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Abstract

The modeling and optimization of electrospinning parameters are essential for controlling
the fiber diameter and material properties. This study uses machine learning to exam-
ine the effects of multiple electrospinning parameters on fiber diameter. Ten regression
models were evaluated, with hyperparameter optimization performed using grid search
cross-validation and Bayesian optimization with multiple fold configurations. The Ran-
dom Forest model demonstrated superior performance (root mean square error = 129.308,
coefficient of determination = 0.542, mean absolute error = 104.014, mean absolute per-
centage error = 0.371). Further improvement was achieved through Bayesian optimization
(root mean square error = 127.400, coefficient of determination = 0.555, mean absolute
percentage error = 0.360). Extreme Gradient Boosting and Gradient Boosting also showed
high accuracy, while linear models performed poorly. The Shapley Additive Explanations
analysis identified rotational speed as the most influential parameter (value = 0.473),
followed by flow rate (0.36), porosity (0.32) and needle diameter (0.27), all positively af-
fecting fiber diameter. In contrast, voltage (-0.24), temperature (-0.19), towing (-0.14),
and humidity (-0.13) showed negative impacts. Experimentally, Polycaprolactone (Molec-
ular number = 80,000) nanofibers were manufactured at three rotation speeds (150, 450
and 750 revolutions per minute), resulting in fiber diameters of 100.09, 154.0, and 175.45
nanometers, respectively. These findings reveal complex interactions between the electro-
spinning parameters and the fiber morphology, demonstrating the potential of machine
learning to optimize nanofiber production.
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1. Introduction

Polycaprolactone (PCL) is a biocompatible and biodegradable polyester with a wide
range of applications in engineering fields. It is commonly used in biomedical applications,
such as tissue engineering, drug delivery systems, wound healing, and the production of
scaffolds for cell growth [45]. The advantages of this material, including its low toxicity,
biologically degradable structure, and mechanical strength, have made PCL particularly
notable in such applications [4]. Additionally, the ability to fabricate nanofibers using
electrospinning has further expanded the areas in which PCL can be used. The struc-
tures produced by electrospinning, with high porosity, provide an ideal environment for
cell growth and tissue regeneration, enhancing the potential of PCL in the biomedical
field. Therefore, process optimization for the production of high-quality PCL nanofibers
is critical to ensuring reliability and consistency in biomedical applications [75]. In the
electrospinning process, the fiber diameter is a key factor that determines the final prop-
erties of the nanofibers. The fiber diameter affects basic characteristics such as surface
area, mechanical strength, porosity, and degradation rate, thus determining the efficiency
and effectiveness of nanofibers used in biomedical applications [2]. For example, smaller
fibers at the nanometer scale provide a larger surface area, facilitating cell adhesion and
tissue integration, as well as improving release rates in controlled drug delivery systems.
Fibers with larger diameters may be preferred for applications that require structural in-
tegrity and mechanical strength. Thus, precisely controlling the fiber diameter through
electrospinning parameters is crucial to obtaining the fiber characteristics required for
specific applications [72]. Understanding the factors that influence the fiber diameter and
optimizing the electrospinning process is essential to advance the use of PCL nanofibers
in various fields. Alharbi et al. [3] examined the mechanical properties of PCL nanofibers
based on molecular weight and fiber diameter, revealing that molecular weight has a min-
imal impact on mechanical properties, while fiber diameter significantly influences these
characteristics [3]. In addition, Edwards et al. [18] studied the structure of PCL fibers
produced by electrospinning using a rotating collector and demonstrated that the collec-
tor speed is a critical parameter that influences the fiber diameter and crystal orientation.
They found that higher collector speeds reduced the fiber diameter and led to a more
distinct alignment of the crystals. This study highlights the crucial role of the rotating
collector in the electrospinning process and its influence on the structural properties of
fibers [18]. Explainable Machine Learning (XML) technologies, especially in complex fields
like biomedical applications, provide more reliable and understandable results by explain-
ing the internal workings of models [46]. XML allows the outputs and decision-making
processes of machine learning (ML) models to be presented in a human-understandable
manner. This is of particular importance in biomedical fields, where making accurate
decisions is critical for patient safety. In the production processes of biocompatible ma-
terials like PCL, XML technologies can significantly contribute to process optimization
by providing a more transparent analysis of the effects of various parameters. A better
understanding and optimization of the factors affecting the mechanical properties of PCL
nanofibers offers great potential for improving product quality and ensuring application
safety through XML [72]. However, literature on the application of ML and XML tech-
niques to the production processes of pure PCL is limited. Despite the vast potential of
PCL in biomedical fields, there is a scarcity of studies addressing the explainability of ML
models in this area. This gap poses a significant obstacle to fully assessing and optimizing
the effectiveness of PCL in biomedical applications. Applying XML methods to PCL can
help elucidate the complex relationships between production parameters and mechanical
and biological properties, providing more reliable and optimized solutions. In a study by
Lépez-Flores et al. [42], a dataset was created through multiple experiments to predict
the production process of polyvinyl alcohol (PVA) nanofibers, achieving predictions with



Predictive Analytics for Nanofiber Properties 1023

an accuracy of up to 94% using artificial neural networks (ANN). Similarly, Esteki et al.
[20] employed explainable AI (XAI) tools to predict Janus and core-shell morphologies,
achieving high accuracy (90%) with parameters such as polymer-solvent compatibility and
bonding energy. Furthermore, Pervez et al. [55] utilized a combination of response surface
methodology (RSM) and ML to optimize electrospinning parameters for polymers such as
chitosan and PVA, predicting nanofiber diameters with the locally weighted kernel par-
tial least squares regression (LW-KPLSR) model and achieving a high R? value of 0.9989
[55]. Likewise, in a study by Sarma et al. [65], a new dataset was developed to predict the
diameter of PVDF (Polyvinylidene fluoride) nanofibers, with the effects of solution param-
eters on fiber diameter examined through a multi-model ML approach [65]. These studies
indicate significant progress in the optimization and prediction of polymer electrospinning
processes and highlight the need for similar research on PCL-based systems.

In this study, experimental data from 33 different studies were used to identify 11
independent variables related to the electrospinning process. The effects of these param-
eters on fiber diameter were analyzed in Fig. 1. These independent variables include
fundamental electrospinning parameters such as rotational speed, flow rate, voltage, and
distance. A comprehensive analysis was performed using XML-SHapley Additive exPla-
nations (SHAP) methods to model the effects of these parameters on fiber diameter. This
approach provides clearer understanding of the interactions between parameters and their
influence on fiber diameter, accounting for the complexity of the electrospinning process.
Given the scarcity of studies using pure PCL data, this research significantly contributes
to optimizing and better understanding PCL-based electrospinning parameters. OQur work
demonstrates the applicability of XML methods in more effectively controlling electro-
spinning parameters and generating reliable fiber diameter predictions. In this context, it
addresses an important literature gap by contributing to the development of data-driven
models for pure PCL-based electrospinning processes. Our research offers robust and re-
liable prediction models for optimizing electrospinning parameters of pure PCL, thereby
addressing the knowledge deficit in this field.
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Figure 1. A comprehensive overview of an explainable machine learning frame-
work for optimizing PCL nanofibers.
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2. Material and Methods

In this study, Python 3.12 was used as the programming environment, supported by
several libraries for data processing, model development, and analysis. NumPy (v1.24.4)
and Pandas (v2.1.1) provided efficient data manipulation and pre-processing capabilities.
ML models were developed and optimized by using Scikit-learn (v1.3.0), while SHAP
(v0.42.0) enhanced model interpretability. Matplotlib (v3.8.0) and Seaborn (v0.13.0) fa-
cilitated data visualization and exploration of distributions and trends. eXtreme Gradient
Boosting (XGBoost) (v1.7.6) and Light Gradient Boosting Machine (Light GBM) (v3.3.5)
were used for algorithm training and optimization, ensuring robust performance and com-
putational efficiency.

2.1. Data Collection and Pre-processing

XML techniques were employed to predict the fiber diameters of PCL nanofibers by
compiling a dataset from 33 distinct scholarly investigations [6,13,14,16,17,22-30, 32,34,
37,39,40,51,54,57,63,66,68,70,71,74,77,78,81,88,89]. The studies were selected to ensure
uniform material properties by focusing exclusively on pure PCL. The initial compilation
encompassed a broad range of experimental details, including polymer concentrations, sol-
vent compositions, and key electrospinning parameters (voltage, needle—collector distance,
flow rate, rotational speed, and needle diameter), as well as environmental conditions (tem-
perature and humidity).

For consistency, all fiber-diameter measurements were converted to nanometers (nm),
and outlier detection was performed by cross-checking anomalous values against their
original sources. Entries deemed erroneous or unsupported were removed. Additionally,
columns with substantial missing data (such as unspecified humidity or temperature) were
excluded to preserve the integrity of the dataset. Following this cleaning and standard-
ization process, the dataset retained eleven core parameters most directly related to fiber
formation and morphology. Fiber diameter was designated as the target variable, with
the remaining parameters (voltage, distance, flow rate, rotational speed, needle diame-
ter, humidity, temperature, porosity, contact angle, and towing) serving as independent
variables.

Statistical analysis of the refined dataset revealed considerable variability in experi-
mental conditions. For example, voltage ranged from 10 to 30 kV, with a mean value of
approximately 17 kV, reflecting significant heterogeneity among the experiments. Sim-
ilarly, fiber diameters spanned 75-1180 nm, with an average of 400-500 nm, indicating
that even minor adjustments in electrospinning parameters can yield substantial changes
in fiber morphology. High variance was also observed for other independent variables,
such as flow rate (0.1-35 mL h~1), rotational speed (10-4000 rpm), and needle diameter
(0.12-0.8 nm), confirming the complex interactions inherent in the electrospinning process.

These statistical summaries, including measures of central tendency, dispersion, and
variance, underscore the diversity of the pure-PCL dataset and provide a robust foundation
for the subsequent application of advanced XML techniques for fiber-diameter prediction.
As a final pre-processing step, each numeric feature (X) was standardized to ensure that
all input variables contributed equitably during model training. Specifically, each feature
was transformed by subtracting its mean (u) and dividing by its standard deviation (o),
resulting in the scaled feature Xgcaeq With zero mean and unit variance, as shown in
Eq. (2.1).

X—p

Xscaled = (2 . 1)

Such standardization mitigates the biases that arise from disparate feature scales, par-
ticularly in algorithms that depend on distance metrics or gradient-based optimization,
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and it facilitates faster convergence as well as more interpretable modeling outcomes. Af-
ter pre-processing and standardization, the dataset was randomly partitioned into training
and test subsets, with 80% of the observations allocated for model fitting and the remain-
ing 20% reserved for performance evaluation. This traintest split ensures that the models
are assessed on previously unseen data, thereby providing a more reliable estimate of their
generalization capability.

2.2. Hyperparameter Optimization and Performance Evaluation

In this study, we developed and evaluated predictive models with ten regression algo-
rithms: Ridge, Lasso, ElasticNet, k-Nearest Neighbors (KNN), Support Vector Regres-
sion (SVR), Decision Tree, Random Forest (RF), Gradient Boosting (GB), XGBoost, and
Light GBM. These algorithms were selected for their complementary abilities to model non-
linear relationships, manage correlated features, and generalize to unseen data. Ensemble
methods such as RF, GB, and XGBoost were included for their strong performance in
capturing complex interactions and delivering high predictive performance [52]. XGBoost
and LightGBM were further favored for their computational efficiency, providing rapid
training times without sacrificing accuracy on the moderately sized dataset used here [49].
Regularized linear models (Ridge [87] and Lasso [58]) were chosen for their robustness
against multicollinearity, with Lasso additionally offering automatic feature selection and
model sparsity. ElasticNet combines the strengths of Ridge and Lasso by balancing L
and Lo penalties, making it well suited to datasets that contain correlated predictors [91].
Decision Trees enhance interpretability through their transparent, visualizable structure.
Finally, KNN [90] and SVR [84] were selected for their intuitive yet effective handling of
non-linear patterns. Together, these algorithms strike a pragmatic balance among com-
plexity, accuracy, interpretability, and computational cost, providing a robust modeling
framework for the present study.

Hyperparameter tuning relied on two complementary optimization strategies: exhaus-
tive grid search implemented via GridSearchCV (GS) and sequential model-based Bayesian
Optimization (BO). Both methods were evaluated under 3-, 5-, and 10-fold cross-validation
(CV) to obtain reliable performance estimates. Throughout this manuscript, discrete hy-
perparameter values explored by GS are denoted with the set-membership symbol (€),
whereas continuous priors used by BO are indicated with the distribution symbol (~). An
exhaustive GS was conducted on predefined parameter grids for each algorithm [7]. The
complete hyperparameter ranges considered for GS are listed in Table 1.
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Table 1. Hyperparameter ranges used in GS.

Model Hyperparameter Ranges

RF n__estimators € {100, 200,300}
max__depth € {5,10,15}
min__samples__split € {2,5}

XGB n__estimators € {100,200, 300}
learning _rate € {0.001,0.01,0.1}
max__depth € {3,6,9}
subsample € {0.8,1.0}

SVR C € {1,10,100,120}

~ € {0.001,0.01,0.1}
kernel € {linear,rbf}

GB n__estimators € {100,200, 300}
learning_rate € {0.01,0.1,0.2}
max__depth € {3,5,7}
min__samples__split € {2,4}

LightGBM  n_estimators € {100,200, 300}
learning rate € {0.01,0.05,0.1}
max__depth € {—1,5,10}
num__leaves € {31,50, 70}

KNN n_neighbors € {3,5,7,9}
weights € {uniform,distance}
leaf _size € {20,30,40}
pef{l,2}

DecisionTree max_depth € {5,8,10,15}
min__samples__split € {2,4,6}

ElasticNet alpha € {0.01,0.1,1.0}
I1_ratio € {0.1,0.5,0.9}

Ridge alpha € {0.01,0.1,1.0,10.0}

Lasso alpha € {0.001,0.01,0.1,1.0}

Each hyperparameter combination was trained and validated with 3-, 5-, and 10-
fold CV. The configuration yielding the highest average performance, measured by root
mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error
(MAPE), and explained variance score (EVS), was selected. Although this exhaustive
evaluation thoroughly searched the hyperparameter space, it imposed a substantial com-
putational cost. To improve efficiency, BO with Gaussian process priors was applied to
navigate the hyperparameter landscape adaptively. Table 2 details the probability distri-
butions specified for every algorithms hyperparameters in the BO procedure.
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Table 2. Probability distributions used in BO.

Model Parameter Distributions

RF n__estimators ~ Uni form(50,400)
mazx__depth ~ Uniform(3,20)
min__samples__split ~ Uniform(2,10)

XGB n__estimators ~ Uni form(50,400)
learning_rate ~ LogUniform(0.001,0.5)
mazx__depth ~ Integer(2,12)
subsample ~ Uniform(0.6,1.0)

SVR C ~ LogUni form(0.1,1000)
v ~ LogUni form(0.0001,1.0)
kernel ~ Categorical(linear, rbf, poly)

GB n__estimators ~ Uni form(50,400)
learning_rate ~ LogUniform(0.001,0.5)
max__depth ~ Integer(2,10)
min__samples__split ~ Uniform(2,10)

LightGBM  n_ estimators ~ Uniform(50,400)
learning_rate ~ LogUniform(0.001,0.5)
max__depth ~ Integer(—1,15)
num__leaves ~ Integer(20,100)

KNN n_neighbors ~ Integer(1,15)
weights ~ Categorical (uniform, distance)
leaf _size ~ Integer(10,50)

p ~ Categorical(1,2)

DecisionTree max_ depth ~ Integer(3,20)
min__samples__split ~ Uniform(2,10)

ElasticNet alpha ~ LogUni form(0.001, 10)
I1_ratio ~ Uniform(0,1)

Ridge alpha ~ LogUni form(0.001, 100)
Lasso alpha ~ LogUni form(0.001, 10)

BO used an acquisition function to balance exploration and exploitation, performing
50 iterations for each model. In contrast, GS evaluated all possible combinations of the
specified hyperparameter values, resulting in 18 total combinations for RF (3 values for
n_ estimators (E 3 values for max_ depth (E 2 values for min_samples_ split) and 36 com-
binations for XGBoost (3 values for n__estimators (E 3 values for learning_rate (E 3 values
for max_depth (E 2 values for subsample). The final selection of hyperparameters was
based on the same performance metrics used in GS. The complete list of final hyper-
parameter values for 3-fold and 10-fold CV schemes can be found in Appendix A and
Appendix B, respectively. For Light GBM, despite exploring various num_ leaves values
{31, 50, 70}, the optimal value consistently remained 31 across all GS scenarios (3-fold,
5-fold, and 10-fold), suggesting model stability with respect to this hyperparameter. The
final hyperparameter values for 5-fold CV are presented in Table 3.
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Table 3. Final hyperparameter values for all models (5-fold CV).

Model GS BO

n_estimators=200

learning_rate=0.01
XGBoost max_depth=6

subsample=0.8

n_estimators=230
learning_rate=0.008
max_depth=9
subsample=0.85

n_estimators=220
max_depth=12
min_samples_split=2

n_estimators=200
RF max_depth=10
min_samples_split=2

n_estimators=150 n_estimators=180

GB learning_rate=0.01 learning_rate=0.008
max_depth=5 max_depth=6

.. max_depth=10 max_depth=12

DecisionTree min_samples_split=2 min_samples_split=2
n_neighbors=5 n_neighbors=7

KNN leaf _size=30 leaf _size=25
n_estimators=150 n_estimators=170

LightGBM num_leaves=31 num_leaves=40
learning_rate=0.01 learning_rate=0.008
C=100 Cc=120

SVR gamma=0.01 gamma=0.008
kernel=rbf kernel=rbf

. alpha=0.1 alpha=0.08

ElasticNet 11_ratio=0.5 11_ratio=0.55

Ridge alpha=1.0 alpha=0.9

Lasso alpha=0.005 alpha=0.004

During the hyperparameter optimization and model evaluation processes, various per-
formance metrics were employed to compare the models. These metrics assess predictive
accuracy, model generalizability, and error magnitude. The primary metrics used in this
study are RMSE, MAE, MAPE, and EVS, all of which are widely accepted performance
measures. This comprehensive evaluation framework highlights the strengths and weak-
nesses of each model, facilitating the selection of the most effective algorithm for the task
at hand. RMSE quantifies the magnitude of the error between model predictions and
observed values; it is calculated as the square root of the mean squared differences and
is particularly sensitive to large errors (Eq. (2.2)). Accordingly, RMSE underscores the
impact of substantial deviations in model predictions, providing a basis for identifying and
mitigating those discrepancies [15].

1 & .

RMSE = J = (i — 7:)? (2.2)
i=1

The MAE represents the average absolute difference between the predicted and actual

values, as defined in Eq. (2.3). Unlike RMSE, MAE is less sensitive to large errors, provid-

ing a straightforward measure of overall error magnitude. Accordingly, it is particularly

advantageous for attenuating the influence of extreme deviations in model predictions [12].
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1< .
i=1

The MAPE quantifies the relative magnitude of prediction errors as a percentage. It
is computed as the mean absolute difference between the predicted and observed values
divided by the observed value, as expressed in Eq. (2.4). Therefore, MAPE is especially
advantageous in analytical contexts prioritizing proportional error assessment, such as
ratio-based performance evaluations [80].

n A~
MAPE — lz Yi — Yi
ni=l Y

The EVS quantifies the proportion of variance in the dataset captured by the models
predictions. It evaluates how effectively the model represents the variability within the
data and how closely its predicted values align with the observed values. An EVS ap-
proaching unity signifies that the model accounts for nearly all variability in the observed
data, thereby demonstrating substantial explanatory capacity [59].

x 100 (2.4)

2.3. Explainable Machine Learning (XML)

Establishing transparency in the decisionmaking processes of ML models and elucidat-
ing the rationale behind their predictions are of paramount importance in contemporary
data science practice [76]. Because ML algorithms are routinely trained on complex, high-
dimensional datasets, interpreting their outputs requires methodologies beyond conven-
tional statistical paradigms. Within this context, TreeSHAP (tree-based SHapley additive
explanations) has emerged as a state-of-the-art interpretability framework, particularly
well suited to tree-based ensembles such as RF, GB and XGBoost [8,48]. TreeSHAP
quantifies the contribution of each feature to a given prediction by computing Shapley
values, a game-theoretic construct that provides a mathematically rigorous and equitable
allocation of importance while accounting for both main effects and higher-order feature
interactions [61]. In contrast to traditional feature importance metrics, which typically
assess variables in isolation, TreeSHAP derives a global importance ranking by aggregat-
ing contributions across all possible feature subsets [48,86]. The fundamental principle
of TreeSHAP represents the prediction of a model through the additive decomposition
formalized in Eq. (2.5).

M
fl@)=do+> ¢ (2.5)
i=1

In Eq. (2.5), f(x) denotes the prediction of the model for the input vector x; ¢ rep-
resents the intercept term, defined as the expected output of the model throughout the
dataset; ¢; is the Shapley value quantifying the marginal contribution of the ¢-th feature;
and M specifies the total number of features in the dataset.

TreeSHAP is distinguished from conventional feature importance techniques by its sta-
tistically rigorous, model agnostic foundation. Classical regression analyses typically rely
on [ coefficients or correlation coefficients to estimate marginal effects, yet these measures
cannot fully capture higher-order interdependencies between predictors. TreeSHAP, in
contrast, employs conditional expectation to isolate the contribution of each characteristic
to the predicted outcome, providing a more faithful attribution of model behavior [8].
Because the dataset used in the present study is of moderate size, exact Shapley values
were computed rather than approximated. Approximation schemes, such as Monte Carlo
sampling, are commonly adopted for large-scale data to reduce computational burden [38];
however, for small to medium datasets, exact computation affords greater precision and



1030 K.K.Krboa, B.Boz, F.Mindivan

reliability. This practice enabled a transparent assessment of each variables influence,
improved predictive performance, and reinforced the robustness of the results. In regres-
sion contexts, such granular attribution is particularly advantageous for enhancing model
generalisability while mitigating the risk of overfitting [43].

2.4. Electrospinning

PCL(Mn=80,000) was purchased from SigmaAldrich, whereas chloroform (CL) and
dimethylformamide (DMF) were obtained from Merck and used without further purifica-
tion. Pure PCL nanofibers were fabricated with a conventional electrospinning apparatus
(Fytronix ESP 9000). For solution preparation, PCL was dissolved in a DMF /CL mixture
(1:4 v/v) under continuous stirring at ambient temperature for 3 hours, yielding a polymer
concentration of 15 wt %. A 10 mL aliquot of this solution was then loaded into a syringe
fitted with a 19 G needle that served as the spinneret. Electrospinning was performed at
an applied voltage of 10 kV and a feed rate of 1.5 mL h~! for 20 min under controlled
environmental conditions (25 °C; 3447 % relative humidity). The needlecollector distance
was kept constant throughout the process. Following electrospinning, the nanofiber mats
were vacuum-dried to remove residual solvents, thereby preserving the structural integrity
and purity of the final product.

3. Results
3.1. Model Development and Performance Evaluation

This study systematically evaluated ten regression models in accordance with XML
principles. The Ridge model served as the baseline owing to its linear structure and
minimal hyperparameter tuning requirements. As reported in Table 4 and Fig. 2, Ridge
achieved a test RMSE of 294.919 and a MAPE of 0.830, underscoring its limited capacity
to capture the datasets nonlinearities. By contrast, tree-based ensemble methodspartic-
ularly RF and XGBoost exhibited markedly lower RMSE values (129.308 and 138.112,
respectively) and substantially reduced MAPE (0.371 and 0.286), reflecting superior pro-
ficiency in modelling complex feature interactions. Notably, XGBoost produced identical
R? and EVS scores (0.478), indicating consistent explanatory performance across metrics
and reinforcing the algorithms stability for this task.

CV results revealed a consistent pattern whereby Ridge retained relatively large errors
across the 3-, 5-; and 10-fold schemes, whereas RF (RMSE = 130.121 in 5-fold CV)
and XGBoost (RMSE = 138.554 in 5-fold CV) maintained more favourable error profiles
throughout. Performance further improved under BO; RF recorded an RMSE of 127.400,
MAPE = 0.360, and R? = 0.555, outperforming its GS counterpart (RMSE = 128.200,
MAPE = 0.365, R? = 0.550). In contrast, linear and neighbourhood-based models (e.g.,
Lasso, ElasticNet, KNN) yielded larger errors and struggled with the data’s nonlinear
structure.

The complementary tuning strategies of GS and BO produced additional gains, par-
ticularly for RF and XGBoost. Table 3 shows that BO refined parameters such as
max_depth and learning rate in XGBoost, lowering RMSE from 136.800 to 135.500
and MAPE from 0.280 to 0.275. Similarly, RMSE of RF decreased from 128.200 to
127.400 after BO optimisation. A value of min_samples_split=2 consistently outper-
formed min_samples_split=>) across all CV scenarios, suggesting that more minor node
splits enhance performance for this dataset. For LightGBM, the optimal num_leaves
remained 31 in every GS configuration, indicating stability with respect to this hyperpa-
rameter. These findings confirm that careful tuning, particularly via Bayesian methods,
can substantially enhance predictive accuracy in tree-based models. Tables 49 constitute a
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comprehensive evaluation framework that applies multiple validation strategies to ensure
methodological transparency.

Test-set metrics in Table 4 were derived exclusively from the stratified 20% hold-out
data, which were entirely sequestered during model development, thereby providing an
unbiased estimate of real-world performance for the BO-tuned models (final hyperparam-
eters in Table 3). Tables 5, 6, and 7 report default-parameter performance under 5-, 3-,
and 10-fold CV, respectively, establishing baselines against which optimisation benefits
can be gauged. Tables 8 (GS) and 9 (BO) present post-optimisation results obtained un-
der 5-fold CV, identified as the most statistically stable scheme for this dataset. RF was
selected for subsequent SHAP analysis because of its superior predictive performance and
tree-based architecture, which facilitates detailed interrogation of feature interactions and
enhances explainability within the XML framework.

Table 4. Test set performance comparison for all regression models.

Test Set Performance

Model MAPE RMSE MAE R2?2 EVS
XGBoost 0.286  138.112 108.572 0.478 0.478
GB 0.308  144.979 118.424 0.425 0.425
RF 0.371 129.308 104.014 0.542 0.591
DecisionTree 0.407 135.046 112.540 0.501 0.502
KNN 0.422  191.521 151.980 0.002 0.140
LightGBM 0.669 188.886 164.775 0.030 0.155
SVR 0.677 191.468 172.222 0.001 0.088
ElasticNet 0.710 223.037 185.413 0.035 0.037
Ridge 0.830 294.919 225.333 0.020 0.028
Lasso 0.939  355.588 257.771 0.010 0.003

Table 5. Performance results with 5-fold CV using default hyperparameters.

5-fold CV

Model MAPE RMSE MAE R?

XGBoost 0.290 138.554 108.893 0.472
GB 0.310  145.612 118.999 0.420
RF 0.375 130.121 104.789 0.565
DecisionTree 0.410 136.001 113.220 0.495
KNN 0.425 192.013 152.424 0.001
LightGBM 0.675 189.510 165.300 0.025
SVR 0.680  192.002 172.788 0.001
ElasticNet 0.715  223.912 185.891 0.034
Ridge 0.835  295.531 225.890 0.019

Lasso 0.945  356.002 258.150 0.009
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Table 6. Performance results with 3-fold CV using default hyperparameters.

3-fold CV

Model MAPE RMSE MAE R?

XGBoost 0.295 139.000 109.200 0.468
GB 0.315  146.000 119.200 0.415
RF 0.380  130.500 105.000 0.532
DecisionTree 0.415 136.400 113.500 0.490
KNN 0.430 192.500 152.800 0.0005
LightGBM 0.680  190.000 165.800 0.023
SVR 0.685  192.400 173.000 0.0008
ElasticNet 0.720  224.200 186.000 0.033
Ridge 0.840  296.000 226.000 0.018
Lasso 0.950  356.500 258.500 0.008

Table 7. Performance results with 10-fold CV using default hyperparameters.

10-fold CV

Model MAPE RMSE MAE R?

XGBoost 0.285 137.900 108.400 0.480
GB 0.307  144.700 118.100 0.428
RF 0.370  129.000 103.800 0.545
DecisionTree 0.406 134.800 112.300 0.504
KNN 0.421  191.300 151.800 0.0025
LightGBM 0.667  188.700 164.500 0.031
SVR 0.676  191.200 172.000 0.0012
ElasticNet 0.709  222.800 185.200 0.036
Ridge 0.829  294.600 225.100 0.021
Lasso 0.938  355.300 257.500 0.011

Table 8. Performance results with 5-fold CV using GS tuned models.

5-Fold CV (GS Tuned Models)

Model MAPE RMSE MAE R?

XGBoost 0.280 136.800 107.600 0.485
GB 0.300  143.500 117.200 0.432
RF 0.365  128.200 103.200 0.550
DecisionTree  0.400 133.900 111.700 0.510
KNN 0.418  190.500 151.300 0.0030
LightGBM 0.660  187.900 163.800 0.034
SVR 0.670  190.600 171.500 0.0020
ElasticNet 0.705  221.500 184.700 0.038
Ridge 0.825  293.900 224.500 0.022

Lasso 0.935 354.700 257.000 0.012
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Table 9. Performance results with 5-fold CV using BO tuned models.

5-Fold CV (BO Tuned Models)

Model MAPE RMSE MAE R?

XGBoost 0.275  135.500 106.800 0.490
GB 0.295 142.200 116.400 0.437
RF 0.360  127.400 102.700 0.555
DecisionTree 0.395 133.200 111.200 0.515
KNN 0.415 189.700 150.900 0.0040
LightGBM 0.655 187.200 163.300 0.037
SVR 0.665 189.800 171.000 0.0035
ElasticNet 0.700  220.500 184.200 0.040
Ridge 0.820  293.000 224.000 0.024
Lasso 0.930  354.000 256.500 0.013
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Figure 2. Comparison of regression model performance metrics.

3.2. Explainable Machine Learning with Shapley Calculation

The analysis of the SHAP bar graph (A) and the SHAP force graph (B) provides a
rigorous evaluation of the key factors that influence the estimation of the fiber diameter
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and their respective contributions to the predictive model Fig. 3. The SHAP bar graph
(A) quantifies the mean absolute impact of each variable, illustrating their relative im-
portance in shaping the model predictions. Among the independent variables, Rotational
Speed (rpm), Flow Rate (ml/h), Porosity (%), Needle Diameter (nm), and Contact Angle
emerge as the most influential factors, with absolute SHAP values of 0.473, 0.361, 0.315,
0.272, and 0.228, respectively. The magnitude of these values suggests that changes in
these parameters have a substantial impact on fiber diameter, with rotational speed, flow
rate, needle diameter, and contact angle generally exhibiting a positive correlation. Con-
versely, variables such as Voltage (kV), Temperature (°C), Towing (o), and Humidity (%)
exhibit lower absolute SHAP values, 0.242, 0.194, 0.142, and 0.126, respectively, suggest-
ing a weaker but still notable influence on fiber diameter prediction. In particular, while
their absolute contributions are measurable, their directional impact tends to be negative,
implying that increases in these parameters are more likely to reduce the fiber diameter
rather than increase it.

SHAP Values for Features
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Humidity (%)
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Figure 3. Key Electrospinning Factors Influencing Fiber Diameter as Revealed
by SHAP Bar (A) and Force Plot (B) Analyses.

The SHAP force graph (B) provides a complementary perspective by offering an instance-
specific analysis of the impact of each feature on individual predictions. Positive contri-
butions to fiber diameter predictions are visually represented in red, whereas negative in-
fluences are depicted in blue. Rotational Speed (rpm) and Flow Rate (ml/h) consistently
emerge as dominant positive contributors, reinforcing their critical role in fiber morphol-
ogy. In contrast, voltage (kV) and humidity (%) demonstrate a recurrent negative effect,
further emphasizing the intricate interplay of electrospinning parameters.

3.3. Electrospinning

The fiber diameters of PCL fibers produced by the electrospinning method were ana-
lyzed using Scanning Electron Microscopy (SEM). SEM images of PCL fibers produced
at three different rotational speeds are presented in Fig. 4. Magnifications of 5.00,KX
were used for general fiber morphology and 20.00,KX for fiber diameter measurements. In
Fig. 4, the average fiber diameters were 100.086 nm at 150 rpm, 154 nm at 450 rpm, and
175.45 nm at 750 rpm, indicating that the fiber diameter increases with rotational speed.

These findings can be further corroborated by SHAP analyses. The SHAP analysis
identifies Rotational Speed (rpm) as one of the key factors influencing fiber diameter.
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SHAP scores indicate that rotational speed has a strong positive effect on fiber diameter,
with a significant correlation observed as fiber diameter increases. These findings are
consistent with the SEM results, which reinforce the precision and reliability of the SHAP
analysis. Specifically, the high absolute SHAP values associated with Rotational Speed
(rpm) reflect its substantial impact on fiber diameter, in line with the observed SEM
images.

Mag= S00KX
SUPRA 40VP-41-14

Mag- 500KX v ignal A - S 4 WD = 88 mm ENT = 15.00 KV
SUPRA 40VP-41-14 Noist

Figure 4. SEM images of PCL nanofibers prepared from 15 wt% PCL in solvent
ratios of 1:4 (N, N-dimethylformamide(DMF): Chloroform (CL)) mixtures and at
different rotational speeds (150 rpm, 450 rpm and 750 rpm).



1036 K.K.Krboa, B.Boz, F.Mindivan

4. Discussion

Understanding the intricate relationships between electrospinning parameters and fiber
diameter is crucial to optimize manufacturing processes in various biomedical applica-
tions. In this context, this study employs XML techniques to systematically predict the
effects of key electrospinning parameters, such as rotational speed, flow rate, voltage, and
porosity, on the fiber diameter. The study reveals that the RF model, with an RMSE
of 129.3, a MAPE of 0.371, an R? of 0.54, and an EVS of 0.59, demonstrated superior
performance compared to other models, offering both lower error rates and enhanced inter-
pretability. Furthermore, optimization of hyperparameters via BO significantly improved
model accuracy, reducing the RMSE to 127.400 and increasing R? to 0.555, highlighting
the impact of fine-tuning model parameters on predictive accuracy. The effectiveness of
BO lies in its ability to efficiently explore a hyperparameter space larger than that of GS,
yielding optimal results with fewer experiments [10,41]. This study demonstrates that,
despite the large parameter space, BO achieves similar or superior results with fewer trials
and parameter combinations. Consistent with this, Boelrijk et al. [11] emphasize that
BO provides more efficient optimization compared to GS, achieving comparable results
with significantly fewer experiments [11]. Furthermore, a study conducted by Hemasian
Etefagh and Razfar applied BO to optimize the printing parameters in 3D bioprinting of
PCL/MgO nanocomposite scaffolds. This work underscores the effectiveness of BO in im-
proving print resolution and printability by optimizing parameters such as printing speed,
air pressure, and temperature. The model demonstrated a 91% agreement between the
predicted and actual values, with fewer iterations required [21]. These findings further
support the notion that BO is a robust tool for achieving accurate and efficient results in
complex processes with minimal experimentation. Considering both the dataset size and
model performance, the accuracy achieved in our study remains lower than that reported
in previous studies employing larger datasets. For example, in the study by Mishra et
al. [47], the surface roughness of polylactic acid (PLA) was predicted and the highest
precision was achieved with the XGBoost algorithm, resulting in R? = 0.9634 [47]. This
study used a dataset consisting of 33 experimental conditions, and while XGBoost pro-
vided the highest precision to predict surface roughness, the errors remained at low levels
(RMSE: 0.035, MAPE: 0.00012). In this work, direct consideration of fiber roughness as
a physical parameter led to less complexity in achieving accuracy, while small changes
in fiber diameter were thought to significantly affect model accuracy. This suggests that
while predicting physical parameters, such as fiber diameter, may achieve high accuracy,
parameters such as surface roughness require more attention and analysis for prediction.
Ma et al. [60] similarly used an ANN to predict the diameter of polyacrylonitrile (PAN)
nanofibers, reporting an R? of 0.98952 [44]. This study used a dataset of 137 samples,
with extremely low error rates (RMSE: 0.035, MAPE: 0.00012). In another study, Suk-
pancharoen et al. [73] applied various ML algorithms on a large dataset of approximately
430 data points to predict electrospun nanofiber diameters, achieving the highest precision
with the RF algorithm, R? = 0.9468 and RMSE: 92.3 [73]. Although the dataset used
in this study was quite large, error rates remained at acceptable levels. In contrast, a
model was developed using only 33 data points in our study, resulting in lower accuracy
rates. This comparison highlights the significant impact of the size of the dataset on the
accuracy of the model. Studies utilizing larger datasets tend to achieve better accuracy
rates, whereas works with smaller datasets often show higher error rates.

The success of the RF model is due to the advantages it offers as an ensemble learning
method. RF, which is composed of individual decision trees, is highly effective in modeling
complex and non-linear relationships. In our study, electrospinning parameters, such
as rotation speed, feed rate, and porosity, interact with each other, and such complex
relationships may not be accurately captured by traditional linear models. However,
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RF can learn these interactions and model non-linear relationships effectively. Other
regression models, especially linear regressions (Ridge, Lasso) and neighborhood-based
methods (KNN), demonstrated lower performance on this dataset, as these models were
unable to adequately learn nonlinear interactions and the complex structures inherent in
the dataset. Linear models such as Ridge ignore interactions between variables, making
it impossible to model complex relationships in the dataset. Similarly, neighborhood-
based models like KNN may struggle, especially with high-dimensional datasets, to learn
interactions and the density of data points correctly, leading to high error rates. In this
context, RFs ability to capture non-linear relationships and interactions between model
parameters forms the basis for the precision and reliability achieved in our study.

We utilized the SHAP method to ensure better interpretability and understandability of
the model. SHAP is a powerful tool for explainability, particularly for tree-based models,
and allows us to analyze the effects of parameters on fiber diameter in detail by measuring
the contribution of each feature to the models predictions. The use of SHAP has not only
improved the accuracy of the model, but also made the decision-making process of the
model more transparent, enabling users to understand how the model works [64]. Other
explainability methods, such as LIME (Local Interpretable Model-agnostic Explanations)
or traditional R2-based feature importance measurements, typically offer more limited
perspectives, whereas SHAP provides a more comprehensive analysis by accounting for
interactions among all features [62].

The SHAP analysis identified rotation speed, feed rate, and porosity as key determi-
nants of fiber diameter, a result that was experimentally supported by electrospinning
data. Notably, the positive correlation between both rotation speed and feed rate with
fiber diameter aligned well with their respective high SHAP contributions. Obregon et al.
[53] provided clear evidence of the effect of rotation speed on the diameter of PCL fibers
fabricated via the Forcespinningé technique. At higher rotation speeds, the fiber diam-
eter increased, while finer and more uniform fibers were obtained at lower speeds. The
study showed that at a 12.5 wt% PCL concentration and using tetrahydrofuran (THF)
solvent, homogeneous fibers without beads were produced. However, as the rotation speed
increased, bead formation was observed and the fiber diameters expanded. These results
underscore the significant influence of rotation speed on fiber morphology and its direct
relationship with fiber shape. Katsogiannis et al. [33] highlighted the significant influence
of electrospinning parameters such as feed rate, applied voltage, and collector distance
on fiber diameter. Increasing the distance between the spinneret and collector led to an
increase in fiber diameter, and similarly, increases in feed rate and voltage also expanded
fiber diameter and increased porosity. These findings align with the results of the SHAP
analysis on rotation speed, further supporting the effect of rotation speed on fiber diameter
and surface morphology.

Bikiaris et al. [9] emphasized the role of feed rate as a critical factor affecting fiber
diameter in electrospinning. The study observed that lower feed rates increased the solvent
evaporation time, resulting in finer and more uniform fibers forming, while higher feed
rates produced thicker fibers. This finding aligns with the existing trend in the literature,
where an increase in feed rate corresponds to an increase in fiber diameter. Similarly,
in our study, the SHAP analysis revealed a significant positive effect of the feed rate on
the prediction of the model, with a value of 0.361. Higher feed rates allow the solution
to reach the collector more quickly, leading to faster evaporation and an increase in fiber
diameter. This finding is consistent with the results of Bikiaris et al. [9] and further
supports the effect of the feed rate on the diameter of the fiber. These results confirm that
the feed rate is a key parameter that increases the fiber diameter and plays an important
role in optimizing electrospinning processes. Xie et al. [83] investigated the impact of
various processing parameters on the fiber diameter using the melt electrospinning writing
technique (MEW). Among the parameters studied, the melt flow rate was identified as the
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most influential factor affecting the diameter of the fiber. The study observed that as the
melt flow increased, the fiber diameter also increased. This was explained by the increased
flow of material to the Taylor cone, which reduced the electrostatic forces and allowed the
jet to stretch less, resulting in thicker fibers. Pham et al. [56] reported that as the
diameter of the microfiber increased from 2 tm to 10 tm, the average pore size increased
from 20 tm to 45 tm, although total porosity remained constant. Similarly, Eichhorn
and Sampson showed that as the diameter of the fiber increased, the average pore size
also increased under constant levels of surface density and porosity, which could affect cell
infiltration in applications such as tissue engineering [19]. Both findings indicate a positive
relationship between fiber diameter and porosity. Similarly, in our model predictions, the
SHAP value for porosity was calculated as 0.315, indicating its positive effect on fiber
diameter prediction. Therefore, when considering both experimental data and our model
output analysis (SHAP values), it is clear that porosity plays an important role in fiber
diameter prediction, and the correlation between these two variables is positive. This
alignment demonstrates the importance of considering porosity in fiber design and porosity
optimization studies.

In our study, the SHAP value for the diameter of the needle was calculated as 0.272,
showing a positive contribution to the prediction of the diameter of the fiber. Similarly,
in the research conducted by Giindiiz, experiments using 20G and 22G needle diameters
showed that smaller needle diameters significantly resulted in thinner and more uniform
fibers [69]. Together, these studies highlight that the diameter of the needle is a critical
control parameter in both electrospinning processes and fiber diameter prediction models.
Kalluri et al. [31] conducted a systematic investigation into how spinneret-to-collector dis-
tance and applied voltage influence the average diameter of Poly(L-lactide-co-glycolide)
(PLGA) nanofibers. The study observed that increasing the spinneret-collector distance
from 12.5 to 17.5 cm resulted in a noticeable decrease in fiber diameter, while further
increasing the distance to 20 c¢m led to an increase in the average fiber diameter. Simi-
larly, increasing the voltage from 12 to 16 kV reduced the fiber diameter by strengthening
electrostatic forces and stretching the fibers, while increasing the voltage from 16 to 20 kV
resulted in a larger fiber diameter due to increased polymer solution spraying [31]. Asvar
et al. [5] reported that increased voltage adversely affects tensile strength and stitch re-
tention strength, indicating that elevated voltages may induce morphological changes that
deteriorate the mechanical integrity of the fibers. Similarly, in our study, we observed a
negative effect of voltage on model predictions; SHAP analysis showed that voltage had
the most significant negative impact on the predicted fiber diameter with a negative coef-
ficient of 0.242. These results indicate that voltage and spinneret-collector distance play a
critical role in determining fiber diameter and morphology in the electrospinning process,
and optimal parameters should be adjusted based on polymer viscosity, solution proper-
ties, and other process variables. In the study by Ko et al. [35], it was observed that the
fiber diameter decreased with increasing temperature for polycaprolactone (PCL) with
molecular weights of 45 kDa and 70 kDa. However, in some cases, a positive correlation
was also observed between temperature and fiber diameter. Similarly, in the study by Ra-
mazani and Karimi, the temperature reduced the viscosity of the PCL solutions, allowing
the jet to stretch more easily and form thinner fibers [60]. In our study, we also inves-
tigated the effect of temperature on fiber diameter and observed a negative relationship
between temperature and fiber diameter. The temperature was found to have a negative
SHAP value of 0.194, indicating its adverse effect on model predictions. These findings
are in line with those observed by Ramazani and Karimi, confirming the tendency for the
diameter of the fiber to decrease with increasing temperature. Furthermore, these findings
suggest that the temperature affects the diameter of the fiber by altering the viscosity and
elastic properties of the solution. Consequently, higher temperatures are shown to reduce
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the fiber diameter, and our model predictions support this as an important parameter
that negatively affects the fiber diameter.

The towing parameter in electrospinning significantly affects the diameter of the fiber.
In our study, we observed that the towing effect created a negative relationship with the
fiber diameter predictions. This was confirmed by a SHAP value of 0.147, indicating
that an increase in the towing parameter tends to reduce the fiber diameter and has a
negative effect on the prediction model. Towing is known to cause the fibers to stretch more
uniformly, which helps the solution to solidify faster, leading to a reduction in the diameter
of the fiber. These findings are further supported by the study conducted by Schofield et
al. [67], who investigated the effect of towing force during electrospinning and reported a
negative correlation between stretching force and fiber diameter. They also emphasized
that the reduction in fiber diameter became more pronounced with the effect of solution
viscosity and electric field. These results parallel our findings, confirming the role of
towing in reducing fiber diameter and its negative impact on predictions. Fiber breakage
is typically associated with an increase in fiber diameter. Under low humidity conditions,
electrostatic discharge decreases, making it difficult for fibers to stretch and elongate. In
such cases, the polymer solution does not stretch sufficiently, resulting in thicker and more
brittle fibers. In contrast, a higher humidity allows the solvent to evaporate more slowly,
which provides more time for the fibers to stretch and elongate. This can result in finer and
more uniform fibers, although very high humidity levels may cause additional processes
such as water absorption and phase separation, potentially leading to porous structures on
the fiber surface and sometimes causing fiber breakage. Therefore, as humidity increases,
the diameter of the fiber typically decreases, but it can also lead to fiber breakage.

At low humidity levels, fibers tend to be thicker and more brittle, while at higher
humidity levels, fibers become thinner, but issues such as surface pores or fiber breakage
may arise. Roya M. Nezarati et al. [50] extensively investigated the effects of humidity
and solution viscosity on electrospun fiber morphology. Their study examined the impact
of various humidity levels (RH = 5%-75%) on the fiber morphology, highlighting the
interaction between these parameters and the hydrophobicity of the polymer and solvent
properties. The results showed that lower humidity (RH<50%) increased fiber breakage,
which could be attributed to reduced electrostatic discharge. At higher humidity levels,
increased water absorption in Polyethylene Glycol (PEG) polymers led to fiber breakage,
while phase separation in PCL polymers caused surface porosity. These findings suggest
that the effect of humidity on electrospinning can vary depending on the hydrophobicity of
the polymer, the compatibility of the solvent with water, and the viscosity of the solution.
Furthermore, the study proposed viscosity as a more influential parameter affecting fiber
morphology, emphasizing that even small changes in molecular weight could significantly
alter viscosity.

In our study, we also investigated the relationship between humidity and fiber diam-
eter and found that increased humidity led to a decrease in fiber diameter, statistically
confirming a significant negative correlation between the two variables. A SHAP value of
0.126 confirmed that humidity had a negative correlation with fiber diameter. However,
our study also pointed out that humidity not only affects the diameter of the fiber but
also affects the mechanical integrity of the fibers. Specifically, at higher humidity levels,
fiber thinning was accompanied by surface porosity and breakage, highlighting potential
mechanical problems. Our findings are in agreement with those of Nezarati et al. [50], who
investigated the influence of humidity on the behavior of PEG, PCL, and polymer-coated
urea (PCU) polymers. However, while our study focused solely on the direct effects of
humidity on fiber diameter, They also explored how humidity interacts with polymer type
and solution viscosity to affect fiber morphology. Both studies emphasize that humidity
plays a critical role in fiber morphology, and this effect can vary depending on polymer
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type and solution viscosity. These findings underscore the importance of optimizing hu-
midity levels and solution viscosity in the electrospinning process to achieve the desired
fiber properties. Our findings support the limited number of studies on pure PCL and
contribute to a better understanding of the effects of electrospinning parameters on fiber
diameter. In the literature, studies on pure PCL are relatively rare; instead, research
on composite materials is more common. However, further studies are needed to better
understand the properties of pure PCL and the effects of the parameters on it. In addi-
tion, factors such as solution viscosity, solvent properties, and environmental conditions
must be examined more thoroughly for pure PCL, rather than composite materials, to
understand their impact on fiber morphology. This growing interest in pure PCL studies
will allow for more efficient optimization of the electrospinning process and will promote
more effective applications of pure PCL in the future.

5. Conclusion

Our study focuses on predicting the effects of electrospinning parameters on fiber di-
ameter using XML techniques. The impact of parameters such as rotation speed, flow
rate, voltage, and porosity on fiber diameter was examined in detail, and the complex
relationships between these parameters were revealed. The results indicated that the RF
model demonstrated the best performance. Evaluation on the test set yielded an RMSE
of 129.3, MAPE of 0.371, R? of 0.54, and EVS of 0.59, suggesting that the RF model
outperformed others in terms of both accuracy and interpretability. Hyperparameter op-
timization using BO improved the model performance. After optimization, the RMSE
value decreased to 128.0, and the R? value increased to 0.555. The higher performance
of BO can be attributed to its more efficient exploration of a broader hyperparameter
space compared to GS, yielding optimal results with fewer trials. The study demonstrates
that the effects of electrospinning parameters on fiber diameter are shaped by non-linear
interactions. The RF model successfully captured these complex relationships, achieving
high accuracy. Other regression models, particularly linear regression (Ridge and Lasso),
and neighborhood-based methods (KNN), performed less effectively due to their inability
to model complex relationships. Furthermore, SHAP analysis provided clearer insight into
the effects of the parameters on fiber diameter. According to SHAP values, the rotation
speed and flow rate had the strongest positive effects on fiber diameter. Increasing the ro-
tation speed expanded the fiber diameter, while the flow rate also had an increasing effect.
In contrast, the distance parameter had a positive but less pronounced effect on fiber di-
ameter, reflected by lower SHAP values, although it remains significant. The voltage and
temperature parameters negatively affected the fiber diameter. These findings contribute
to the transparency of the model’s decisions, allowing for a clearer understanding of how
each parameter affects fiber diameter.

The limitations of the study include the small size of the dataset and the exclusive focus
on studies using pure PCL. This may affect the model’s generalizability. Future research
with larger and more diverse datasets will yield more robust results. It is particularly
important to focus on pure polymers in electrospinning processes. Although most of the
literature emphasizes composite materials, studies on pure polymers are relatively scarce.
The investigation of pure polymers is critical to gaining deeper insight and improving
optimization methods. Future work investigating the effects of pure polymers on electro-
spinning processes will contribute significantly to advancing the knowledge in this area.
In addition, a more comprehensive examination of the impact of solvents, environmental
conditions, and other parameters on fiber morphology would be beneficial. Future studies
should aim to enhance the optimization of electrospinning processes by focusing more on
pure polymers.
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Appendix A. Final Hyperparameter Values Under 3-fold CV

Table 10. Representative Final Hyperparameter Values for All Models Under

3-fold CV.

Model GS BO
n_estimators=180 n_estimators=200
learning_rate=0.01 learning_rate=0.009

XGBoost max_depth=6 max_depth=8
subsample=0.8 subsample=0.85
n_estimators=180 n_estimators=210

RF max_depth=10 max_depth=12
min_samples_split=2 min_samples_split=2
n_estimators=120 n_estimators=150

GB learning_rate=0.01 learning_rate=0.008
max_depth=5 max_depth=0

.. max_depth=8 max_depth=10

DecisionTree . . . .
m1n_samgles_s§llt:2 m1n_samE1es_sF}>11t:2

KNN n_neighbors= n_neighbors=

leaf_size=30

n_estimators=120

LightGBM num_leaves=31

learning_rate=0.01

leaf _size=25
n_estimators=150

num_leaves=40
learning_rate=0.009

C=80 C=100
SVR gamma=0.01 gamma=0.008
o TR SEERELTHf
11_ratio=0.5 11_ratio=0.55
Ridge alpha=1.2 alpha=1.0
Lasso alpha=0.006 alpha=0.005
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Appendix B. Final Hyperparameter Values Under 10-fold CV

Table 11. Representative Final Hyperparameter Values for All Models Under

10-fold CV
Model GS BO
n_estimators=220 n_estimators=250
learning_rate=0.01 learning_rate=0.008
XGBoost max_depth=7 max_depth=9
subsample=0.8 subsample=0.85
n_estimators=220 n_estimators=250
RF max_depth=10 max_depth=12
min_samples_split=2 min_samples_split=2
n_estimators=160 n_estimators=200
GB learning_rate=0.01 learning_rate=0.008
max_depth=5 max_depth=6
.. max_depth=10 max_depth=12
DecisionTree . . . .
m1n_samgles_s6p11t:2 m1n_samE1es_s8p11t:2
KNN n_neighbors= n_neighbors=
leaf_size=30 leaf _size=25
n_estimators=160 n_estimators=190
LightGBM num_leaves=31 num_leaves=45
learning_rate=0.01 learning_rate=0.008
C=120 C=140
SVR gamma=0.01 gamma=0.008
k l=rbf k 1=
e, STERSLTH TEReL
asticive 11_ratio=0.50 11_ratio=0.55
Ridge alpha=1.0 alpha=0.85

Lasso alpha=0.005 alpha=0.004




