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ABSTRACT 

An infinite cylinder, of isotropic and linearly elastic material, with 
an internal ring shaped crack and two penny shaped rigid 
inclusions was considered in this study. The considered cylinder 
was subjected to axial tensile forces from its two ends. The 
complex problem of the axially loaded infinite cylinder was solved 
by using the superposition of two problems including: (i) an 
infinite cylinder, without any cracks or inclusions, loaded at 
infinity and (ii) an infinite cylinder with an internal ring shaped 
crack and two penny shaped inclusions and free of loading. 
Associated Navier equations are solved with Fourier and Hankel 
transforms to obtain general expressions for the considered 
problem. Then, the considered problem is reduced to three 
singular integral equations and numerically solved by using 
Gauss-Lobatto integration formula with associated system of 
linear algebraic equations. 

Keywords: Internal Crack, Infinite Cylinder, Stress Intensity 
Factor, Rigid Inclusion. 
 

ÖZET 

Bu çalışmada elastik ve izotropik malzemeden imal edilmiş, halka 
şeklinde bir iç çatlak ve daire şeklinde iki adet rijit enklüzyon 
içeren sonsuz bir silindir incelenmiştir. İncelenen silidir iki 
ucundan eksenel yüke tabi tutulmuştur. Eksenel yüklenmiş sonsuz 
silindiri içeren karmaşık problem iki problemin süperpoze 
edilmesiyle çözülmüştür. Bu problemler: (i) çatlak veya enklüzyon 
içermeyen sonsuzda yüklenmiş bir sonsuz silindir, (ii)  yükleme 
altında olmayan, halka şeklinde bir iç çatlak ve iki daire şekilli 
enklüzyon içeren sonsuz silindirdir. İlgili Navier eşitlikleri, 
Hankel ve Fourier dönüşümleri kullanılarak çözülerek, ilgilenilen 
probleme yönelik genel ifadeler elde edilmiştir. Sonra, problem üç 
adet tekil integral denklemine indirgenmiş ve ilgili doğrusal cebrik 
denklem takımı Gauss- Lobatto integrasyon formülleri 
kullanılarak sayısal yöntemlerle çözülmüştür. 

 
Anahtar Kelimeler: İç Çatlak,  Sonsuz Silindir,  Gerilme Yığılma 
Faktörü, Rijit Enklüzyon 

 
1. INTRODUCTION 

Various engineering branches use machine elements which have numerous discontinuities. These discontinuities may 
occur in the form of voids, cracks, inclusions etc. They are among the major factors affecting the load carrying capacities and 
influencing the stress distributions in the bodies. They must be carefully examined. Stress distributions become infinity in the 
vicinities of the inclusions and cracks as well as the corners of the elements. In these regions, stress distributions can be 
calculated in terms of the stress intensity factors. Stress intensity factors are dependent to the loading conditions and geometric 
properties of the bodies. Geometry and the locations of the corresponding cracks, inclusions, notches and holes as well as 
geometry of the body are some of the geometric properties affecting the related stress intensity factors. 

Several solutions for infinite cylinder problems containing edge cracks and penny-shaped inclusions can be found in the 
literature (Kaman and Geçit, 2007). Erdol and Erdogan (1978) considered the problem of a long thick walled hollow cylinder 
containing ring shaped internal or edge crack which is subjected to uniform axial load and steady-state thermal stress. Artem 
and Gecit (2002) considered an infinite elastic hollow cylinder under axial tension containing a crack and two rigid inclusions 
of ring shape. Lee (2003) considered the singular stress problem of a peripheral edge crack in a long circular cylinder under 
torsion. Kadioglu (2005) obtained an analytical solution for the linear elastic, axisymmetric problem of edge cracks in an 
infinite hollow cylinder. Toygar and Gecit (2006) considered the problem of an axisymmetric infinite cylinder of linearly 
elastic and isotropic material containing a ring shaped crack and two ring-shaped rigid inclusions. Kaman and Geçit (2006) 
considered the problem of a cracked semi-infinite cylinder short end being fixed and an uncracked finite cylinder of linearly 
elastic and isotropic material. However, problem of the infinite cylinder containing a ring shaped edge crack and two penny 
shaped inclusions has not been solved by the method used in this research study. In this study, solution for the infinite cylinder 
having a ring-shaped crack as well as two penny-shaped rigid inclusions and loaded at infinity is obtained by superposition of 
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the following two problems: (i) An infinite cylinder loaded at infinity without any cracks or inclusions, (ii) an infinite cylinder 
with a ring-shaped crack and two penny-shaped rigid inclusions with no load at infinity. 

2. SOLUTION METHODOLOGY AND DEVELOPMENT OF THE GENERAL EXPRESSIONS  

An axisymmetric infinite cylinder of radius 𝐴𝐴 with a transverse ring-shaped crack of width (𝑏𝑏 − 𝑎𝑎) located at 𝑧𝑧 = 0  plane 
and two penny shaped inclusions of radius 𝑐𝑐 located at 𝑧𝑧 = ±𝐿𝐿   planes is considered in this study. This cylinder is under the 
action of uniformly distributed tensile loads of intensity 𝑝𝑝0  at infinity (Fig. 1).  

 

Figure 1. Geometry and loading of the infinite cylinder. 

General expressions for the solution of the problem must contain sufficient number of unknowns in order to satisfy all of 
the necessary boundary conditions. For this purpose, the perturbation problem (problem II) is separated into three main sub-
problems in terms of three infinite media; (II-i) an infinite medium containing a ring-shaped crack located at z = 0 plane, (II-ii) 
an infinite medium containing two penny-shaped rigid inclusions located at z = ± L  planes and (II-iii) an infinite medium with 
no crack or inclusion (Fig. 2).  

 

Figure 2. Addition of solutions for the perturbation problem. 

General expressions of these sub-problems are obtained by applying Hankel transforms to the first and the second media, 
in r-direction, and by applying Fourier transform to the third medium, in z-direction, on Navier equations.  However, the 
stresses should reduce to zero at the cylinder surfaces. In order to obtain the required zero stress condition, the derived general 
expressions are rearranged to calculate the stress and deformation expressions for an axially loaded infinite cylinder, with a 
ring shaped crack located at 𝑧𝑧 = 0  plane and two penny shaped inclusions of radius 𝑐𝑐 located at 𝑧𝑧 = ±𝐿𝐿   planes. The 
expressions for the displacements and the stresses may be written in the form 
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Where  𝑢𝑢 and 𝑤𝑤 are the displacements in r and z directions in polar coordinate system and 𝜎𝜎 and 𝜏𝜏 are the axial and shear 
stresses. Moreover, the unknown functions gi(r) (i = 1-3) are given as 
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such that g1(r) = 0 when  0 ≤ r < a or b < r < ∞, gi(r) = 0 (i = 2,3) when  c ≤ r < ∞. 

    

3.  INTEGRAL EQUATIONS 

By the use of combined general expressions for the stresses and the displacements, the boundary conditions at the lateral 
surface of the infinite cylinder and the boundary conditions on the crack and inclusion surfaces are satisfied. As a result, three 
singular integral equations are obtained. Then, the infinite cylinder problem is converted to the target problem, by letting the 
radius of the rigid inclusions approach the radius of the cylinder and letting the outer edge of the ring-shaped crack approach 
the lateral surface of the cylinder. The unknown function 𝑔𝑔1(𝑟𝑟) is the crack surface displacement derivative in z-direction 
while 𝑔𝑔2(𝑟𝑟) and 𝑔𝑔3(𝑟𝑟) represent the jumps in shear and normal stresses through the rigid inclusions, respectively. These 
unknown functions will be determined by the use of the following conditions: 
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Note that the condition (4a) is stress type while the conditions (4b,c) are displacement type and can be replaced by  
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in order to obtain the same type conditions. Substituting Eqs. (1) and (2) in Eq. (4a) and Eqs. (5a,b) and noting that gi(r) (i 
= 1,2) are odd,  g3(r) is even, one can obtain the following singular integral equations 

[ ]{

[ ]} ( ) )(         ,
p

 12),(),()(

),(),()(),(),(22)(

0
1323

12121111

bradttrNtrTttg

trNttrtTtgdttrtNtrM
rt

tg
c

c

b

a

<<−−=++

++



 ++

− ∫∫ −

µ
πν

       

[ ]

[ ]} ( ) )(          ,
p

 
)1(

14),(),()(

),(),(
2
431

2
43),()(),(),()(

0
2353

222422131

crcdttrNtrTttg

trNttrM
rt

trtTtgtdttrNtrTtg
c

c

b

a

<<−
+
−

=++









 +

−
−

−
−

−++ ∫∫ −

µ
π

ν
νν

νν

   



KSÜ Mühendislik Bilimleri Dergisi, 21(1), 2018                     80 KSU J Eng Sci, 21(1), 2018 
Araştırma Makalesi  Research Article 

A. R. Durucan 
 

[ ] [ ]{

)(        ,0),(),(
2
431

2
43),()(

),(),()(),(),()(

33383

32723161

crcdttrNttrM
rt

trTttg

trNttrtTtgtdttrNtrTtg
c

c

b

a

<<−=








 +

−
−

−
−

−+

+++ ∫∫ −

νν

                                      (6a-c) 

The singular integral equations (6a-c) must be solved subject to the single-valuedness condition for the crack and the 
equilibrium conditions for the inclusions written in the form  
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The crack surface displacement derivative g1(r) and the stress jumps g2(r) and g3(r) through the rigid inclusions may have 
singularities at the ends r = a, b and r = ± c, respectively. Their singular behavior may be determined by examining the 
singular integral equations (6a-c) around these end points using the complex function technique given in Muskhelishvili(1953). 
The singular behavior of gi(r) (i = 1-3) can be determined by first writing 
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where β, θ and γ are unknown constants and gi
*(r) (i = 1-3) are Hölder-continuous functions Durucan (2010) in the 

respective intervals (a, b) and (-c, c). Then, substituting  Eqs. (8a,b) in Eqs. (6a-c), calculating the integrals around the end 
points in accordance with the technique presented in Cook & Erdogan (1972), the following characteristic equations are 
obtained:  

( )     0cot =πβ                   (a, b < A)  

( ) ( )   122cos +−= θθπθ    (b = A)  

( )          0cot =πγ          (c < A)  

( ) ( )  141)43(cos)43(2 22 −−+−=− γνπγν (c = A)                                        (9a-d) 

Equations (9a,b) give 1/2 for β and θ which is the well known result for an embedded crack tip in a homogeneous medium 
(see, for example, Cook and Erdoğan(1972), Nied and Erdoğan (1983), Geçit (1987)). From Eq. (9c), it can be observed that 
the value for θ is zero which is obtained also in previous works Williams (1952), Geçit (1984), Geçit and Turgut (1988) 
indicating that the stresses at the apex of a 900 wedge with free sides are bounded. Equation (9d) gives 1/2 as the acceptable 
value for γ which is obtained also in previous works for an embedded inclusion tip in a homogeneous medium (Gupta, 1974; 
Yetmez and Geçit, 2005; Kaman and Geçit, 2006).  When the penny-shaped inclusions spread out to the outer surface of the 
cylinder, the portion of the infinite cylinder between z = ± L planes becomes a finite cylinder of length 2L with rigid ends.  
Equation (9e) is in agreement with the results of previous works, Williams (1952), Gupta(1975), Geçit and Turgut (1988), 
which is used to calculate the power of stress singularity at the apex of a 90˚  wedge with one side fixed and the other side free. 

4. SOLUTION OF INTEGRAL EQUATIONS AND STRESS INTENSITY FACTORS 

Finally, the singular integral equations (Eqs. 6a-c) are converted to linear algebraic equations by using Gauss-Lobatto and 
Gauss-Jacobi integration formulas. Then, these linear algebraic equations are solved numerically to obtain the stress intensity 
factors at the edges of the internal crack, at the root of the edge crack in infinite cylinder and at the edge of the rigid inclusions 
in infinite cylinder.  

Defining non-dimensional variables Ø and ψ on the crack and η and ε on the inclusions by 
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the singular integral equations, Eqs. (6a-c) and (7a,b), are expressed in terms of non-dimensional quantities. 

The integrals are calculated by using the Gauss-Lobatto integration formula (Krenk, 1978), Artem and Geçit, 2002))  and 
the following system of 2n linear algebraic equations are obtained (see Durucan (2010) for details): 
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Stresses become infinite in the vicinity of tips or edges of cracks and inclusions. These infinite stresses are represented by 
means of stress intensity factors. Mode I stress intensity factors at the edges of the internal ring-shaped crack are defined and 
calculated in the form 
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Mode I and II stress intensity factors at the edges of the internal rigid inclusion may be similarly calculated as 
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5.   NUMERICAL RESULTS 

The system of linear algebraic equations, Eqs. (11a-c) and (12a,b), are solved numerically and the unknown functions  
𝑔𝑔1(∅), 𝑔𝑔𝑖𝑖(𝜂𝜂) (𝑖𝑖 = 2,3) are calculated at separate points. Then, the physically significant quantities, for example, the stress 
intensity factors at the edges of the crack, at the edges of the inclusion and around the clamped corners of the finite cylinder 
can be calculated.  

Figures 3 to 4 present the variation of normalized stress intensity factors (Eqs. 17-18) vs. varying geometric and material 
properties. Normalized stress intensity factors may be defined and calculated as: 
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for the crack and 
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for the rigid inclusions. 

 Figure 3 illustrates the variations of the Mode I normalized stress intensity factors ak1 and bk 1  defined in Eqs. (17a,b) at the 
edges of the crack with relative crack width (b-a)/A when c = 0.5A, b+a = A and ν  = 0.3 for the case of an infinite cylinder 
with internal crack and inclusions. The center line of the ring-shaped crack is at r = A/2. Results are given for L/A = 0.25 and 
0.5 noting that the numerical results for ak1 and bk 1  remain unchanged for values of L/A greater than 0.5 which means that the 
effect of the rigid inclusions will fade away when L/A < 0.5. From the figure, it can be observed that ak1  is greater than bk 1  for 
especially wider cracks. This may be due to the interaction of the inner edges of the crack around the axis of the cylinder. Both 

ak 1  and bk 1  increase as (b-a)/A increases which is an expected observation. 

Figure 4 shows variations of the normalized stress intensity factors ck 1 and ck 2  defined in Eqs. (18a,b) at the edge of the 
internal rigid inclusion with relative inclusion radius c/A when (b-a)/A = L = 0.5A and again b+a = A. From the figure, it can be 
observed that ck 1 and ck 2  are heavily dependent on the Poisson’s ratio ν. Here, it should be remembered that the rigid inclusions 
are effective on the deformation characteristics of the cylinder and therefore on the stress distributions for relatively large 
values of ν. In the limiting case of ν → 0, rigid inclusions will practically disappear. In particular, ck 2 is larger for larger values 
of ν. ck 1  is larger for larger values of ν  and for relatively larger values of c/A. 
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Figure 3. Normalized stress intensity factors  𝑘𝑘�1𝑎𝑎 and 𝑘𝑘�1𝑏𝑏 when c = 0.5A, b+a = A and ν = 0.3. 

 

Figure 4. Normalized stress intensity factors 𝑘𝑘�1𝑐𝑐 and 𝑘𝑘�2𝑐𝑐 when b-a = L = 0.5A and b+a = A. 
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Nomenclature 

a, b  Inner and outer radii of ring-shaped crack 
A  Radius of cylinder 
c  Radius of penny-shaped inclusions 
Ci  Weighting constants of the Gauss-Lobatto polynomials 
dij  Coefficient functions 
g1(r)  Crack surface displacement derivative 
g1

*(r)  Hölder-continuous function on crack 
𝑔𝑔1���(𝑟𝑟)  Normalized bounded part of g1(r) 
g2(r), g3(r) Normal and shear stress jumps on rigid inclusions 
g2

*(r), g3
* (r) Hölder-continuous functions on inclusions 

𝑔𝑔2���(𝑟𝑟),𝑔𝑔3���(𝑟𝑟)  Normalized bounded parts of g2(r), g3(r) 



KSÜ Mühendislik Bilimleri Dergisi, 21(1), 2018                     85 KSU J Eng Sci, 21(1), 2018 
Araştırma Makalesi  Research Article 

A. R. Durucan 
 

I0, K0, I1, K1 Modified Bessel functions of the 1st and 2nd kinds of order zero and one 
J0, J1  Bessel functions of the 1st kind of order zero and one 
k1a, k1b  Mode I stress intensity factors at the edges of crack  
k1c, k2c  Stress intensity factors at the edge of internal rigid inclusions 
𝑘𝑘�1𝑎𝑎, 𝑘𝑘�2𝑏𝑏              Normalized stress intensity factors at the edges of crack 
𝑘𝑘�1𝑐𝑐 , 𝑘𝑘�2𝑐𝑐   Normalized stress intensity factors at the edge of internal rigid inclusions 
K, E  Complete elliptic integrals of the 1st and the 2nd kinds 
Lij  Integrands of the kernels Nij 
Lij∞  Dominants part of Lij as α→∞ 
L  Distance between crack and inclusions 
mi, Mi, Nij, Ti Kernels of the integral equations 
Nijb, Nijs  Bounded and singular parts of  Nij  as α→∞ 
p0  Intensity of the axial tensile load 
Pn (α,β)  Jacobi polynomials 
r, z  Cylindrical coordinates 
t  Integration variable 
u, w  Displacement components in r- and z-directions 
Wi  Weighting constants of the Jacobi polynomials 
α  Fourier transform variable 
β, θ, γ   Powers of singularity at the edges of the crack an inclusion 
𝜂𝜂, 𝜀𝜀   Normalized variables on inclusions 
𝜙𝜙,𝜓𝜓  Normalized variables on crack 
μ  Shear modulus of elasticity 
ν  Poisson’s ratio 
σ, τ  Normal and shear stresses 
σzb, σzs  Bounded and singular parts of σz at the edges of the crack and inclusions 
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