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Introduction 
 

Fractional calculus is an extension of classical differentiation and integration to arbitrary order. Its history is as old 
as the classical calculus. Fractional derivatives and integrals have been shown to be better than classical tools for 
describing many real-life phenomena in science and engineering. Hence, many and varied sectors of engineering and 
science, including fluid mechanics, electromagnetics, electrochemistry, biological population models, viscoelasticity, 
signals processing, and signals optics use fractional calculus. 

Fractional differential equations have recently attracted considerable attention. The study of fractional differential 
equations is interdisciplinary and is encountered in diverse fields such as plasma physics, biomathematics, fluid 
dynamics, mathematical biology, control systems, elasticity, biotechnology, quantum mechanics, optics, and complex 
systems. Since the derivatives there are of fractional order, they can approximate real data more flexibly, see [1]. 

The variety of fractional operators is what distinguishes fractional calculus from other mathematical disciplines. This 
allows the scientists working on modeling real life phenomena to choose the best operator for their model. To model 
real life phenomena more accurately, researchers have needed several other fractional operators in addition to the 
Riemann-Liouville and Caputo ones. An interested reader can look at [2-7] for some newly introduced fractional 
operators. These operators are defined as particular cases of fractional operators depending on a kernel function. 

Oscillation is a substantial aspect of the qualitative behavior of solutions of differential and difference equations. Its 
theory is important to study the oscillatory phenomena in technology and natural and social sciences. A major problem 
in oscillation theory is proving the existence or non-existence of an oscillatory solution to a given equation or system. 
Additionally, the behavior of other solutions relative to a particular oscillatory (non-oscillatory) solution is also studied. 
Many articles on theoretical aspects of oscillation theory are published every year. Surprisingly, this significant area of 
research has substantial applications and is not entirely theoretical. Oscillation theory has important applications in 
physics, biology, ecology, physiology, etc. Studying oscillations provides a better understanding of the dynamics of 
solutions of equations that model applied problems encountered in engineering, technology, and science. Despite its 
importance, when we look at the literature, we see that there are few studies related to the oscillation of fractional 
differential and difference equations. As far as we know, Grace et al. [8] first studied the oscillation for a fractional 
differential equation. After that, corresponding results for ordinary differential and difference equations have been 
extended to fractional differential and difference equations, see [9-19]. There is also very little research on the 
oscillation theory of fractional integro-differential equations, see [20-23]. This work investigates the oscillatory behavior 
of solutions to a fractional Volterra integro-differential equation using the method introduced in [24]. We believe that 
our study will inspire further research on fractional integro-differential equations. We consider the fractional integro-
differential equation 
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{
𝐷𝑎

𝜇,𝔖
𝑥(𝑡) = 𝔷(𝑡) − ∫

𝑡

𝑎
ℳ(𝑡, 𝑣)𝒴(𝑣, 𝑥(𝑣)) 𝑑𝑣, 𝑡 ≥ 𝑎 ≥ 0, 0 < 𝜇 < 1,  

lim
𝑡→𝑎+

𝐼𝑎
1−𝜇,𝔖

𝑥(𝑡) = 𝑏1 ,  
}         (1) 

where, 𝔷, ℳ, and 𝒴 are continuous, 𝑏1 ∈ ℝ, and 𝐷𝑎
𝜇,𝔖

 and 

𝐼𝑎
1−𝜇,𝔖

  are the left fractional general derivative and 
integral operators in the Riemann-Liouville setting, 
respectively. 

We concentrate only on those solutions of Eq. (1) not 
identically zero eventually. Henceforth, we mean such 
solutions. Such solutions are called oscillatory if they are 
not eventually of one sign and nonoscillatory otherwise. 
The equation itself is oscillatory in case all its solutions 
oscillate. 

 

PRELIMINARIES 
We now present some basic definitions and important 

lemmas. Let 𝜇 ∈ ℂ with 𝑅𝑒(𝜇) > 0, 𝐼 = (𝑎, 𝑏) be an 
interval, and 𝔖 ∈ 𝐶1(𝐼) be an increasing function with 
𝔖′(𝑡) ≠ 0  ∀𝑡 ∈ 𝐼. The left fractional integral and 
derivative in the Riemann-Liouville sense of a function 𝜃 
with respect to another function 𝔖 are defined in [25, 26] 
as  

𝐼𝑎
𝜇,𝔖

𝜃(𝑡) =
1

Γ(𝜇)
∫

𝑡

𝑎
(𝔖(𝑡) − 𝔖(𝑣))𝜇−1𝔖′(𝑣)𝜃(𝑣)𝑑𝑣           (2) 

and  

𝐷𝑎
𝜇,𝔖

𝜃(𝑡) =  𝔖𝐷𝑡
𝑛𝐼𝑎

𝑛−𝜇,𝔖
𝜃(𝑡)  

  =
1

Γ(𝑛−𝜇)
 𝔖𝐷𝑡

𝑛 ∫
𝑡

𝑎
(𝔖(𝑡) − 𝔖(𝑣))𝑛−𝜇−1𝔖′(𝑣)𝜃(𝑣)𝑑𝑣,         (3) 

respectively, where 𝑛 = ⌈𝜇⌉ and  

 𝔖𝐷𝑡
𝑛 = (

1

𝔖′(𝑡)

𝑑

𝑑𝑡
)𝑛.   

In the special cases 𝔖(𝑡) = 𝑡 and 𝔖(𝑡) = ln𝑡 in Eq. (2) and Eq. (3), we have the Riemann-Liouville and Hadamard 
fractional operators, respectively. 
We assume throughout that 𝔖(𝑡) > 0  ∀𝑡 ∈ 𝐼. 

Lemma 1 [26] Let 𝜇 ∈ ℂ with 𝑅𝑒(𝜇) > 0, 𝑛 = −[−𝑅𝑒(𝜇)], 𝜃 ∈ 𝐿(𝑎, 𝑏), and (𝐼𝑎
𝜇,𝔖

𝜃)(𝑡) ∈ 𝐴𝐶𝔖
𝑛[𝑎, 𝑏].    Then, 

𝐼𝑎
𝜇,𝔖

𝐷𝑎
𝜇,𝔖

𝜃(𝑡) = 𝜃(𝑡) − ∑𝑛
𝑗=1

(𝐼𝑎
𝑗−𝜇,𝔖

𝜃)(𝑎+)

Γ(𝜇−𝑗+1)
(𝔖(𝑡) − 𝔖(𝑎))𝜇−𝑗 .           (4) 

Lemma 2 [27] Let 𝜇, 𝜈 ∈ ℂ with 𝑅𝑒(𝜇) > 0 and 𝑅𝑒(𝜈) > 0. Then  

𝐼𝑎
𝜇,𝔖

(𝔖(𝑡) − 𝔖(𝑎))𝜈−1 =
Γ(𝜈)

Γ(𝜈+𝜇)
(𝔖(𝑡) − 𝔖(𝑎))𝜈+𝜇−1.            (5) 

Lemma 3 [28] For non-negative real numbers 𝒦 and ℛ,  

𝒦𝛼 − (1 − 𝛼)ℛ𝛼 − 𝛼𝒦ℛ𝛼−1 ≤ 0, 0 < 𝛼 < 1.            (6) 

The equality holds if and only if 𝒦 = ℛ 
 

Main Results 

We assume that the following hypotheses are met: 
(H1) 𝔷: [𝑎, ∞) → ℝ is continuous; 
(H2) ℳ: [𝑎, ∞) × [𝑎, ∞) → ℝ is continuous and there exist continuous functions 𝜁1, 𝜁2: [𝑎, ∞) → (0, ∞) such that  

0 ≤ ℳ(𝑡, 𝑣) ≤ 𝜁1(𝑡)𝜁2(𝑣)  for  𝑡 ≥ 𝑣 ≥ 𝑎;  

(H3) 𝒴: [𝑎, ∞) × ℝ → ℝ is continuous and there exists a continuous function 𝜂: [𝑎, ∞) → (0, ∞) and a real number 𝛼, 
0 < 𝛼 ≤ 1 such that  

0 < 𝑥𝒴(𝑡, 𝑥) ≤ 𝜂(𝑡)|𝑥|𝛼+1  for  𝑡 ≥ 𝑎, 𝑥 ≠ 0;  

 For a given continuous function 𝜉: [𝑎, ∞) → (0, ∞), we define  

𝑞±(𝑡): = 𝔷(𝑡) ± (1 − 𝛼)𝛼𝛼/(1−𝛼)𝜁1(𝑡) ∫
𝑡

𝑎
𝜉𝛼/(𝛼−1)(𝑣)𝜁2

1/(1−𝛼)
(𝑣)𝜂1/(1−𝛼)(𝑣) 𝑑𝑣,    0 < 𝛼 < 1.  

 To begin, we provide sufficient conditions for each nonoscillatory solution of Eq. (1) to fulfill  

𝑥(𝑡) = 𝑂(𝔖𝜇(𝑡))  as  𝑡 → ∞. 

Theorem 1  Let 0 < 𝛼 < 1 and the hypotheses (H1)–(H3) hold. Assume that  
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𝜁1(𝑡) ≤ 𝑀1  for  𝑡 ≥ 𝑎       (7) 

 for some real number 𝑀1 > 0 and  

∫
∞

𝑎
𝔖𝜇(𝑣)𝜉(𝑣) 𝑑𝑣 < ∞.  (8) 

 If  

limsup
𝑡→∞

1

𝔖𝜇(𝑡)
𝐼𝑎

𝜇,𝔖[𝑞+(𝑡)] < ∞, and liminf
𝑡→∞

1

𝔖𝜇(𝑡)
𝐼𝑎

𝜇,𝔖
[𝑞−(𝑡)] > −∞, (9) 

then every nonoscillatory solution 𝑥(𝑡) of Eq. (1) satisfies  

limsup
𝑡→∞

|𝑥(𝑡)|

𝔖𝜇(𝑡)
< ∞.  (10) 

 

Proof 1 Assume that 𝑥(𝑡) is a nonoscillatory solution of Eq. (1), say 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑇1, for some 𝑇1 ≥ 𝑎. From Eq. (1), 

we have 

𝐷𝑎
𝜇,𝔖

𝑥(𝑡) = 𝔷(𝑡) − ∫
𝑡

𝑎

ℳ(𝑡, 𝑣)𝒴(𝑣, 𝑥(𝑣)) 𝑑𝑣 

                  = 𝔷(𝑡) − ∫
𝑇1

𝑎
ℳ(𝑡, 𝑣)𝒴(𝑣, 𝑥(𝑣)) 𝑑𝑣 − ∫

𝑡

𝑇1
ℳ(𝑡, 𝑣)𝒴(𝑣, 𝑥(𝑣)) 𝑑𝑣.              

Let 𝐿: = min{𝒴(𝑡, 𝑥(𝑡)): 𝑡 ∈ [𝑎, 𝑇1]} ≤ 0 and 𝜅: = −𝐿 ∫
𝑇1

𝑎
𝜁2(𝑣) 𝑑𝑣 ≥ 0. 

Since  ℳ(𝑡, 𝑣)𝒴(𝑣, 𝑥(𝑣)) ≥ 𝐿ℳ(𝑡, 𝑣) ≥ 𝐿𝜁1(𝑡)𝜁2(𝑣),   𝑎 ≤ 𝑣 ≤ 𝑇1, 

we have 

 ∫
𝑇1

𝑎
ℳ(𝑡, 𝑣)𝒴(𝑣, 𝑥(𝑣)) 𝑑𝑣 ≥ 𝐿𝜁1(𝑡) ∫

𝑇1

𝑎
𝜁2(𝑣) 𝑑𝑣 

and 

 − ∫
𝑇1

𝑎
ℳ(𝑡, 𝑣)𝒴(𝑣, 𝑥(𝑣)) 𝑑𝑣 ≤ −𝐿𝜁1(𝑡) ∫

𝑇1

𝑎
𝜁2(𝑣) 𝑑𝑣 = 𝜅𝜁1(𝑡). 

In view of ℳ(𝑡, 𝑣)𝒴(𝑣, 𝑥(𝑣)) > 0, we have 

  − ∫
𝑡

𝑇1
ℳ(𝑡, 𝑣)𝒴(𝑣, 𝑥(𝑣)) 𝑑𝑣 < 0 

and 

 − ∫
𝑡

𝑇1
ℳ(𝑡, 𝑣)𝒴(𝑣, 𝑥(𝑣)) 𝑑𝑣 < 0 ≤ 𝜁1(𝑡) ∫

𝑡

𝑇1
𝜁2(𝑣)𝜂(𝑣)𝑥𝛼(𝑣) 𝑑𝑣. 

Thus, we get 

𝐷𝑎
𝜇,𝔖

𝑥(𝑡) ≤ 𝔷(𝑡) + 𝜅𝜁1(𝑡) + 𝜁1(𝑡) ∫
𝑡

𝑇1

𝜁2(𝑣)𝜂(𝑣)𝑥𝛼(𝑣) 𝑑𝑣 

                 = 𝔷(𝑡) + 𝜅𝜁1(𝑡) + 𝜁1(𝑡) ∫
𝑡

𝑇1
(𝜁2(𝑣)𝜂(𝑣)𝑥𝛼(𝑣) − 𝜉(𝑣)𝑥(𝑣)) 𝑑𝑣 + 𝜁1(𝑡) ∫

𝑡

𝑇1
𝜉(𝑣)𝑥(𝑣) 𝑑𝑣.   (11) 

In (6), by setting 𝒦: = (𝜁2𝜂)1/𝛼𝑥 and ℛ: = (
1

𝛼
𝜉(𝜁2𝜂)−1/𝛼)

1

𝛼−1
, we get  

𝜁2(𝑣)𝜂(𝑣)𝑥𝛼(𝑣) − 𝜉(𝑣)𝑥(𝑣) ≤ (1 − 𝛼)𝛼𝛼/(1−𝛼)𝜉𝛼/(𝛼−1)(𝑣)𝜁2
1/(1−𝛼)

(𝑣)𝜂1/(1−𝛼)(𝑣). 

Hence, inequality (11) gives  

𝐷𝑎
𝜇,𝔖

𝑥(𝑡) ≤ 𝑞+(𝑡) + 𝜅𝜁1(𝑡) + 𝜁1(𝑡) ∫
𝑡

𝑎

𝜉(𝑣)𝑥(𝑣) 𝑑𝑣,    𝑡 ≥ 𝑎 

and in view of (7),  

𝐷𝑎
𝜇,𝔖

𝑥(𝑡) ≤ 𝑞+(𝑡) + 𝜅𝑀1 + 𝑀1 ∫
𝑡

𝑎
𝜉(𝑣)𝑥(𝑣) 𝑑𝑣,    𝑡 ≥ 𝑎.                (12)

  

Now, applying 𝐼𝑎
𝜇,𝔖

 to (12) and using (4) and (5) with 𝜈 = 1, we get  

𝑥(𝑡) ≤
𝑏1

Γ(𝜇)
(𝔖(𝑡) − 𝔖(𝑎))𝜇−1 +

𝜅𝑀1

Γ(𝜇 + 1)
(𝔖(𝑡) − 𝔖(𝑎))𝜇 + 𝐼𝑎

𝜇,𝔖
[𝑞+(𝑡)] 

             +𝑀1𝐼𝑎
𝜇,𝔖

[∫
𝑡

𝑎
𝜉(𝑣)𝑥(𝑣) 𝑑𝑣]. (13) 

 
By interchanging the order of integration, we have  
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𝐼𝑎
𝜇,𝔖

[∫
𝑡

𝑎

𝜉(𝑣)𝑥(𝑣) 𝑑𝑣] =
1

Γ(𝜇)
∫

𝑡

𝑎

𝔖′(𝑣)(𝔖(𝑡) − 𝔖(𝑣))𝜇−1 ∫
𝑣

𝑎

𝜉(𝑢)𝑥(𝑢) 𝑑𝑢𝑑𝑣 

           = ∫
𝑡

𝑎
𝜉(𝑢)𝑥(𝑢) ∫

𝑡

𝑢

𝔖′(𝑣)(𝔖(𝑡)−𝔖(𝑣))𝜇−1

Γ(𝜇)
 𝑑𝑣𝑑𝑢 

           = ∫
𝑡

𝑎
𝜉(𝑢)𝑥(𝑢)𝐼𝑢

𝜇,𝔖
(1) 𝑑𝑢 

           =
1

Γ(𝜇+1)
∫

𝑡

𝑎
(𝔖(𝑡) − 𝔖(𝑢))𝜇𝜉(𝑢)𝑥(𝑢) 𝑑𝑢. (14) 

Using (14) in (13), it follows  

𝑥(𝑡) ≤
𝑏1

Γ(𝜇)
(𝔖(𝑡) − 𝔖(𝑎))𝜇−1 +

𝜅𝑀1

Γ(𝜇+1)
(𝔖(𝑡) − 𝔖(𝑎))𝜇 + 𝐼𝑎

𝜇,𝔖
[𝑞+(𝑡)] +

𝑀1

Γ(𝜇+1)
𝔖𝜇(𝑡) ∫

𝑡

𝑎
𝜉(𝑣)𝑥(𝑣) 𝑑𝑣  

and hence,  

𝑥(𝑡)

𝔖𝜇(𝑡)
≤ 𝑐1 +

𝑀1

Γ(𝜇+1)
∫

𝑡

𝑎
𝔖𝜇(𝑣)𝜉(𝑣)

𝑥(𝑣)

𝔖𝜇(𝑣)
 𝑑𝑣,    𝑡 ≥ 𝑡1 > 𝑎,  

where taking into account (9), 𝑐1 > 0 is an upper bound for  

𝑏1

Γ(𝜇)

(𝔖(𝑡) − 𝔖(𝑎))𝜇−1

𝔖𝜇(𝑡)
+

𝜅𝑀1

Γ(𝜇 + 1)

(𝔖(𝑡) − 𝔖(𝑎))𝜇

𝔖𝜇(𝑡)
+

𝐼𝑎
𝜇,𝔖

[𝑞+(𝑡)]

𝔖𝜇(𝑡)
. 

Proceeding as in the proof of the well-known Gronwall’s inequality, we obtain  

𝑥(𝑡)

𝔖𝜇(𝑡)
≤ (𝑐1 +

𝑀1

Γ(𝜇 + 1)
∫

𝑡1

𝑎

𝜉(𝑣)𝑥(𝑣) 𝑑𝑣) 𝑒
𝑀1

Γ(𝜇+1) ∫
𝑡

𝑡1
𝔖𝜇(𝑣)𝜉(𝑣) 𝑑𝑣

,    𝑡 ≥ 𝑡1, 

and using (8),  

limsup
𝑡→∞

𝑥(𝑡)

𝔖𝜇(𝑡)
< ∞. 

If 𝑥(𝑡) < 0, then we set 𝑦: = −𝑥. It follows that 𝑦 satisfies Eq. (1) with 𝔷(𝑡) replaced by −𝔷(𝑡) and 𝒴(𝑡, 𝑥) by −𝒴(𝑡, −𝑦), 
respectively. Continuing in the same manner, we obtain  

limsup
𝑡→∞

−𝑥(𝑡)

𝔖𝜇(𝑡)
< ∞. 

The proof is accomplished.  
Now, by using the asymptotic result in Theorem 1, we will construct theorems for the oscillation of Eq. (1) in Theorems 
2 and 4. We will provide sufficient conditions in Theorem 3 that, for the case where 𝛼 = 1, nonoscillatory solutions of 
Eq. (1) fulfill (10). 
 

Theorem 2  Let 0 < 𝛼 < 1 and the hypotheses (H1)–(H3) hold. Assume that (7) and (9) are satisfied and that  

limsup
𝑡→∞

𝐼𝑎
𝜇,𝔖

[𝜁1(𝑡)] < ∞  (15) 

 and  

limsup
𝑡→∞

𝔖𝜇(𝑡) ∫
𝑡

𝑎
𝔖𝜇(𝑣)𝜉(𝑣) 𝑑𝑣 < ∞.  (16) 

 If  

liminf
𝑡→∞

𝐼𝑎
𝜇,𝔖

[𝑞+(𝑡)] = −∞,    limsup
𝑡→∞

𝐼𝑎
𝜇,𝔖

[𝑞−(𝑡)] = ∞,  (17) 

then Eq. (1) is oscillatory.  
  

Proof 2 Let 𝑥(𝑡) be a nonoscillatory solution of Eq. (1), say 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑇1 for some 𝑇1 ≥ 𝑎. The proof when 𝑥(𝑡) <

0 is similar. 
Continuing as in the proof of Theorem 1, we obtain  

𝑥(𝑡) ≤
𝑏1

Γ(𝜇)
(𝔖(𝑡) − 𝔖(𝑎))𝜇−1 + 𝐼𝑎

𝜇,𝔖
[𝑞+(𝑡)] + 𝜅𝐼𝑎

𝜇,𝔖
[𝜁1(𝑡)]  +

𝑀1

Γ(𝜇+1)
𝔖𝜇(𝑡) ∫

𝑡

𝑎
𝔖𝜇(𝑣)𝜉(𝑣)

𝑥(𝑣)

𝔖𝜇(𝑣)
 𝑑𝑣. (18) 

Moreover, (16) implies (8), and hence the result of Theorem 1 holds. Together with (15), this indicates that the last two 
integrals of (18) are bounded. Taking limit inferior on both sides and using (17) yields a contradiction with the fact that 
𝑥(𝑡) is eventually positive. The proof is completed.  

Corollary 1 Let 0 < 𝛼 < 1 and the hypotheses (H1)–(H3) hold. Assume that (7), (15), and (16) are satisfied and that  

limsup
𝑡→∞

1

𝔖𝜇(𝑡)
𝐼𝑎

𝜇,𝔖
[𝔷(𝑡)] < ∞,    liminf

𝑡→∞

1

𝔖𝜇(𝑡)
𝐼𝑎

𝜇,𝔖
[𝔷(𝑡)] > −∞,  

  

limsup
𝑡→∞

∫
𝑡

𝑎

𝔖′(𝑣)(𝔖(𝑡)−𝔖(𝑣))𝜇−1

Γ(𝜇)
𝜁1(𝑣) ∫

𝑣

𝑎
𝜉𝛼/(𝛼−1)(𝑢)𝜁2

1/(1−𝛼)
(𝑢)𝜂1/(1−𝛼)(𝑢) 𝑑𝑢 𝑑𝑣 < ∞.  

If  
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liminf
𝑡→∞

𝐼𝑎
𝜇,𝔖[𝔷(𝑡)] = −∞ and    limsup

𝑡→∞
𝐼𝑎

𝜇,𝔖
[𝔷(𝑡)] = ∞,                                  (19) 

then Eq. (1) is oscillatory.  
Analogously, when 𝛼 = 1, we can easily prove the following theorems. 
 

Theorem 3 Let 𝛼 = 1 and the hypotheses (H1)-(H3) hold. Besides (7), assume that  

∫
∞

𝑎
𝔖𝜇(𝑣)𝜂(𝑣)𝜁2(𝑣) 𝑑𝑣 < ∞.   

If  

limsup
𝑡→∞

𝐼𝑎
𝜇,𝔖

[𝔷(𝑡)]

𝔖𝜇(𝑡)
< ∞ and    liminf

𝑡→∞

𝐼𝑎
𝜇,𝔖

[𝔷(𝑡)]

𝔖𝜇(𝑡)
> −∞,  (20) 

then, every nonoscillatory solution of Eq. (1) satisfies (10).  
 

Theorem 4 Let 𝛼 = 1 and the hypotheses (H1)-(H3) hold. Assume that (7), (15), (19), and (20) are satisfied. If  

limsup
𝑡→∞

𝔖𝜇(𝑡) ∫
𝑡

𝑎
𝔖𝜇(𝑣)𝜂(𝑣)𝜁2(𝑣) 𝑑𝑣 < ∞,   

then, Eq. (1) is oscillatory.  
 

Example 1 Let 𝛼 = 1. Consider the integro-differential equation  

{
𝐷1

1/2,𝑡
𝑥(𝑡) =

1

𝑡
− ∫

𝑡

1

𝑥(𝑣)

𝑡𝑣2  𝑑𝑣, 𝑡 ≥ 1,  

lim
𝑡→1+

𝐼1
1/2,𝑡

𝑥(𝑡) = 1 .  
  (21) 

We have 𝜇 = 1/2, 𝑎 = 1, 𝔖(𝑡) = 𝑡, 𝔷(𝑡) =
1

𝑡
, ℳ(𝑡, 𝑣) =

1

𝑡
, and 𝒴(𝑡, 𝑥) =

𝑥

𝑡2. Let’s take 𝜁1(𝑡) =
1

𝑡
, 𝜁2(𝑣) = 1, and 𝜂(𝑡) =

1

𝑡2. It is clear that 𝜁1(𝑡) is bounded from above. We have  

∫
∞

1

1

𝑣3/2
 𝑑𝑣 = 2 < ∞ 

and  𝐼1
1/2,𝑡

[
1

𝑡
] =

1

Γ(1/2)
∫

𝑡

1
(𝑡 − 𝑣)−1/2 1

𝑣
𝑑𝑣 =

2ln(1+√
𝑡−1

𝑡
)+ln𝑡

√𝜋𝑡
 ,  

which implies that  

limsup
𝑡→∞

𝐼1
1/2,𝑡

[
1

𝑡
]

𝑡1/2 = 0 < ∞ and liminf
𝑡→∞

𝐼1
1/2,𝑡

[
1

𝑡
]

𝑡1/2 = 0 > −∞.   

Hence, all the conditions of Theorem 3 are satisfied, and every nonoscillatory solution of Eq. (21) has the asymptotic 
property (10).  

 
Conclusions 

In this study, we analyzed the oscillatory behavior of 
solutions to a class of fractional integro-differential 
equations. Firstly, in Theorem 1, we gave sufficient 
conditions under which every nonoscillatory solution of 
Eq. (1) satisfies the asymptotic property (10). Afterward, 
by using the asymptotic result obtained in Theorem 1, we 
established theorems for the oscillation of Eq. (1) in 
Theorems 2 and 4. In Theorem 3, we presented sufficient 
conditions under which every nonoscillatory solution of 
Eq. (1) satisfies (10) for the case 𝛼 = 1. To reinforce the 
theoretical results, we presented a concrete example that 
illustrates the applicability and effectiveness of our main 
findings. These contributions deepen the understanding 
of fractional integro-differential equations and provide a 
foundation for further exploration in this area. 
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