗〉

C[V2,h2] + τ
(
m′) − τ (m (A∗, B∗)) ≤ 0.

Thus, we conclude that (A∗, B∗) ∈ S.

To accomplish the proof, we prove that S is a singleton. If S has two distinct solutions
(A∗

1, B
∗
1) and (A∗

2, B
∗
2), then (A∗

1, B
∗
1) , (A∗

2, B
∗
2) ∈ T (ϵ) for all ϵ > 0. We have

0 < ∥(A∗
1, B

∗
1) − (A∗

2, B
∗
2)∥C[V1,h1]×C[V2,h2] ≤ lim

ϵ→0
diam(T (ϵ)) = 0,

which leads to a contradiction. Therefore, GSQITVI is well-posed. □
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Next, we also derive the well-posedness for GSITVI by assuming T ∗(ϵ) ̸= ∅, which is a
consequence of Theorem 3.9.

Corollary 3.10. Let J and M are two nonempty, closed, and convex subsets of C[V,h],
j and m are two continuous tensor mappings, j : C[V1,h1] × C[V2,h2] → C[V1,h1] and m :
C[V1,h1] × C[V2,h2] → C[V2,h2], the h, θ and τ are given continuous functions, h : C[V1,h1] ×
C[V2,h2] → R, θ : C[V1,h1] × C[V2,h2] → R and τ : C[V1,h1] × C[V2,h2] → R. Then GSITVI is
well-posed if and only if

lim
ϵ→0

diam(T ∗(ϵ)) = 0, and T ∗(ϵ) ̸= ∅, ϵ > 0.

3.2. The characterizations of well-posed in the generalized sense of the
GSQITVI

Next, we investigate the well-posedness in the generalized sense of the GSQITVI. The
following result sets up a metric characterization by means of the employment of the Haus-
dorff metric between the approximating solution set and the solution set of the GSQITVI.
To begin with, we establish the following lemma.

Lemma 3.11. The conditions H(j,m, h),H(J,M), and H(θ, τ) are satisfied. For each
ϵ > 0, the approximating solution set T (ϵ) for the GSQITVI is closed.

Proof. For a fixed ϵ > 0, let {(An, Bn)} ⊂ T (ϵ) such that (An, Bn) → (A∗, B∗) as n → ∞.
Now, we aim to prove that (A∗, B∗) ∈ T (ϵ). Indeed, since (An, Bn) ∈ T (ϵ), we have

dC[V1,h1](j(An, Bn), J(An, Bn)) ≤ ϵ,
dC[V2,h2](m(An, Bn),M(An, Bn)) ≤ ϵ,
h (An, Bn) ≤ ϵ,
⟨j′ − j (An, Bn) , An⟩C[V1,h1] + θ (j′) − θ (j (An, Bn)) ≤ ϵ, ∀j′ ∈ J (An, Bn) ,
⟨m′ −m (An, Bn) , Bn⟩C[V2,h2] + τ (m′) − τ (m (An, Bn)) ≤ ϵ, ∀m′ ∈ M (An, Bn) .

Given any pair (A,B), the sets J(A,B) and M(A,B) are both closed, convex subsets of
C[V1,h1] × C[V2,h2]. This implies that there exists an element jn ∈ J (An, Bn) such that
∥j (An, Bn) − jn∥ ≤ ϵ, as indicated by dC[V1,h1] (j (An, Bn) , J (An, Bn)) ≤ ϵ. Due to the
upper semicontinuity and closedness of J , there is a subsequence {jnk

} of {jn} such that
jnk

→ j∗ ∈ J (A∗, B∗). Additionally, since j (An, Bn) → j (A∗, B∗) by continuity of j, we
get

∥j (Ank
, Bnk

) − jnk
∥ ≤ ϵ.

Taking the liminf on both sides, we obtain

∥j (A∗, B∗) − j∗∥ ≤ lim inf
n→∞

∥j (Ank
, Bnk

) − jnk
∥ ≤ ϵ

This implies
dC[V1,h1] (j (A∗, B∗) , J (A∗, B∗)) ≤ ϵ.

Similarly, we can show

dC[V2,h2] (m (A∗, B∗) ,M (A∗, B∗)) ≤ ϵ.

By the continuity of h, we have

|h (A∗, B∗)| ≤ |h (An, Bn)| + |h (An, Bn) − h (A∗, B∗)| → ϵ as n → ∞,

thus, h (A∗, B∗) ≤ ϵ.
Next, for any n ∈ N, we have〈

j′ − j (An, Bn) , An
〉
C[V1,h1] + θ

(
j′) − θ (j (An, Bn)) ≤ ϵ, ∀j′ ∈ J (An, Bn) .
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Since J is lower semicontinuous, for any j∗ ∈ J (A∗, B∗), a sequence {jn} exists with
jn ∈ J (An, Bn) such that jn → j∗. Then, thanks to the continuity of j and θ, we obtain

⟨j∗ − j (A∗, B∗) , A∗⟩C[V1,h1] + θ (j∗) − θ (j(A∗, B∗))
= lim

n→∞

[
⟨jn − j (An, Bn) , An⟩C[V1,h1] + θ (jn) − θ (j (An, Bn))

]
≤ ϵ, ∀jn ∈ J (An, Bn) .

This implies that

⟨j∗ − j (A∗, B∗) , A∗⟩C[V1,h1] + θ (j∗) − θ (j(A∗, B∗)) ≤ ϵ, ∀j∗ ∈ J (A∗, B∗) .

By the same argument above, we find that

⟨m∗ −m (A∗, B∗) , B∗⟩C[V2,h2] + τ (m∗) − τ (m(A∗, B∗)) ≤ ϵ, ∀m∗ ∈ M (A∗, B∗) .

Thus, we conclude that (A∗, B∗) ∈ T (ϵ). This confirms that T (ϵ) is closed for each
ϵ > 0. □

Remark 3.12. Let J and M are two nonempty, closed, and convex subsets of C[V,h], j and
m are two continuous tensor mappings, j : C[V1,h1] × C[V2,h2] → C[V1,h1] and m : C[V1,h1] ×
C[V2,h2] → C[V2,h2], the h, θ and τ are given continuous functions, h : C[V1,h1]×C[V2,h2] → R,
θ : C[V1,h1] × C[V2,h2] → R and τ : C[V1,h1] × C[V2,h2] → R. Then, T ∗(ϵ) is closed by using
the same method in Lemma 3.11.

Theorem 3.13. Let J : C[V1,h1] ×C[V2,h2] ⇒ C[V1,h1] and M : C[V1,h1] ×C[V2,h2] ⇒ C[V2,h2]

be two set-valued mappings. Then GSQITVI is well-posed in the generalized sense if and
only if the solution set S of the GSQITVI is nonempty compact and

lim
ϵ→0+

e(T (ϵ), S) = 0. (3.3)

Proof. Necessity: Suppose initially that GSQITVI is well-posed in the generalized sense,
which implies that the solution set S of the GSQITVI is nonempty (see Definition 3.3(ii))
and S ⊆ T (ϵ) ̸= ∅, for all ϵ > 0. To verify that S is compact, consider any sequence
{(An, Bn)} ⊂ S, we have (An, Bn) ∈ T (ϵ) for each n ∈ N and all ϵ > 0, i.e., the sequence
{(An, Bn)} serves as an approximating sequence for the GSQITVI. In light of Definition
3.3(ii), there exists a subsequence {(Ank

, Bnk
)} of {(An, Bn)} that converges to some

element within S. This confirms that S is compact.
Next, we aim to prove (3.3). Assuming that e(T (ϵ), S) does not converge to zero as

ϵ → 0+, then for every positive sequence {ϵn} such that ϵn → 0 as n → ∞ there exist
β > 0 and a corresponding sequence (A′

n, B
′
n) ∈ T (ϵn) such that

dC[V1,h1]×C[V2,h2]
((
A′

n, B
′
n

)
, S

)
> β ∀n ∈ N.

Since {(A′
n, B

′
n)} is an approximating sequence of the GSQITVI, and due to the gener-

alized well-posedness of the GSQITVI (see Definition 3.3(ii)), there exists a subsequence{(
A′

nk
, B′

nk

)}
of {(A′

n, B
′
n)} such that

(
A′

nk
, B′

nk

)
converging to some point of S, yielding

0 < β < dC[V1,h1]×C[V2,h2]

((
A′

nk
, B′

nk

)
, S

)
→ 0 as k → 0.

This contradiction verifies that (3.3) holds.

Sufficiency: Assume that S is nonempty and compact, and limϵ→0+ e(T (ϵ), S) = 0
holds. Let {(An, Bn)} be an approximating sequence for the GSQITVI. Then there exists
a positive sequence {ϵn} with ϵn → 0 as n → ∞ such that (An, Bn) ∈ T (ϵn) for all n ∈ N.
By (3.3), we can find a sequence {(A∗

n, B
∗
n)} ⊂ S such that

∥(An, Bn) − (A∗
n, B

∗
n)∥C[V1,h1]×C[V2,h2] → 0 as n → ∞.
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Due to the compactness of S, there exists a subsequence
{(
A∗

nk
, B∗

nk

)}
of {(A∗

n, B
∗
n)}

that converges to some element (A∗, B∗) ∈ S. Thus, we obtain
∥(Ank

, Bnk
) − (A∗, B∗)∥C[V1,h1]×C[V2,h2]

≤
∥∥∥(Ank

, Bnk
) −

(
A∗

nk
, B∗

nk

)∥∥∥
C[V1,h1]×C[V2,h2]

+
∥∥∥(
A∗

nk
, B∗

nk

)
− (A∗, B∗)

∥∥∥
C[V1,h1]×C[V2,h2]

→ 0,

as k → 0, which implies that the GSQITVI is well-posed in the generalized sense. □
Corollary 3.14. Let J and M are two nonempty, closed, and convex subsets of C[V,h],
j and m are two continuous tensor mappings, j : C[V1,h1] × C[V2,h2] → C[V1,h1] and m :
C[V1,h1] ×C[V2,h2] → C[V2,h2], the h, ψ and θ are given functions, h : C[V1,h1] ×C[V2,h2] → R,
θ : C[V1,h1] × C[V2,h2] → R and τ : C[V1,h1] × C[V2,h2] → R. Then GSITVI is well-posed in
the generalized sense if and only if the solution set S∗ of GSITVI is nonempty compact
and

lim
ϵ→0+

e(T ∗(ϵ), S∗) = 0.

According to the proof of Theorem 3.13, we can see that the compactness of S is
a crucial factor. In the next theorem, we can formulate a metric description of well-
posedness in the generalized sense by utilizing the measurability of the non-compactness
of the approximating solution set to relax the compactness of S.

Theorem 3.15. Suppose that conditions H(j,m, h),H(J,M), and H(θ, τ) are satisfied.
Then GSQITVI is well-posed in the generalized sense if and only if

T (ϵ) ̸= ∅, ∀ϵ > 0 and lim
ϵ→0

µ(T (ϵ)) = 0. (3.4)

Proof. Necessity: Assume that GSQITVI is well-posed in the generalized sense. By
Definition 3.3(ii), the solution set S of the GSQITVI is nonempty, and so S ⊂ T (ϵ) ̸= ∅
for all ϵ > 0. Hence, it gives

H(T (ϵ), S) = max{e(T (ϵ), S), e(S, T (ϵ))} = e(T (ϵ), S), (3.5)
for all ϵ > 0. It follows from Theorem 3.13 that S is compact, and so

µ(S) = 0. (3.6)
Combining (3.5) and (3.6) leads to

µ(T (ϵ)) ≤ 2H(T (ϵ), S) + µ(S) = 2e(T (ϵ), S).
Moreover, from Theorem 3.13, we have

lim
ϵ→0+

e(T (ϵ), S) = 0.

Hence, we conclude
lim
ϵ→0

µ(T (ϵ)) = 0.

This implies that conditions (3.4) are satisfied.
Sufficiency: Assume that (3.4) holds. Thanks to Lemma 3.11, for each ϵ > 0, T (ϵ) is

closed. We define S′ =
⋂

ϵ>0 T (ϵ). By the generalized Cantor theorem (see [13]), we have
limϵ→0 H (T (ϵ), S′) = 0 and S′ is nonempty and compact.

In the following, we prove that S′ = S. It is easy to see that S ⊆ S′, so we only need
to verify that S′ ⊆ S. For any (A∗, B∗) ∈ S′ and ϵ > 0 fixed, it holds

dC[V1,h1]×C[V2,h2] ((A∗, B∗) , T (ϵ)) = 0.
Then, for each n ∈ N, there exists a sequence {(An, Bn)} ⊂ T (ϵn) with ϵn → 0 as n → ∞
such that

∥(An, Bn) − (A∗, B∗)∥ ≤ ϵn.
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Hence, (An, Bn) → (A∗, B∗) in C[V1,h1] × C[V2,h2] as n → ∞. Since (An, Bn) ∈ T (ϵn),
it gives

dC[V1,h1](j(An, Bn), J(An, Bn)) ≤ ϵ,
dC[V2,h2](m(An, Bn),M(An, Bn)) ≤ ϵ,
h (An, Bn) ≤ ϵ,
⟨j′ − j (An, Bn) , An⟩C[V1,h1] + θ (j′) − θ (j (An, Bn)) ≤ ϵ, ∀j′ ∈ J (An, Bn) ,
⟨m′ −m (An, Bn) , Bn⟩C[V2,h2] + τ (m′) − τ (m (An, Bn)) ≤ ϵ, ∀m′ ∈ M (An, Bn) .

By the continuity of j,m and h, we have

j (An, Bn) → j (A∗, B∗) ,m (An, Bn) → m (A∗, B∗) , and h (An, Bn) → h (A∗, B∗) .

Employing the same arguments as presented in Theorem 3.9, it follows that

dC[V1,h1] (j (A∗, B∗) , J (A∗, B∗)) ≤ lim inf
n→∞

dC[V1,h1] (j (An, Bn) , J (An, Bn)) ≤ lim
n→∞

ϵn = 0,

dC[V2,h2] (m (A∗, B∗) ,M (A∗, B∗)) ≤ lim inf
n→∞

dC[V2,h2] (m (An, Bn) ,M (An, Bn))

≤ lim
n→∞

ϵn = 0

and

h (A∗, B∗) = lim
n→∞

h (An, Bn) ≤ lim
n→∞

ϵn = 0.

This implies that j (A∗, B∗) ∈ J (A∗, B∗), m (A∗, B∗) ∈ M (A∗, B∗) and h (A∗, B∗) ≤ 0.
Since J is lower semicontinuous, for any j∗ ∈ J (A∗, B∗), there exists a sequence {j′

n} ⊂
J (An, Bn) such that j′

n → j∗ as n → ∞. Given that θ and τ are continuous, we can write

⟨j∗ − j (A∗, B∗) , A∗⟩C[V1,h1] + θ (j∗) − θ (j(A∗, B∗))
= lim

n→∞

[〈
j′

n − j (An, Bn) , An
〉
C[V1,h1] + θ

(
j′

n

)
− θ (j (An, Bn))

]
≤ lim

n→∞
ϵn = 0.

Hence, we obtain

⟨j∗ − j (A∗, B∗) , A∗⟩C[V1,h1] + θ (j∗) − θ (j(A∗, B∗)) ≤ 0 ∀j∗ ∈ J (A∗, B∗) .

Similarly, we obtain

⟨m∗ −m (A∗, B∗) , B∗⟩C[V2,h2] + τ (m∗) − τ (m(A∗, B∗)) ≤ 0 ∀m∗ ∈ M (A∗, B∗) .

Thus, we arrive at the conclusion that (A∗, B∗) ∈ S, implying S′ = S. Hence,
limϵ→0H(T (ϵ), S) = 0 and limϵ→0 e(T (ϵ), S) = 0. Considering the compactness of S
and applying Theorem 3.13, it can be concluded that GSQITVI is well-posed in the gen-
eralized sense. □

Following a similar approach to the proof of Theorem 3.15, we establish the well-
posedness of GSITVI in the generalized sense, which is a specific case of the GSQITVI.

Corollary 3.16. Let J and M are two nonempty, closed, and convex subsets of C[V,h],
j and m are two continuous tensor mappings, j : C[V1,h1] × C[V2,h2] → C[V1,h1] and m :
C[V1,h1] × C[V2,h2] → C[V2,h2], the h, θ and τ are given continuous functions, h : C[V1,h1] ×
C[V2,h2] → R, θ : C[V1,h1] × C[V2,h2] → R and τ : C[V1,h1] × C[V2,h2] → R. Then GSITVI is
well-posed in the generalized sense if and only if the

T ∗(ϵ) ̸= ∅, ∀ϵ > 0 and lim
ϵ→0

µ(T ∗(ϵ)) = 0.
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4. Conclusions
This work provides a comprehensive study of the generalized split quasi-inverse tensor

variational inequality (GSQITVI) in tensor spaces. Then by building upon the concept
of well-posedness, we have established key metric-based features that offer necessary and
sufficient conditions for the well-posedness of the GSQITVI. Also, we have further derived
important results regarding the well-posedness of the GSQITVI by using the measure of
non-compactness. The primary innovation of this work lies in the consideration of a new
class of split quasi-inverse tensor variational inequalities that involve two independent vari-
ables, where the constraint set simultaneously depends on both variables. These findings
provide valuable insights into the convergence properties of solutions of the GSQITVI.
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