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Abstract
The functional linear model extends classical regression by modeling scalar responses as
functions of stochastic processes. This paper proposes a novel convolution-type smoothed
least absolute deviation estimator that addresses the non-smoothness and strict convexity
challenges of conventional least absolute deviation estimation. By approximating both the
predictor variable and slope function via functional principal component basis expansions,
we develop a robust estimator with strong theoretical guarantees. Under mild regular-
ity conditions, we establish the estimator’s consistency aligning with the least absolute
deviation estimator as the bandwidth vanishes and derive the convergence rate for the
prediction error. Simulation studies demonstrate that the proposed smoothed least abso-
lute deviation estimator outperforms conventional estimation methods–including ordinary
least squares, standard least absolute deviation, spline-based regression, penalized spline
smoothing, and Bayesian estimation, particularly in scenarios involving heavy-tailed error
distributions, outlier contamination, and heteroscedasticity. Applications to the Berkeley
Growth Study and the Capital Bike Share dataset further validate its practical utility.
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1. Introduction
Advances in data collection and storage have tremendously increased the presence of

functional data, whose graphical representations are curves [1], shapes [2], or images [3],
etc. For a comprehensive treatment on the subject of functional data analysis, we rec-
ommend the monographs [4–9]. Functional regression analysis is one of the most useful
techniques in functional data analysis. The basic idea behind functional regression analy-
sis is to regard longitudinally observed predictors and/or responses as smooth functional
data, and then elucidate the relationship between the responses and predictors and predict
the newly observed data through the estimated model. As a fundamental tool for assessing
the relationship between two random variables of functional or scalar form, FLM has been
extensively investigated in the literature [10–17], among others.
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The early functional linear model (FLM) mainly relied on the OLS method. Although
OLS performs optimally under Gaussian assumptions, real-life functional data frequently
deviate from these conditions. Such deviations manifest as (i) heavy-tailed errors in growth
curve analysis [18] and ophthalmological data [3] due to biological variability; (ii) demand
anomalies and extreme traffic flows in urban mobility systems [19, 20]; and (iii) extreme
events in environmental monitoring [21] and econometric forecasting [8].

When conditional median is of primary interest or the data contain substantial outliers,
both least absolute deviation (LAD) [22] and quantile regression (QR) [23] offer more
robust alternatives than mean regression. However, their non-differentiable loss functions
present significant computational challenges in functional contexts, particularly when re-
quiring: (i) dimension reduction through basis expansions; (ii) enforcement of smoothness
constraints; and (iii) large-scale optimization. To address these limitations, we developed
a smoothed least absolute deviation (SLAD) estimator for FLM that incorporates recent
advances in smoothing methodologies [24–26]. Our approach provides three key advan-
tages: (i) enhanced robustness against data contamination in growth curve analysis [18];
(ii) improved computational efficiency compared to conventional LAD; and (iii) greater
flexibility in handling irregular sampling and high-dimensional predictors.

This work bridges a critical gap between LAD’s robustness and functional data’s di-
mensionality requirements by addressing three fundamental challenges. Theoretically, it
reconciles robust statistics with infinite-dimensional functional spaces through: (i) con-
structing a smoothed LAD objective function approximation; (ii) employing functional
principal component analysis for dimension reduction; and (iii) establishing asymptot-
ic properties that confirm matching convergence rates with standard LAD estimation as
bandwidth vanishes while deriving the convergence rate for the prediction error. Method-
ologically, the framework resolves the robustness-smoothness trade-off through three in-
tegrated components: a quadratically differentiable loss function, robust FPCA, and an
efficient MM algorithm. Empirical validation through benchmark datasets demonstrates
both methodological efficacy and practical value. The Berkeley Growth study reveals
systematic variations in height prediction accuracy by biological sex and developmental
phase, while the Capital Bike Share analysis identifies an inverted U-shaped temperature-
usage relationship. In particular, SLAD outperforms conventional approaches (OLS, LAD,
spline methods [27], penalized spline [28] and Bayesian alternatives [29]) by simultaneously
achieving: (i) superior robustness against heavy-tailed distributions, outliers, and het-
eroscedastic errors; (ii) maintained predictive accuracy, and (iii) computational feasibility.
Collectively, this work represents the first unified solution that bridges the long-standing
divide between LAD’s robustness and functional data’s dimensionality requirements while
delivering three key advances: heavy-tailed error robustness, smoothness preservation, and
practical computational efficiency.

The paper is organized as follows: Section 2 develops an estimation method for the
SLAD and derives the asymptotic properties of the proposed estimator. An algorithm
based on majorize-minimization is detailed in Section 3. Section 4 performs numerical
simulations with a finite sample. Section 5 applies the proposed method to the Berkeley
Growth data and the Capital Bike Share datasets. Section 6 concludes the paper with
some discussion.

2. Methodology and main conclusions
In this section, we first give a brief introduction to the SLAD technique based on the

classical linear regression model, and then extend this method to the FLM.
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2.1. Methodology
Let Y ∈ R be a univariate response variable, X = (X1, X2, . . . , Xp)> ∈ Rp be the

p-dimensional covariate vector. Then, let {(Yi, Xi)}ni=1 be n independent and identically
distributed (i.i.d.) random observations that are sampled from the following linear regres-
sion model

Y = X>β∗ + ε, (2.1)

where β∗ = (β∗
1 , β∗

2 , . . . , β∗
p)> ∈ Rp is the true parameter and ε is the random noise.

Assume that ε is independent of X, and has unknown cumulative distribution function
Fε(·) with fε as its density function. The LAD estimator β̂ is obtained by minimizing the
random criterion

β̂ = arg min
β∈Rp

1
n

n∑
i=1

∣∣∣Yi −X>
i β
∣∣∣ . (2.2)

For the above LAD estimator β̂, Pollard [22] provided a direct proof of asymptotic normal-
ity. However, the loss function lacks differentiability, which increases the computational
burden and reduces the efficiency of statistical inference. To solve this problem, we intro-
duce the SLAD method. After taking the expectation of the objective function in Equation
(2.2) with respect to the true distribution of ε, we obtain the population-level objective
function

∫∞
−∞ |t|dFε(·). Similar to [24] and [30], we will use the smooth estimator F̃ε(·)

in place of Fε(·), then
∫∞

−∞ |t|dF̃ε(·) can be the new objective function, which is smooth.
Specifically, we consider the following kernel density estimator

F̃ε(t) =
∫ t

−∞

1
n

n∑
i=1

1
h

K

(
ν − εi

h

)
dν

with the kernel function K : R → [0,∞) and bandwidth h > 0. The new objective
function is ∫ ∞

−∞
|t|dF̃ε(t) = 1

n

n∑
i=1

∫ ∞

−∞

1
h

K

(
εi − t

h

)
|t|dt := 1

n

n∑
i=1

Lh

(
εi
)
,

where Lh(u) =
∫∞

−∞ |ν|
1
hK(u−ν

h )dν =
∫∞

−∞ |u− ν| 1hK( ν
h)dν.

For the model in Equation (2.2), the SLAD estimator β̂h is defined as a solution to the
following optimization problem

arg min
β∈Rp

1
n

n∑
i=1

Lh

(
Yi −X>

i β
)
. (2.3)

Next, we apply this method to the FLM, which is defined as

Y = α0 +
∫

T
X(t)β(t)dt + ε, (2.4)

where Y is a real-valued scalar response, α0 is the intercept term, β(t) ∈ L2(T ) is the
unknown slope function associated with functional predictor X(t), ε is a random error
independent of X(t). Here, the Hilbert space L2(T ) is the set of all square integrable
functions on T , endowed with inner product 〈x, y〉 =

∫
T x(t)y(t)dt and norm ‖x‖ =

〈x, x〉1/2. Note that once an estimator β̂(t) of slope β(t) is available, it is straightforward
to estimate the intercept α0, for example, as the average values of Y −

∫
T X(t)β̂(t)dt.

Therefore, much interest in the literature is focused on estimating β(t). For simplicity of
notation, we assume α0 = 0. Without loss of generality, we further assume that T = [0, 1],
and {X(t) : t ∈ T } has zero mean throughout the study.
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Let (Xi(·), Yi), i = 1, 2, . . . , n be the realizations of (X(·), Y ) in model (2.4). The co-
variance and empirical covariance functions of X(·) can be defined as

CX(s, t) = Cov(X(s), X(t)), ĈX(s, t) = 1
n

n∑
i=1

Xi(s)Xi(t).

By the Mercer’s Theorem, the spectral expansions of CX(s, t) and ĈX(s, t) can be written
as

CX(s, t) =
∞∑

j=1
λjφj(s)φj(t), ĈX(s, t) =

∞∑
j=1

λ̂jφ̂j(s)φ̂j(t),

where λ1 > λ2 > · · · > 0 and λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n+1 = · · · = 0 are ordered nonnegative
eigenvalues, {φj(·)}∞j=1 and {φ̂j(·)}∞j=1 is continuous eigenfunctions of the covariance oper-
ator. With a slight abuse of notation, we use CX to denote both the covariance operator
and covariance function of X(·). We assume that the covariance operator CX defined by
CXf(s) =

∫ 1
0 CX(s, t)f(t)dt is strictly positive. Obviously, {φj(·)}∞j=1 are orthonormal

basis functions on L2[0, 1], and {λ̂j , φ̂j(·)} can be regarded as estimators of {λj , φj(·)}. By
the Karhunen-Loève representation, L2-valued functions X(t) and β(t) can be expanded
to

X(t) =
∞∑

j=1
ξjφj(t), β(t) =

∞∑
j=1

γjφj(t), (2.5)

where ξj = 〈X(·), φj(·)〉 is the jth score of X(·), and γj = 〈β(·), φj(·)〉 is the jth fourier
coefficient of β(t), and the ξj are uncorrelated random variables with mean 0 and variance
Eξ2

j = λj . Analogously, we define CY X = Cov(Y, X(·)), and empirical counterpart can be
defined as ĈY X = 1

n

∑n
i=1 YiXi.

Given the orthogonality of {φj(·)}mj=1 and in Equation (2.5), the model in Equation
(2.4) can be rewritten as:

Yi =
m∑

j=1
ξijγj + ε̃i, i = 1, 2, . . . , n, (2.6)

where ξij = 〈Xi(·), φj(·)〉, ε̃i =
∑∞

j=m+1 ξijγj + εi, m is the “cutoff” level such that
1 ≤ m ≤ n−1 and m→∞ as n→∞. Let Ui = (ξi1, ξi2, . . . , ξim)>, γ = (γ1, γ2, . . . , γm)>.
The SLAD estimators β̂h(t) =

∑m
j=1 γ̂hjφ̂j(t) can be obtained by minimizing the loss

function with respect to γ as follows:

Q̂h(γ) = 1
n

n∑
i=1

Lh

(
Yi − Û>

i γ
)
, (2.7)

where Ûi = (ξ̂i1, ξ̂i2, . . . , ξ̂im)> with ξ̂ij = 〈Xi(t), φ̂j(t)〉.
Implementation of the proposed estimation methods requires the selection of the tuning

parameter m. In this study, m is selected as the minimum value that reaches a certain
proportion (denoted by ς) of the cumulative percentage of total variance (CPV) by the
first m leading components as follows:

m = arg min
J

{ J∑
j=1

λ̂j

/ M∑
j=1

λ̂j > ς

}
,

where M is the largest number of functional principal components, such that λ̂j > 0, and
ς = 95% is used in our numerical studies.
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2.2. Main conclusions
In this section, we will study the large sample properties of the SLAD estimator defined

in the previous section. In order to derive the asymptotic properties, we need the following
conditions:
Condition 2.1 The errors {εi}ni=1 are i.i.d. with density function fε(·) about the Lebesgue
measure on R. We assume that the second-order derivative of fε(·) exists on the real line
and supx∈R|f ′′

ε (·)| <∞.
Condition 2.2 Turning parameter m satisfied m ∼ n

1
a+2b .

Condition 2.3 Random process X(·) and the score ξj satisfy conditions: E‖X(·)‖4 <
∞, E[ξ4

j ]
≤ cλ2

j , j ≥ 1.
Condition 2.4 For the eigenvalues λj of the linear operator CX and and score coefficients
γj , the following conditions hold:
(a) There exist constants c and a > 1, such that c−1j−a ≤ λj ≤ cj−a, λj − λj−1 ≥
cj−a−1, j ≥ 1;
(b) There exist constants c and b > 1 + a

2 , such that |γj | ≤ cj−b, j ≥ 1.
Condition 2.5 K(·) that satisfies the following properties: (i) K(−t) = K(t), ∀t ∈
R; (ii) ∃δ0
> 0 s.t. κl := inft∈[−δ0,δ0]K(t) > 0; (iii)

∫∞
−∞ K(t)dt = 1; (iv) κu := supt∈RK(t) <

∞; (v) κj :=
∫∞

−∞ |t|jK(t)dt <∞, j = 1, 2; (vi) ∃ constant α0 ∈ [0, 1], L0 > 0 s.t. |K(x)−
K(y)| ≤ L0|x− y|α0 for any x, y ∈ R.

Remark 2.1. Condition 2.1 is commonly required for LAD models. Conditions 2.2-2.4 are
standard assumptions used in the classical functional linear regression (see, e.g., [11,12]).
In particular, Condition 2.2 gives the order of the truncated parameter m. Condition 2.3 is
needed for the consistency of ĈX , and the second part of Condition 2.3 is satisfied if X(·)
is a Gaussian process. Condition 2.4 (a) is required to identify the slope function β(t) by
preventing the spacings among the eigenvalues from being too small, while condition 2.4
(b) is used to make the slope function β(t) sufficiently smooth. There can be a lot of choices
for the kernel function K(·) satisfying Condition 2.5. For example, the Gaussian kernel
with K(u) = 1√

2π
e− u2

2 , the triangular kernel with K(u) = (1− |u|) I(−1 ≤ u ≤ 1) and
the Epanechnikov kernel with K(u) = 3

4
(
1− u2) I(−1 ≤ u ≤ 1) all satisfy the conditions,

where I(·) is the indicator function.

To facilitate the proof, we first give some additional notation. Let β0(t) be the true
function of β(t), and let γ0 = (γ01, γ02, . . . , γ0m)> be the true coefficient coefficient vector
of the score. Notation ‖ · ‖ denotes the L 2 norm for a function or the Euclidean norm for
a vector. In what follows, c denotes a generic positive constant that may take different
values. Moreover, an ∼ bn means that |an

bn
| is bounded away from zero and infinity as

n→∞. Let γ∗
h = arg minγ∈Rm ELh

(
Y − Û>γ

)
.

In our proofs, we will frequently need the following expressions for the loss function
Lh(·) and its derivatives. Recall Lh(u) =

∫∞
−∞ |u− ν| 1hK( ν

h)dν, u ∈ R. A direct calculation
gives

Lh(u) = u

∫ u

−u

1
h

K(ν

h
)dν − 2

∫ u

−∞

ν

h
K(ν

h
)dν,

L′
h(u) = 2

∫ u

−∞

1
h

K(ν

h
)dν − 1 = 2

∫ u

0

1
h

K(ν

h
)dν, (2.8)

L′′
h(u) = 2

h
K(u

h
), ∀u ∈ R. (2.9)
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Lemma 2.2. For any t1, t2, t ∈ R, we have (i) L′
h(−t) = −L′

h(t), (ii) |Lh(t1)− Lh(t2)| ≤
|t1 − t2|, |L′

h(t1)− L′
h(t2)| ≤ 2

hκu|t1 − t2| and (iii) |L′′
h(t1)− L′′

h(t2)| ≤ 2L0
h1+α0 |t1 − t2|α0 .

Proof. (i) Note that L′
h(t) = 2

∫ t
−∞

1
hK( ν

h)dν − 1 and
∫∞

−∞ K(t)dt = 1, so we have
L′

h(−t) = 2
∫−t

−∞
1
hK( ν

h)dν − 1 = 2(1 −
∫∞

−t
1
hK( ν

h)dν) − 1 = 1 − 2
∫∞

−t
1
hK( ν

h)dν = 1 −
2
∫ t

−∞
1
hK( ν

h)dν = −L′
h(t), where the last equality is due to a change of variable and

K(−t) = K(t), t ∈ R. Thus the first statement is proved.
(ii) By the property of the kernel function, we have

∫∞
−∞

1
hK( ν

h)dν = 1. Since L′
h(t) =

2
∫ t

−∞
1
hK( ν

h)dν−1 and K(t) ≥ 0 for all t, we have −1 ≤ L′
h(t) ≤ 2

∫∞
−∞

1
~K( ν

h)dν−1 = 1.
Then the |L′

h(t)| ≤ 1, t ∈ R. The second statement follows from the mean value theorem.
(iii) Similarly, by the property of of kernel function, we have 0 ≤ L′′

h(t) = 2
hK( t

h) ≤ 2
hκu,

which means |L′′
h(t)| ≤ 2

hκu. Thus, by the choice of kernel, we have |L′′
h(t1) − L′′

h(t2)| =
2
h |K( t1

h )−K( t2
h )| ≤ 2L0

h1+α0 |t1 − t2|α0 . Then the proof is finished. �

Let εi(γ) = Yi − Û>
i γ. By Lemma 2.2, the gradient and the Hessian matrix of Q̂h(γ)

with respect to γ are, respectively,

∇Q̂h(γ) = − 1
n

n∑
i=1

Kh

(
εi(γ)

)
Ûi, ∇2Q̂h(γ) = 1

n

n∑
i=1

1
h

K

(
εi(γ)

h

)
ÛiÛ

>
i , (2.10)

where Kh(u) := 2
∫ u

−∞
1
hK( t

h)dt− 1.

Theorem 2.3. Under Conditions 2.1–2.5, as n→∞, (1) for any h > 0, we have ‖γ∗
h −

γ0‖ = O(h2), (2) further, when h ∼ n
− a+2b−1

4(a+2b) , we have ‖β̂h(·)− β0(·)‖ = Op

(
n− 2b−1

a+2b

)
.

Proof. Let δn =
√

m
n , Vn = δ−1

n (γ̂h − γ∗
h)>. Let Ri =

∫ 1
0 Xi(t)β0(t)dt − Û>

i γ∗
h, Fn =

{Vn : ‖Vn‖ = L}, where L is a large enough constant, Nn = {(Xi(·), Yi)}ni=1.
Firstly, similar to Lemma A.1 in [31], we have ‖γ∗

h − γ0‖ = O(h2). Next, we show, for
any given η > 0, there exists a sufficient large constant L = Lη such that

P

{
inf

Vn∈Fn

Q̂h(γ∗
h + δnVn) > Q̂h(γ∗

h)
}
≥ 1− η. (2.11)

This implies that with the probability of at least 1 − η there exists a local minimizer γ̂h

in the ball
{

Vn :
∥∥Vn

∥∥ ≤ L
}

, such that ‖γ̂h − γ∗
h‖ = Op(δn). By invoking ‖φ̂j − φj‖2 =

Op(n−1j2) (see, e.g., [32]), we have

|Ri|2 =
∣∣∣∣∫ 1

0
Xi(t)β(t)dt− Û>

i γ∗
h

∣∣∣∣2 ≤ 2

∣∣∣∣∣∣
m∑

j=1
〈Xi, φ̂j − φj〉γ∗

hj

∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣
∞∑

j=m+1
〈Xi, φj〉γ∗

hj

∣∣∣∣∣∣
2

, 2A1 + 2A2.
(2.12)

For A1, by Conditions 2.2–2.4, and the Hölder inequality, we obtain

A1 =

∣∣∣∣∣∣
m∑

j=1
〈Xi, φ̂j − φj〉γ∗

hj

∣∣∣∣∣∣
2

≤ cm
m∑

j=1
‖φ̂j − φj‖2γ∗2

hj ≤ cm
m∑

j=1
Op(n−1j2−2b) = Op(n

a+4b−4
a+2b )

= op(δ2
n).

As for A2, given that E
{∑∞

j=m+1〈Xi, φj〉γ∗
hj

}
= 0,

Var


∞∑

j=m+1
〈Xi, φj〉γ∗

hj

 =
∞∑

j=m+1
λjγ∗2

hj ≤ c
∞∑

j=m+1
j−(a+2b) = O(n− a+2b−1

a+2b ),
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we have A2 = Op(n− a+2b−1
a+2b ) = op(δ2

n). Taking these together, we obtain

|Ri|2 = Op(n− a+2b−1
a+2b ) = op(δ2

n). (2.13)

Let Pn(Vn) = Q̂h(γ∗
h + δnVn)− Q̂h(γ∗

h). By using Taylor series expansion,

Pn(Vn) =Q̂h(γ∗
h + δnVn)− Q̂h(γ∗

h)

=δn∇Q̂>
h (γ∗

h)Vn + 1
2δ2

nV >
n ∇2Q̂h(γ∗

h)Vn{1 + op(1)}

≥1
2δ2

nV >
n ∇2Q̂h(γ∗

h)Vn − ‖δn∇Q̂>
h (γ∗

h)Vn‖,

(2.14)

where the last inequality holds because the Hessian matrix ∇2Q̂h(γ∗
h) is positive definite.

Next we consider the terms δ2
nV >

n ∇2Q̂h(γ∗
h)Vn and δn∇Q̂>

h (γ∗
h)Vn, respectively. Note that

{εi}ni=1 be the independent random variables, by the Taylor series expansion, we have

‖∇Q̂h(γ∗
h)‖ =

∥∥∥∥∥ 1
n

n∑
i=1

Kh {εi + Ri} Û>
i

∥∥∥∥∥
=
∥∥∥∥∥ 1

n

n∑
i=1

{
Kh (εi) + K ′

h (εi) Ri + K ′′
h (εi) R2

i + op(1)
}

Û>
i

∥∥∥∥∥
≤
√

3
∥∥∥∥∥ 1

n

n∑
i=1

Kh (εi) Û>
i

∥∥∥∥∥+
√

3
∥∥∥∥∥ 1

n

n∑
i=1

K ′
h (εi) RiÛ

>
i

∥∥∥∥∥
+
√

3
∥∥∥∥∥ 1

n

n∑
i=1

K ′′
h (εi) R2

i Û>
i + op(1)

∥∥∥∥∥ .

According to the definition and conditions on kernel function, and Condition 2.1, we
have E[K( ε

h)] =
∫∞

−∞ K( ν
h)fε(ν)dν. Let ν = th, applying Taylor’s Theorem, E[K( ε

h)] =
h
∫∞

−∞ K(t)f(th)dt = h
∫∞

−∞ K(t)[f(0) + o(1)]dt. Therefore, E|Kh(ε)| = O(1). Similarly,
K ′

h (εi) = 1
2f(0) + Op(h2). Combining E|Kh(ε)| = O(1) with Conditions 2.1–2.3, one has

E
∥∥∥∥∥ 1

n

n∑
i=1

Kh (εi) Û>
i

∥∥∥∥∥
2

= 1
n

E
{

[Kh (ε1)]2
}

E
{

Û1Û>
1

}
= 1

n
{O(1)}

m∑
j=1

E
{

Û2
1j

}
= O

(
m

n

)
.

Further, by (2.13) and Conditions 2.1–2.3, we have ‖ 1
n

∑n
i=1 K ′

h (εi) RiÛ
>
i ‖ = Op

(
m
n

)
.

Similarly, we can obtain ‖ 1
n

∑n
i=1 K ′′

h (εi) Op(R2
i )Û>

i ‖ = op
(

m
n

)
= op(1). Hence, ‖∇Q̂h(γ∗

h)‖ =
Op

(√
m
n

)
. In summary, we get

‖δn∇Q̂>
h (γ∗

h)Vn‖ ≤ δn‖∇Q̂h(γ∗
h)‖‖Vn‖ ≤ Op

(
δ2

n

)
‖Vn‖.

For V >
n ∇2Q̂h(γ∗

h)Vn, it is obvious that the Hessian matrix∇2Q̂h(γ∗
h) is positive definite.

By Condition 2.3, one has

E
{

V >
n ∇2Q̂h(γ∗

h)Vn

}
=V >

n

1
nh

n∑
i=1

E
{(

K

(
εi

h

)
+ K ′

(
εi

h

)
Ri

)
ÛiÛ

>
i

}
Vn

=V >
n

1
h

E
{

K

(
ε1
h

)
Û1Û>

1

}
Vn + V >

n

1
h

E
{

K ′
(

ε1
h

)
RiÛ1Û>

1

}
Vn.
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For V >
n

1
hE
{

K
( ε1

h

)
Û1Û>

1

}
Vn, since εi is independent of Ûi, it follows that

V >
n

1
h

E
{

K

(
ε1
h

)
Û1Û>

1

}
Vn

≥E
{1

h
K

(
ε1
h

)}
λmin

{
E
(
Û1Û>

1

)}
‖Vn‖2

= 1
h

∫
K

(
ε1
h

)
f(ε1)d(ε1)λmin

{
E
(
Û1Û>

1

)}
‖Vn‖2

≥
∫

K(t)
{

f(0) + thf ′(0) + (th)2

2 f ′′(0)
}

dtλmin
{

E
(
Û1Û>

1

)}
‖Vn‖2

=f(0)λmin
{

E
(
Û1Û>

1

)}
‖Vn‖2 + o(h).

Similarly, one has

V >
n

1
h

E
{

K ′
(

εi

h

)
RiÛ1Û>

1

}
Vn ≥ cλmin

{
E
(
Û1Û>

1

)}
E{Ri}‖Vn‖2 = O

(√
m

n

)
‖Vn‖22

=o(1)‖Vn‖2.

Thus, δ2
nV >

n ∇2Q̂h(γ∗
h)Vn ≥ Op

(
δ2

n

)
‖Vn‖2 + op

(
δ2

n

)
‖Vn‖2 = Op

(
δ2

n

)
‖Vn‖2. To sum up,

Pn(Vn) is controlled by the term Op
(
δ2

n

)
‖Vn‖2. Hence, the equation (2.11) holds, there

exists local minimizer γ̂h such that
‖γ̂h − γ∗

h‖ = Op(δn). (2.15)

Furthermore, by Theorem 2.3 and h ∼ n
− a+2b−1

4(a+2b) , one has
‖γ̂h − γ0‖ = ‖γ̂h − γ∗

h + γ∗
h − γ0‖ ≤ ‖γ̂h − γ∗

h‖+ ‖γ∗
h − γ0‖

= Op(δn) + O(h2) = Op(δn) + Op(δn) = Op(δn).
Note that

‖β̂h(t)− β0(t)‖2 =

∥∥∥∥∥∥
m∑

j=1
γ̂jφ̂j −

∞∑
j=1

γ0jφj

∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥
m∑

j=1
γ̂jφ̂j −

m∑
j=1

γ0jφj

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥
∞∑

j=m+1
γ0jφj

∥∥∥∥∥∥
2

≤ 4

∥∥∥∥∥∥
m∑

j=1
(γ̂j − γ0j)φ̂j

∥∥∥∥∥∥
2

+ 4
∥∥∥γ0j(φ̂j − φj)

∥∥∥2
+ 2

∥∥∥∥∥∥
∞∑

j=m+1
γ0jφj

∥∥∥∥∥∥
2

, 4D1 + 4D2 + 2D3.

According to Equation (2.15), Condition 2.4, the orthogonality of φ̂j and ‖φ̂j − φj‖2 =
Op(n−1j2), we have

D1 =

∥∥∥∥∥∥
m∑

j=1
(γ̂j − γ0j)φ̂j

∥∥∥∥∥∥
2

≤

∣∣∣∣∣∣
m∑

j=1
(γ̂j − γ0j)

∣∣∣∣∣∣
2

= ‖γ̂ − γ‖2 = Op(δ2
n),

D2 =
∥∥∥γ0j(φ̂j − φj)

∥∥∥2
≤ m

m∑
j=1

∥∥∥φ̂j − φj

∥∥∥2
γ2

0j ≤
m

n
Op

 m∑
j=1

j2γ2
0j


= Op

m

n

m∑
j=1

j2−2b

 = Op

(
m

n

)
= op(n− 2b−1

a+2b ),

D3 =

∥∥∥∥∥∥
∞∑

j=m+1
γ0jφj

∥∥∥∥∥∥
2

≤ c
∞∑

j=m+1
j−2b = O

(
n− 2b−1

a+2b

)
.

Taking these bounds together, we can finish the proof of Theorem 2.3 immediately. �
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Define S =
{
(Yi, Xi(·)) : 1 ≤ i ≤ n

}
. In the following, for a new pair of predictor

variables (Yn+1, Xn+1(·)) taking from the same population as the data and independent
of the data, we shall derive the convergence rate of the mean squared prediction error
(MSPE) given by

MSPE =E
([( ∫ 1

0
Xn+1(t)β̂h(t)dt

)
−
( ∫ 1

0
Xn+1(t)β0(t)dt

)]2∣∣∣S).

Theorem 2.4. Form Theorem 2.3 (2) and Conditions 2.4, we have

MSPE = Op

(
n− a+2b−1

a+2b

)
.

Proof. According to the definition of the MSPE, we have

MSPE ≤3
m∑

j=1
(γ̂j − γ0j)2λj + 3c

∥∥∥∥∥∥
m∑

j=1
γ̂j(φj − φ̂j)

∥∥∥∥∥∥
2

+ 3
∞∑

j=m+1
γ2

0jλj

,3E1 + 3cE2 + 3E3.

(2.16)

In accordance with the preceding proofs and Condition 2.4(a) yields E1 ≤ ‖γ̂ − γ0‖2 =
Op(m

n ). As for E2, based on the triangle inequality and Hölder inequality, we know

E2 =

∥∥∥∥∥∥
m∑

j=1
γ̂j(φj − φ̂j)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
m∑

j=1
γ0j(φj − φ̂j) + (γ̂j − γ0j)(φj − φ̂j)

∥∥∥∥∥∥
2

≤2m
m∑

j=1
γ0j

∥∥∥φj − φ̂j

∥∥∥2
+ 2 ‖γ̂j − γj‖2

∥∥∥∥∥∥
m∑

j=1
(φj − φ̂j)2

∥∥∥∥∥∥ = Op

(
m

n

)
+ Op

(
m

n

)
Op

(
m3

n

)

=Op

(
m

n

)
.

Furthermore, using Condition 2.4, a simple calculation yields E3 = O
(
m−(a+2b−1)

)
. Taking

these bounds together with (2.16), we have MSPE = Op

(
n− a+2b−1

a+2b

)
. Then, Theorem 2.4

is proven. �

Remark 2.5. Theorem 2.3 shows consistency of estimators, which is similar to Theorem
4.2 in [31]. Theorem 2.4 gives the convergence rate of the prediction error. In particular,r,
prediction Ŷn+1 can achieve a faster convergence rate than β̂h(t). The reason behind this
is that the integration operation, in computing

∫ 1
0 Xn+1(t)β̂h(t)dt from β̂h(t), provides

additional smoothness no matter what level of smoothness is used in constructing β̂h(t).
Thus,

∫ 1
0 Xn+1(t)β̂h(t)dt usually becomes oversmoothed when we smooth β̂h(t) optimally

for estimating β(t). As a result, the construction of β̂h(t), as an initial step in estimating∫ 1
0 Xn+1(t)β̂h(t)dt, should involve significant under-smoothing relative to the amount of

smoothing used to estimate β(t) itself. This undersmoothing enables
∫ 1

0 Xn+1(t)β̂h(t)dt to
be estimated n− a+2b−1

a+2b consistently, even though β̂h(t) itself cannot be estimated at such
a fast rate in [33].

3. Algorithm
In this section, we employ the majorize-minimization (MM) principle to derive an iter-

ative algorithm to solve (2.7). We first provide a brief overview of the MM algorithm [34].
Considering the minimization of a general smooth function f(β), given an estimate β̂k−1 at
the kth iteration, the MM algorithm majorizes f(β) with a properly constructed function
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g(β|β̂k−1) that satisfies the property f(β̂k) ≤ g(β̂k|β̂k−1), where β̂k = arg min
β

g(β|β̂k−1).

This ensures the decrease of the objective function after each step, i.e., f(β̂k) ≤ f(β̂k−1).
We majorize Q̂h(γ) given γ̂k−1

h by constructing a quadratic function of the form

G(γk|ϕk, γ̂k−1
h ) = Q̂h(γ̂k−1

h ) +∇Q̂h(γ̂k−1
h )(γ − γ̂k−1

h ) + ϕk

2 ‖γ − γ̂k−1
h ‖22,

where ϕk > 0 is a quadratic parameter (to be determined) at the kth iteration. Then,
define the kth iterate γ̂k

h as the solution to

minimizeγ∈RmG(γk
h |ϕk, γ̂k−1

h ). (3.1)
To ensure the descent of the objective function in (2.7) at each iteration, the parameter
ϕk > 0 must be sufficiently large such that Q̂h(γ̂k

h) ≤ G(γ̂k
h |ϕk, γ̂k−1

h ). Consequently,

Q̂h(γ̂k
h) ≤ G(γ̂k

h |ϕk, γ̂k−1
h ) ≤ G(γ̂k−1

h |ϕk, γ̂k−1
h ) ≤ Q̂h(γ̂k−1

h ),
where the second inequality is due to the fact that γ̂k

h is a minimizer of (3.1). In practice,
we choose ϕk by starting from a small value ϕ0 = 0.01 and successively inflate it by a
factor α = 1.2 until the majorization requirement Q̂h(γ̂k

h) ≤ G(γ̂k
h |ϕk, γ̂k−1

h ) is met at each
iteration of the MM algorithm.

By the first-order optimization condition, γ̂k
h satisfies 0 ∈ ∇Q̂h(γ̂k−1

h ) + ϕk(γ̂k
h − γ̂k−1

h ).
Its update takes a simple form γ̂k

h = γ̂k−1
h − ϕ−1

k ∇Q̂h(γ̂k−1
h ). Detailed update rules of γ̂k

h
are summarized in the following Algorithm 1.

Algorithm 1 The Algorithm for Solving (2.7).
Input: Kernel function K(·), bandwidth h, turning parameter m, inflation factor α = 1.2,

and convergence criterion υ.
1. γ̂k

h = 0, ϕ0 = 0.01. Repeat the following steps until the stopping criterion ‖γ̂k
h −

γ̂k−1
h ‖ ≤ υ is met, where γ̂k

h is the kth iterate, υ = 10−6.
2. Set ϕk ← max

{
ϕ0, ϕk

α

}
.

3. If Q̂h(γ̂k
h) ≤ G(γ̂k

h |ϕk, γ̂k−1
h ), set ϕk = αϕk.

4. Until Q̂h(γ̂k
h) ≤ G(γ̂k

h |ϕk, γ̂k−1
h ).

Output: the updated parameter γ̂k
h .

4. Simulation Study
In our simulation studies, we systematically evaluate the performance of our proposed

SLAD method against five competing approaches: (1) Ordinary least squares (OLS),
(2) LAD, (3) functional Bayesian method (FB) in [29], which implemented using the
bayesQR(0.5) package in R with 200 posterior draws (ndraw=200) and default prior spec-
ifications, (4) functional B-spline method (FSp) in [27], (5) functional penalized smoothing
spline method (FPSp) in [28], where the penalty parameter λ = 1 was chosen following
common practice in penalty-spline literature [35], with sensitivity checks confirming ro-
bustness to λ ∈ [0.1, 10].

Our simulation design considers three sample sizes (n=200, 400, 600) with 500 replica-
tions for each scenario. Data are generated from the following model:

Y =
∫ 1

0
X(t)β(t)dt + σ(X) {ε−median(ε)} ,

where X(t) =
∑50

j=1 ξjφj(t), ξj ∼ N(0, λj), variance λj = ((j−0.5)π)−2, φj(t) =
√

2 sin((j−
0.5)πt), functional coefficients β(t) =

√
2 sin(πt

2 ) + 3
√

2 sin(3πt
2 ). ε −median(ε) such that

the median error is 0 for identification purposes. We consider four different distributions
for ε as follows:
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Table 1. MISE(IV) (×100) under homoscedastic error for case (A).

Error n
Methods

OLS LAD FSLAD FB FSp FPSp

200 21.26(21.16) 27.41(27.34) 24.09(24.02) 25.96(24.36) 1001.59(27.54) 975.74(1.74)

N(0, 1) 400 10.46(10.39) 13.81(13.74) 12.54(12.47) 13.45(13.20) 986.19(12.01) 975.23(1.07)

600 7.72(7.69) 10.49(10.44) 9.52(9.47) 10.31(10.06) 983.55(9.38) 975.09(0.94)

200 45.72(45.63) 34.46(34.33) 29.97(29.88) 30.64(30.31) 1019.00(44.93) 976.33(2.32)

t(3) 400 22.26(22.25) 15.70(15.67) 13.81(13.79) 14.08(13.88) 992.66(18.48) 975.54(1.42)

600 15.58(15.57) 11.74(11.73) 10.27(10.26) 10.83(10.66) 987.92(13.82) 975.29(1.21)

200 54.44(54.14) 31.69(31.54) 27.16(27.07) 28.15(27.83) 1013.82(39.57) 976.26(2.13)

MN 400 29.09(28.84) 15.78(15.66) 14.02(13.94) 14.80(14.38) 990.84(16.60) 975.52(1.30)

600 20.21(20.20) 11.62(11.55) 10.46(10.40) 10.77(10.43) 986.52(12.35) 975.29(1.14)

200 > 105(> 105) 63.41(63.39) 60.16(60.12) 60.46(60.40) 1174.47(200.22) 980.18(6.25)

Cau(0,1.5) 400 > 105(> 105) 30.35(30.30) 28.13(28.09) 28.69(28.54) 1040.02(65.96) 977.52(3.53)

600 > 105(> 105) 25.50(25.50) 24.68(24.67) 24.65(24.58) 1022.96(48.89) 976.98(2.98)

(i) Standard normal distribution N(0, 1);
(ii) t distribution with the degrees of freedom 3, t(3);
(iii) Mixture of normals (MN) 0.9N(−1, 1) + 0.1N(1, 5);
(iv) Cauchy distribution with location parameter of 0 and a scale parameter of 1.5,

Cau(0,1.5).

In addition, the error term σ(X) is generated from one of the following three cases:
(A) (Homoscedastic) σ(X) = 1;
(B) (Linear heteroscedastic) σ(X) = 0.37

∫ 1
0 X(t)β(t)dt + 1;

(C) (Quadratic heteroscedastic) σ(X) = 0.37
(

1 +
(∫ 1

0 X(t)β(t)dt− 1
)2
)

.
We implement the SLAD method using the triangular kernel, and the smoothing band-

width is the same as [25], that is, h = max{0.05, 0.5{log(m)/n}1/4}. We note that our
numerical experiments are rather insensitive to the choice of h provided that it is in a
reasonable range (neither too small nor too large). In addition, we use the integrated
variance (IV) and mean integrated squared error (MISE) to assess the performance of the
estimation for slope function β(·):

IV
(
α̂(t)

)
= 1

d

d∑
k=1

1
n

n∑
i=1

(
β̂hi(tk)− 1

n

n∑
i=1

β̂i(tk)
)2

, MISE = 1
d

d∑
k=1

1
n

n∑
i=1

(
β̂hi(tk)− βi(tk)

)2
,

where {tk : k = 1, 2, . . . , d} are grid points chosen to be equally spaced in the domains of
function β(·). In our simulation, d = 100 is used. For each scenario, the tuning parameter
m is determined by CPV criterion as described in Section 2.

Tables 1–3 show IVs (in parentheses) and MISEs of β̂h(·) under different errors. The
simulation studies yield the following key findings: (i) as expected, both MISEs and IVs
decrease and the performance of the estimation improves as the sample size n increases
from 200 to 600. (ii) under ideal Gaussian homoscedastic errors, OLS achieves optimal
performance, while the proposed SLAD method closely approximates OLS and signifi-
cantly outperforms other methods; (iii) for heavy-tailed, outlier and the heteroscedastic
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Table 2. MISE(IV) (×100) under linear heteroscedastic error for case (B).

error n
Methods

OLS LAD FSLAD FB FSp FPSp

200 21.77(21.74) 20.42(20.40) 19.02(19.01) 19.65(19.57) 1000.11(26.12) 975.50(1.53)

N(0, 1) 400 10.78(10.77) 9.49(9.49) 9.04(9.04) 9.48(9.40) 985.22(11.13) 974.97(0.95)

600 8.67(8.66) 7.92(7.92) 7.66(7.66) 7.86(7.80) 982.59(8.49) 974.90(0.81)

200 61.44(61.42) 24.80(24.65) 23.86(23.73) 24.65(24.24) 1017.60(43.30) 976.27(2.09)

t(3) 400 26.88(26.86) 10.97(10.95) 10.84(10.83) 11.38(11.23) 990.96(16.84) 975.30(1.24)

600 22.24(22.14) 9.96(9.95) 9.61(9.59) 9.93(9.82) 986.61(12.44) 975.19(1.07)

200 65.18(62.89) 22.61(22.50) 21.56(21.47) 22.21(21.92) 1013.37(38.98) 976.14(1.95)

MN 400 37.38(33.57) 11.94(11.93) 11.21(11.20) 11.68(11.57) 989.19(15.07) 975.27(1.18)

600 28.01(25.98) 9.29(9.15) 8.96(8.81) 9.25(9.13) 985.91(11.62) 975.28(0.99)

200 > 105(> 105) 61.31(61.30) 59.73(59.71) 60.30(60.10) 1215.12(240.80) 981.00(7.06)

Cau(0,1.5) 400 > 105(> 105) 30.01(29.96) 29.53(29.49) 30.21(30.02) 1054.53(80.29) 978.02(3.92)

600 > 105(> 105) 21.50(21.49) 20.54(20.53) 21.14(21.07) 1031.56(57.38) 977.29(3.28)

Table 3. MISE(IV) (×100) under quadratic heteroscedastic error for case (C).

error n
Methods

OLS LAD FSLAD FB FSp FPSp

200 45.45(45.33) 23.72(23.61) 21.63(21.50) 21.78(21.39) 997.71(23.47) 975.38(1.22)

N(0, 1) 400 20.49(20.45) 11.58(11.55) 10.71(10.69) 11.27(11.13) 982.75(8.66) 974.79(0.73)

600 16.13(16.11) 8.87(8.86) 8.28(8.26) 8.78(8.65) 980.46(6.35) 974.69(0.60)

200 129.22(128.71) 28.18(27.96) 26.18(25.97) 26.33(25.75) 1010.80(36.57) 975.82(1.65)

t(3) 400 59.01(58.98) 13.60(13.57) 13.17(13.16) 13.36(13.20) 987.24(13.17) 975.03(0.97)

600 45.71(45.63) 10.44(10.43) 10.01(9.99) 10.28(10.14) 983.90(9.78) 974.90(0.82)

200 121.53(109.99) 27.14(27.10) 25.86(25.82) 25.92(25.90) 1007.27(33.38) 975.48(1.62)

MN 400 69.46(55.65) 13.99(13.93) 13.14(13.10) 13.61(13.39) 986.10(12.02) 974.96(0.91)

600 59.69(45.35) 10.26(10.20) 9.52(9.48) 9.93(9.72) 982.59(8.51) 974.82(0.75)

200 > 105(> 105) 100.84(100.78) 96.21(96.12) 96.62(96.58) 1290.13(316.20) 981.48(7.73)

Cau(0,1.5) 400 > 105(> 105) 45.26(45.23) 44.18(44.16) 44.37(44.30) 1064.62(90.59) 977.95(4.10)

600 > 105(> 105) 35.76(35.65) 34.41(34.29) 34.48(34.42) 1038.78(64.84) 977.11(3.27)

scenarios cases, SLAD exhibits superior robustness; (iv) for extreme heavy tails condi-
tions (Cauchy errors), SLAD remains valid, while OLS fails catastrophically; (v) the FB
method shows comparable robustness but requires intensive computation, whereas spline-
based approaches (FSp/FPSp) perform poorly due to basis misalignment.

The simulation results reveal the performance differences of various functional regression
methods under different error distributions. For FPCA-based methods, OLS performs ex-
cellently under homoscedastic normal errors but deteriorates sharply due to sensitivity to
outliers in heavy-tailed distributions. In contrast, the LAD method demonstrates superior



Smoothed least absolute deviation estimation in functional linear model 1119

robustness through median-based estimation. However, the FB exhibits instability, prob-
ably due to sensitivity to prior distributions and limitations in finite samples. However,
spline-based methods (FSp and FPSp) generally underperform, particularly with smaller
sample sizes, as their smoothing strategies relying on knot selection struggle to adapt to
complex error structures. Notably, although the integral variances (IVs) of spline methods
are smaller, their overall accuracy in this simulation setup still lags behind FPCA-based
methods.

In general, FPCA-based methods outperform spline-based methods in this study, with
SLAD proving most reliable for handling heavy-tailed or heteroscedastic errors. Although
the OLS remains optimal under Gaussian homoscedastic conditions, its vulnerability in
other scenarios underscores the importance of robust alternatives. The instability of FB
and the poor performance of spline methods highlight the need to weigh specific scenarios
when selecting methods, emphasizing that error distribution characteristics should be
prioritized. These findings align with theoretical expectations and position SLAD as a
versatile default choice, bridging the robustness-efficiency trade-off in functional regression.

5. Application
To illustrate the utility of the proposed method, we apply our proposed procedure to

analyze Berkeley growth data and Capital Bike Share data, respectively. For each dataset,
the cut-off parameter m is determined by CPV criterion as described in Section 2. The
bandwidth h = max{0.05, 0.5{log(m)/n}1/4}. Similar to [33], each dataset is randomly
divided into two subsamples: the training sample, I1 =

{
(Xi, Yi), |I1|

}
, where |I1| denotes

the cardinality of I1, and the remaining is the test sample, I2 =
{
(Xi, Yi), |I2|)

}
. The

training sample is used to estimate the parameters, and the test sample is employed to
verify the quality of predictions. This random splitting is repeated N(N = 50, 100, 200)
times. Two types of MSPE, namely, the mean square prediction error (MSPE) and median
square prediction error (MedSPE), are considered based on the test set (see, e.g., [36]) as
follows:

MSPE = 1
nJ

∑
j∈J

(Yj − Ŷj)2

s2
J

and MedSPE = median(Yj − Ŷj)2

s2
J

, (j ∈ J),

where J contains the indices of the observations in the test set, nJ denotes its size, and
sJ = MADj∈J(Yj) with MAD is the abbreviation of “median absolute deviation”.

In our empirical analysis, we maintain the exact simulation configurations while com-
paring our method against five benchmarks: OLS, LAD, FB, FSp, and FPSp (with λ = 1),
ensuring identical functional representations across all methods.

5.1. Application to Berkeley Growth data
In this subsection, we apply our proposed test procedure to analyze Berkeley growth

data in [37], which is available in the R package “fda”. The heights of 54 girls and 39
boys aged 1 to 18 in a set of 31 ages were collected. The data collection protocol in-
volved four measurements during the first year, annual measurements from ages 2 to 8,
followed by biannual measurements thereafter. Previous studies [37,38] have consistently
demonstrated significant gender differences in growth patterns, particularly during adoles-
cence (ages 13-18), motivating our sex-specific modeling approach. Our analysis focuses
on predicting adult height Y from growth trajectories X(t) over varying intervals [1, T ],
where t ∈ [1, T ] represents age and T ranges from 11 to 17 years. We employ functional
linear models with m = 3 principal components, which explain approximately 99% of the
variance of height, while accounting for the documented differences in growth rates be-
tween boys and girls. To validate our models, we performed Shapiro-Wilk tests to assess
residual normality for each T and established training sets of |I1| = 36 girls and |I1| = 26
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boys, with complete performance results in N ∈ {50, 100, 200} and prediction intervals
T = 11, · · · , 17 presented in Tables 4-5.

From Table 4, we can see that the p-values of Shapiro-Wilk test are all less than 0.05
from T = 11 to T = 17, thereby indicating the nonnormal distribution of the residuals. As
expected, Table 4 shows that SLAD has the best prediction performance than the other
methods, as its MSPE and MedSPE is the smallest, which indicates that our method fits
girls’ data better than the LAD, OLS, LAD, FB, FSp and FPSp methods. These results
reconfirm that the proposed method can again give a robust and efficient estimator. Table
5 shows that the p-values of Shapiro-Wilk test are all more than 0.05 from T = 11 to
T = 17, thereby the residuals tend to be normal distribution. The results of Table 5
show that the OLS estimator performs the best for normal errors, and the proposed
SLAD estimator performs comparably with the OLS estimator and clearly better than
the remaining methods.

Our analysis of the Berkeley Growth data reveals critical insights into the performance
of FLM in predicting adult height. The results demonstrate that the accuracy of the
prediction is strongly influenced by biological sex and developmental timing, reflecting
known differences in growth trajectory. For girls, the smaller prediction errors occur when
using pre-pubertal data (T=11-13), with error peaking during mid-puberty (T = 15). This
aligns with Tanner’s growth phase theory, as girls experience their height velocity peak
earlier (10− 12 years) with rapid nonlinear changes that challenge modeling. In contrast,
boys maintain stable low errors until T = 16, consistent with their prolonged adolescent
growth spurt (12 − 18 years). The proposed SLAD method outperforms alternatives by
adaptively handling these nonlinearities. This advantage comes from the ability of FPCA
to represent phase variation [1], where the first three principal components explain 99% of
variance by capturing: (i) baseline growth; (ii) pubertal acceleration; and (iii) individual
timing differences. Although FB approaches show comparable precision for boys, their
performance degrades with atypical growth patterns due to rigid priors. Future work
should explore dynamic penalization to further improve pubertal-phase predictions.

5.2. Application to Capital Bike Dhare data
Renting bicycles has become increasingly popular in recent years because it is considered

a more economical and environmentally friendly alternative to owning bicycles. Ensuring
sufficient bike supply is critical for a successful business. We applied the proposed method
to the analysis of bike rental data. The dataset contains information on counts of casual
bike rentals during the period from January 1, 2011 to December 31, 2012, or a total of 105
weeks from Capital Bikeshare System (CBS), Washington D.C., USA, which is available
at http://capitalbikeshare.com/system-data.

Considering bike rentals have different dynamics on weekends from that on weekdays,
we restricted our analysis to rentals on Saturdays, in which the demand for casual bike
rentals is higher compared with the demand for weekdays’bike rentals. We aimed to
examine how Saturday rentals were related to temperature. Understanding the nature of
this association can help predict the demand for casual rentals based on weather forecast.
Following the analysis of [39] and [19], we consider the daily count of bike rentals as
a scalar response variable and perform a logarithmic transformation Y → log(Y + 1)
to remove skewness. We considered the centered hourly temperature curve as functional
covariate X(t). We chose |I1| = 55 in these data. The hourly temperature included a small
amount of missingness. We used the functional principal component analysis method and
“refund" package (“fpca.sc" function) in R to impute the missing data before applying the
center/scaling transformation. Here, m = 3 is selected to explain approximately 99% of
the variance of the temperature. The OLS method, is initially used to fit the model, and
the fitting results of the residuals are shown in Figure 1.
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Table 4. Results (×100) of different methods for girls in Berkeley growth data
analysis.

N Criterions Methods
T

T=11 T=12 T=13 T=14 T=15 T=16 T=17

p-values 2.885 2.485 3.147 2.669 0.060 0.300 2.210

OLS 2.529 0.470 0.781 4.186 13.168 8.045 6.377

LAD 1.752 0.418 0.748 4.180 13.009 7.946 6.079

FSLAD 1.723 0.410 0.728 3.903 12.853 7.902 6.064

MSPE FB 1.635 0.408 0.731 4.067 12.953 7.942 6.039

FSp 84.448 15.953 21.856 75.215 81.233 82.580 96.911

50
FPSp 74.867 14.523 11.598 52.819 43.143 62.636 78.571

OLS 2.504 0.413 0.722 4.055 13.093 8.010 6.283

LAD 1.712 0.365 0.697 4.047 12.932 7.900 5.977

FSLAD 1.676 0.354 0.675 3.772 12.781 7.863 5.964

MedSPE FB 1.576 0.356 0.678 3.972 12.855 7.864 5.971

FSp 89.931 15.337 21.789 74.622 81.086 72.479 96.965

FPSp 74.092 14.180 11.589 52.097 43.026 52.553 78.604

OLS 1.161 0.388 0.887 3.704 8.771 7.937 5.685

LAD 1.186 0.383 0.830 3.609 8.727 7.892 5.660

FSLAD 1.172 0.370 0.816 3.572 8.706 7.854 5.624

MSPE FB 1.173 0.382 0.821 3.598 8.714 7.933 5.698

FSp 60.156 13.530 19.772 43.246 92.017 27.578 72.943

100
FPSp 53.646 12.548 15.748 41.275 54.460 22.521 70.313

OLS 1.143 0.340 0.824 3.607 8.700 7.860 5.591

LAD 1.163 0.334 0.770 3.515 8.654 7.811 5.568

FSLAD 1.154 0.322 0.754 3.480 8.633 7.772 5.529

MedSPE FB 1.096 0.330 0.768 3.502 8.642 7.779 5.560

FSp 60.084 13.161 25.215 42.867 91.734 29.645 72.070

FPSp 53.597 12.223 15.717 41.988 54.292 26.737 69.433

OLS 2.870 0.489 0.660 4.573 9.768 6.627 5.982

LAD 2.090 0.467 0.638 4.545 9.682 6.460 5.730

FSLAD 1.973 0.460 0.616 4.527 9.634 6.456 5.724

MSPE FB 1.852 0.463 0.630 4.530 9.642 6.537 5.728

FSp 67.689 15.915 18.805 56.202 89.039 92.798 70.964

200
FPSp 53.877 12.589 12.724 54.186 51.137 72.385 68.380

OLS 2.802 0.431 0.593 4.459 9.672 6.513 5.906

LAD 2.018 0.413 0.571 4.429 9.589 6.344 5.653

FSLAD 1.907 0.404 0.551 4.409 9.538 6.341 5.647

MedSPE FB 1.778 0.405 0.570 4.411 9.584 6.448 5.650

FSp 67.572 15.411 18.213 54.248 88.836 82.872 70.010

FPSp 53.784 11.956 12.417 49.578 51.055 71.385 67.412

Figure 1 (a) shows the diagnostic plot of residuals and Figure 1 (b) shows the density
of the residuals of the FLM adjustment. Apparently, the data exhibit a heavy-tailed dis-
tribution and three outliers are present. In addition, a Shapiro-Wilk test is performed to
assess the normality of the residuals. The corresponding p-value is 1.6 × 10−3, thereby
reconfirming the significant deviation from Gaussian assumptions and justifying the need
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Table 5. Results (×100) of different methods for boys in Berkeley growth data
analysis.

N Criterions Methods
T

T=11 T=12 T=13 T=14 T=15 T=16 T=17

p-values 19.210 72.800 98.310 98.810 96.460 81.490 96.340

OLS 1.217 0.724 0.766 0.770 0.706 0.568 1.837

LAD 1.422 0.828 0.902 1.078 1.056 0.809 2.397

FSLAD 1.319 0.734 0.861 1.006 0.994 0.806 2.088

MSPE FB 1.327 0.785 0.885 1.072 0.995 0.807 2.143

FSp 44.200 40.893 11.554 15.373 9.831 6.776 11.259

50
FPSp 35.773 18.771 7.250 10.432 7.835 4.250 7.572

OLS 1.182 0.694 0.705 0.747 0.675 0.542 1.812

LAD 1.359 0.791 0.849 1.052 1.026 0.776 2.378

FSLAD 1.263 0.699 0.805 0.981 0.963 0.774 2.063

MedSPE FB 1.329 0.747 0.867 1.050 0.975 0.784 2.175

FSp 44.184 40.790 11.869 15.362 13.995 6.801 11.076

FPSp 35.778 18.613 7.349 10.920 11.168 4.087 7.572

OLS 1.031 0.519 0.580 1.067 0.441 0.594 2.723

LAD 1.368 0.562 0.826 1.246 0.832 0.949 3.169

FSLAD 1.226 0.534 0.775 1.135 0.713 0.850 3.056

MSPE FB 1.248 0.540 0.792 1.152 0.717 0.860 3.055

FSp 70.158 50.441 14.135 13.926 15.562 5.927 11.411

100
FPSp 47.292 25.210 7.831 8.154 12.578 5.059 8.255

OLS 0.996 0.485 0.551 1.035 0.414 0.559 2.700

LAD 1.314 0.525 0.792 1.225 0.808 0.920 3.146

FSLAD 1.178 0.501 0.749 1.109 0.689 0.823 3.035

MedSPE FB 1.219 0.507 0.753 1.150 0.691 0.838 3.051

FSp 69.758 49.887 14.502 14.183 15.023 5.798 11.614

FPSp 47.043 24.749 7.975 10.421 12.327 4.920 8.464

OLS 1.416 0.684 0.519 1.253 0.677 0.710 2.810

LAD 1.540 0.792 0.732 1.444 1.063 1.103 3.127

FSLAD 1.374 0.738 0.687 1.356 0.944 1.010 3.045

MSPE FB 1.455 0.730 0.702 1.438 1.065 1.007 3.058

FSp 60.038 52.824 12.780 10.863 16.973 6.546 11.491

200
FPSp 45.176 24.736 7.924 7.390 13.253 5.574 8.038

OLS 1.375 0.660 0.482 1.228 0.646 0.671 2.770

LAD 1.492 0.762 0.689 1.420 1.033 1.068 3.089

FSLAD 1.328 0.707 0.645 1.329 0.916 0.975 3.003

MedSPE FB 1.426 0.711 0.681 1.345 1.032 0.988 3.040

FSp 59.776 52.515 12.491 10.597 15.974 6.373 11.292

FPSp 45.008 24.375 7.806 8.256 13.353 5.387 7.756

for robust estimation methods like the proposed SLAD approach. Table 6 presents the
average MSPEs and MedSPEs of N times repeated operations. The results demonstrate
that our proposed SLAD method outperforms all competitors. It is worth pointing out the
spline-based methods (including FSp and FPSp) perform rather badly. Figure 2 presents
the estimated functional coefficients β̂h(t) obtained from four competing methods: (i) our
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Figure 1. (a) The residual plot with the OLS method; (b) The density of esti-
mated errors with the OLS method.

Table 6. Results (×100) of different methods in bike sharing data analysis.

Criterions N
Estimation methods

OLS LAD FSLAD FB FSp FPSp

MSPE
50 0.433 0.431 0.414 0.430 2.917 1.871
100 0.426 0.424 0.414 0.427 2.868 1.883
200 0.432 0.428 0.418 0.390 1.987 1.324

MedSPE
50 0.215 0.196 0.195 0.196 2.040 1.343
100 0.194 0.177 0.176 0.176 1.946 1.328
200 0.189 0.179 0.178 0.177 2.863 1.852

proposed SLAD estimator (solid line); (ii) FB approach (dashed line); (iii) FSp method
(dotted line); and (iv) FPSp method (dotdash line), where the estimated functional coeffi-
cients by OLS and LAD methods are similar to FLAD method, and will not be presented.
The graph demonstrates significant differences in the performance characteristics of the
four estimation methods. The proposed SLAD estimator (solid curve) and FB (yellow
curve) show remarkably similar trend patterns, both successfully capturing the funda-
mental inverted U-shaped relationship between temperature and bike rentals. In general,
the effect of temperature on counts of bike rentals is positive, implying an increase in bik-
ing with a rise in temperature. Such effect reaches its maximum in midday, particularly
from 9:00 am to 15:00 pm, during which the temperature tends to be warm and people
are most likely to bike. In early or late hours, the effect of temperature on bike rental
decreases because people are less likely to bike during these time periods. This finding co-
incides with the result of [20] and our intuitive thinking. In contrast, spline-based methods
show notable limitations. The FSp (dotted line) produces estimates that are excessively
volatile. While the FPSp method (dotdash line) reduces this variability, it introduces
substantial bias by oversmoothing important features. Hence, the spline-based methods,
particularly the FSp approach, fail to accurately capture the dynamic characteristics of
the actual temperature-rental relationship.
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Figure 2. The estimated functional coefficient β̂h(t) with FSLAD (solid line),
FB (dashed line), FSp (dotted line), and FPSp (dotdash line) methods.

6. Concluding Remarks
In this study, we have developed a novel FLM SLAD estimator, which successfully

addresses the computational challenges of standard LAD estimation while improving the
efficiency of the estimation. The key methodological innovations include: (i) constructing
a smoothed approximation to the non-differentiable LAD objective function; (ii) employ-
ing functional principal component analysis for effective dimension reduction in infinite-
dimensional parameter spaces; and (iii) establishing the estimator’s asymptotic properties,
confirming that the SLAD estimator achieves the same convergence rate as the LAD esti-
mator when the bandwidth approaches zero and deriving convergence rate for prediction
error. The proposed method demonstrates superior performance in several important
aspects: (i) enhanced robustness against heavy-tailed distributions, outliers, and het-
eroscedastic errors compared to conventional approaches (OLS, LAD); (ii) maintained
estimation efficiency under ideal conditions; (iii) practical advantages over spline-based
regularization and Bayesian methods in finite-sample scenarios; (iv) improved predictive
performance and interpretability in real-life applications, as evidenced by the Berkeley
Growth study and Capital Bike Share dataset analyses. Our analysis of the Berkeley
growth data reveals critical insights into the performance of FLM for predicting adult
height. The results demonstrate that prediction accuracy is strongly influenced by bio-
logical sex and developmental timing, reflecting known growth trajectory differences. In
the Capital Bike Share dataset analyses, the estimated temperature effects reveal a con-
sistent inverted U-shaped relationship across methods, with peak influence occurring in
mid-afternoon (9:00-15:00 PM). This pattern suggests that riders are most sensitive to
temperature variations during typical leisure hours. The functional coefficient plots show
that SLAD and FB methods capture this basic shape, while SLAD produces smoother and
more stable estimates, particularly at temperature extremes where other methods show
erratic fluctuations. From an operational perspective, these findings suggest that bike
share systems could optimize their redistribution strategies by: (i) increasing inventory
at stations prior to the afternoon temperature peak; (ii) implementing dynamic pricing
during high-demand temperature windows; (iii) using SLAD-based predictions to antici-
pate demand surges. The superior performance of SLAD in this application stems from
its ability to: (i) handle the inherent skewness in rental count data; (ii) accommodate
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nonlinear temperature effects; (iii) maintain robustness against outliers; (iv) provide sta-
ble estimates across different sample sizes. These advantages make SLAD particularly
valuable for transportation systems planning and real-time management decisions. Future
extensions could incorporate additional weather variables and examine weekday/weekend
differences more systematically.

Several promising directions for future research emerge from this work: (i) extension to
functional semi-parametric and non-parametric modeling frameworks; (ii) incorporation
of penalization techniques for variable selection in high-dimensional functional regression
settings; (iii) generalization to more complex data structures, including: dependent func-
tional data, partially observed functional data and multivariate functional data. These
extensions would require substantial theoretical development and computational innova-
tion, particularly in addressing the challenges of dependent observations and incomplete
functional data. Future work should also investigate optimal bandwidth selection strate-
gies and adaptive smoothing approaches to further enhance the practical utility of the
proposed method.
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