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ABSTRACT

An infinite cylinder, of isotropic and linearly elastic material, with
an internal ring shaped crack and two penny shaped rigid
inclusions was considered in this study. The considered cylinder
was subjected to axial tensile forces from its two ends. The
complex problem of the axially loaded infinite cylinder was solved
by using the superposition of two problems including: (i) an
infinite cylinder, without any cracks or inclusions, loaded at
infinity and (ii) an infinite cylinder with an internal ring shaped
crack and two penny shaped inclusions and free of loading.
Associated Navier equations are solved with Fourier and Hankel
transforms to obtain general expressions for the considered
problem. Then, the considered problem is reduced to three
singular integral equations and numerically solved by using
Gauss-Lobatto integration formula with associated system of
linear algebraic equations.

Keywords: Internal Crack, Infinite Cylinder, Stress Intensity
Factor, Rigid Inclusion.

OZET

Bu ¢alismada elastik ve izotropik malzemeden imal edilmis, halka
seklinde bir i¢ ¢atlak ve daire seklinde iki adet rijit enkliizyon
iceren sonsuz bir silindir incelenmistiv. Incelenen silidir iki
ucundan eksenel yiike tabi tutulmugtur. Eksenel yiiklenmis sonsuz
silindiri iceren karmagsik problem iki problemin siiperpoze
edilmesiyle ¢oziilmiistiir. Bu problemler: (i) ¢atlak veya enkliizyon
icermeyen sonsuzda yiiklenmis bir sonsuz silindir, (ii) yiikleme
altinda olmayan, halka seklinde bir i¢ ¢atlak ve iki daire sekilli
enkliizyon iceren sonsuz silindirdir. Ilgili Navier esitlikleri,
Hankel ve Fourier doniigtimleri kullanilarak ¢oziilerek, ilgilenilen
probleme yonelik genel ifadeler elde edilmistir. Sonra, problem ii¢
adet tekil integral denklemine indirgenmis ve ilgili dogrusal cebrik
denklem takimi  Gauss- Lobatto integrasyon  formiilleri
kullamilarak sayisal yontemlerle ¢oziilmiistiir.

Anahtar Kelimeler: i¢ Catlak, Sonsuz Silindir, Gerilme Y1g1lma
Faktorii, Rijit Enkliizyon

1. INTRODUCTION

Various engineering branches use machine elements which have numerous discontinuities. These discontinuities may
occur in the form of voids, cracks, inclusions etc. They are among the major factors affecting the load carrying capacities and
influencing the stress distributions in the bodies. They must be carefully examined. Stress distributions become infinity in the
vicinities of the inclusions and cracks as well as the corners of the elements. In these regions, stress distributions can be
calculated in terms of the stress intensity factors. Stress intensity factors are dependent to the loading conditions and geometric
properties of the bodies. Geometry and the locations of the corresponding cracks, inclusions, notches and holes as well as
geometry of the body are some of the geometric properties affecting the related stress intensity factors.

Several solutions for infinite cylinder problems containing edge cracks and penny-shaped inclusions can be found in the
literature (Kaman and Gegit, 2007). Erdol and Erdogan (1978) considered the problem of a long thick walled hollow cylinder
containing ring shaped internal or edge crack which is subjected to uniform axial load and steady-state thermal stress. Artem
and Gecit (2002) considered an infinite elastic hollow cylinder under axial tension containing a crack and two rigid inclusions
of ring shape. Lee (2003) considered the singular stress problem of a peripheral edge crack in a long circular cylinder under
torsion. Kadioglu (2005) obtained an analytical solution for the linear elastic, axisymmetric problem of edge cracks in an
infinite hollow cylinder. Toygar and Gecit (2006) considered the problem of an axisymmetric infinite cylinder of linearly
elastic and isotropic material containing a ring shaped crack and two ring-shaped rigid inclusions. Kaman and Gegit (2006)
considered the problem of a cracked semi-infinite cylinder short end being fixed and an uncracked finite cylinder of linearly
elastic and isotropic material. However, problem of the infinite cylinder containing a ring shaped edge crack and two penny
shaped inclusions has not been solved by the method used in this research study. In this study, solution for the infinite cylinder
having a ring-shaped crack as well as two penny-shaped rigid inclusions and loaded at infinity is obtained by superposition of
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the following two problems: (i) An infinite cylinder loaded at infinity without any cracks or inclusions, (ii) an infinite cylinder
with a ring-shaped crack and two penny-shaped rigid inclusions with no load at infinity.

2. SOLUTION METHODOLOGY AND DEVELOPMENT OF THE GENERAL EXPRESSIONS

An axisymmetric infinite cylinder of radius A with a transverse ring-shaped crack of width (b — a) located at z = 0 plane
and two penny shaped inclusions of radius c located at z = +L planes is considered in this study. This cylinder is under the
action of uniformly distributed tensile loads of intensity p, at infinity (Fig. 1).
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Figure 1. Geometry and loading of the infinite cylinder.

General expressions for the solution of the problem must contain sufficient number of unknowns in order to satisfy all of
the necessary boundary conditions. For this purpose, the perturbation problem (problem II) is separated into three main sub-
problems in terms of three infinite media; (II-1) an infinite medium containing a ring-shaped crack located at z = 0 plane, (II-ii)
an infinite medium containing two penny-shaped rigid inclusions located at z =+ L planes and (II-iii) an infinite medium with
no crack or inclusion (Fig. 2).
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Figure 2. Addition of solutions for the perturbation problem.

General expressions of these sub-problems are obtained by applying Hankel transforms to the first and the second media,
in r-direction, and by applying Fourier transform to the third medium, in z-direction, on Navier equations. However, the
stresses should reduce to zero at the cylinder surfaces. In order to obtain the required zero stress condition, the derived general
expressions are rearranged to calculate the stress and deformation expressions for an axially loaded infinite cylinder, with a
ring shaped crack located at z = 0 plane and two penny shaped inclusions of radius c located at z = +L planes. The
expressions for the displacements and the stresses may be written in the form

1 , .
u(r,z) :_IL&V*‘i{ Jl d”(r,z,t)gl(t)tdtJrJ [dlz(r,z,t)gz(t)Jrd,s(r,z,t)g3(t)]tdt }
+v2u -y e 0

W(’%Z):L&Z7L 1 {Lhdﬂ(r,z,t)gl(t)tdt+J:[dzz(r,z,t)gz(t)+dB(r,z,t)g}(t)]tdt}

1+v2u 1-v (1a,b)

o, ("az):%{ de3l(r,z,t)g1(t)ldl+ I:[d32(r,z,t)gz(t)+d33(r,z,t)g3(t)]td[ }

o.(r,z)=p, ‘*’i{ I:d4](r,z,t)g](t)tdt +J;[d“(r,z,t)gz(t)ﬁ—d43(r,z,t)g3(t)]tdt }
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.2 = [ e (e [ )0+ ol (e )

(2a-c)

Where u and w are the displacements in r and z directions in polar coordinate system and o and 7 are the axial and shear
stresses. Moreover, the unknown functions gi(r) (i = 1-3) are given as

g[w(r,()* )]—g[w(r,U )]: 2gl(r) (0 <r< oo)

b

T, (r,L*)—rrz (r,L’): ,ugz(r)’ (0<r<w)

Gz(r,U)—az(r,L"):,ug3(r)’ (0<r<w) (3a-c)

such that gi(r) =0 when 0<r<agorb<r<ow,gj(r)=0(1=2,3) when c<r<oo.

3. INTEGRAL EQUATIONS

By the use of combined general expressions for the stresses and the displacements, the boundary conditions at the lateral
surface of the infinite cylinder and the boundary conditions on the crack and inclusion surfaces are satisfied. As a result, three
singular integral equations are obtained. Then, the infinite cylinder problem is converted to the target problem, by letting the
radius of the rigid inclusions approach the radius of the cylinder and letting the outer edge of the ring-shaped crack approach
the lateral surface of the cylinder. The unknown function g;(r) is the crack surface displacement derivative in z-direction
while g,(r) and g;(r) represent the jumps in shear and normal stresses through the rigid inclusions, respectively. These
unknown functions will be determined by the use of the following conditions:

O'Z(r,O):O’ (a<r<b)

u(r,L)=0, (0<r<c)

w(r,L) = constant (0 <r< c) (4a-c)
Note that the condition (4a) is stress type while the conditions (4b,c) are displacement type and can be replaced by

10

;g[ru(r,L)]z 0 (O0<r<c)

0

L)[=0
o EI=0 oy ) (Sab)

in order to obtain the same type conditions. Substituting Egs. (1) and (2) in Eq. (4a) and Egs. (5a,b) and noting that gi(r) (i
=1,2) are odd, gs3(7) is even, one can obtain the following singular integral equations

)+ ‘I‘le(r,t)]

t

fgm[f+2M1<r,r>+tN“<r,r)}dt+f fe T, (.
—r —c

+ & O (|t + Ny () Jlde = 20 -v)e B (@< <b)
7
b
[0l 0.0+ Ny (rnlar + | {gz (z){tn - - ) 4 N z)}
—
aw(-v) p,
+ g T ) + Ny () ldr = T2 2L (ce<r<o)
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1) +[{ Ny, (r,z)]

[T 0+ Ny ok + [ e, 0T o,

_4 1 _4
)_3 5 Vt 3 : VM3(r,t)+tN33(r,t)}}dt:0, (—c<r<c)
-r

t

+ g5 (t)|:th (r,
(6a-c)

The singular integral equations (6a-c) must be solved subject to the single-valuedness condition for the crack and the
equilibrium conditions for the inclusions written in the form

[ &dt=0 (ab)

J: g.(tdt=0 (i=23)

The crack surface displacement derivative gi(») and the stress jumps g»(r) and g3(7) through the rigid inclusions may have
singularities at the ends » = a, b and r = £ ¢, respectively. Their singular behavior may be determined by examining the
singular integral equations (6a-c) around these end points using the complex function technique given in Muskhelishvili(1953).
The singular behavior of gi(r) (i = 1-3) can be determined by first writing

g :
—= -~ forinternal crack
_ _A°

gin-11" “)('Z )’)]

L’ fored K

(r—a) (a—ry = oEE (0<Re(f,0) <1)
) :{ NG

(cz —p? )7 ’ (i=23) (0<Re(y)<1) (8a,b)

where f, 6 and y are unknown constants and g"(r) (i = 1-3) are Holder-continuous functions Durucan (2010) in the
respective intervals (a, b) and (-c, ¢). Then, substituting Egs. (8a,b) in Egs. (6a-c), calculating the integrals around the end
points in accordance with the technique presented in Cook & Erdogan (1972), the following characteristic equations are
obtained:

COt(ﬂ'ﬂ)Z 0 (a’ b <A)

cos(76)=26(6-2)+1 (b= A)

COt(ﬂ'j/) =0 (c < A)
23 —4v)cos(zy)= 3 —4v)* +1-4(y —1)* (c=4) (%a-d)

Equations (9a,b) give 1/2 for § and 6 which is the well known result for an embedded crack tip in a homogeneous medium
(see, for example, Cook and Erdogan(1972), Nied and Erdogan (1983), Gegit (1987)). From Eq. (9¢), it can be observed that
the value for @ is zero which is obtained also in previous works Williams (1952), Gegit (1984), Gegit and Turgut (1988)
indicating that the stresses at the apex of a 90° wedge with free sides are bounded. Equation (9d) gives 1/2 as the acceptable
value for y which is obtained also in previous works for an embedded inclusion tip in a homogeneous medium (Gupta, 1974;
Yetmez and Gegit, 2005; Kaman and Gegit, 2006). When the penny-shaped inclusions spread out to the outer surface of the
cylinder, the portion of the infinite cylinder between z = + L planes becomes a finite cylinder of length 2L with rigid ends.
Equation (9¢) is in agreement with the results of previous works, Williams (1952), Gupta(1975), Gegit and Turgut (1988),
which is used to calculate the power of stress singularity at the apex of a 90° wedge with one side fixed and the other side free.

4. SOLUTION OF INTEGRAL EQUATIONS AND STRESS INTENSITY FACTORS

Finally, the singular integral equations (Egs. 6a-c) are converted to linear algebraic equations by using Gauss-Lobatto and
Gauss-Jacobi integration formulas. Then, these linear algebraic equations are solved numerically to obtain the stress intensity
factors at the edges of the internal crack, at the root of the edge crack in infinite cylinder and at the edge of the rigid inclusions
in infinite cylinder.

Defining non-dimensional variables & and y on the crack and # and ¢ on the inclusions by
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1) = ,9)+ >
COT IR a< i <b) (1<)
(l”, t):C(S, 7/)7 (-C<(I’, t)<C), (-1<S,77 <1) (IOa,b)

the singular integral equations, Eqs. (6a-c) and (7a,b), are expressed in terms of non-dimensional quantities.

The integrals are calculated by using the Gauss-Lobatto integration formula (Krenk, 1978), Artem and Gegit, 2002)) and
the following system of 2 linear algebraic equations are obtained (see Durucan (2010) for details):

n/2

ici§1(¢i)[;1(y//a¢i)+N“(‘///’¢i):|+zzci§2(ni)ni [Tl(l//,aﬂf)JleZ('//,aU;)]Jf

22Ci§3(77i)77f [fl(‘//,f’ﬂi)+N13 (W,-JL-)]: _(1 _V)’ (G=1..,n-1)

i=1

icf§1 (¢1)[T3 (€j5¢i)+ N21(8j5¢i )]+ znz_‘,cigz(m)[nif“ (Sjsﬂi )+ %2(‘9/”771‘ )+ ﬂfﬁzz (gj’ni )]+

n/2

2;Ci§3 (n:)n; [fs(gj’nf)-i- N (8‘/"771' )]: _(‘/_2"_(})@:/_)‘/4‘/), G=1.,...,1n/2)

icz’gl (¢i)[f6<gj7¢i)+ N3l(gj’¢i )]+ 2§Ci§2(ni)77i [f7 (gpﬂi )+ N” (5]»771- )]+

23 Cg, ol Tsle,m )+ msle,m )+ Nale,m |= 0, G=1,ni2-1)
i=1 (lla-c)

>Cg(6)=0

>

n/2 _
ZcigS(ni)ni =0
, (12ab)

where

mi(y.¢)=

1
¢_‘// ml(l//5¢)

)

- __n
ma(e,1m) NS mzqg

>

)

— &
I’M3(6‘,77)— ’72 —,5'2 m3qga n

(13a-¢)
¢.,m, =cos|(i — )z /(n—1)], (i=1L...,n)
w,.e, =cos[(2j-Dr/2n-2)],  (j=L..,n-1)

C, =C,=1/2n-2),C, =1/(n-1), (i=2,...,n-1) (l4a-0)

Stresses become infinite in the vicinity of tips or edges of cracks and inclusions. These infinite stresses are represented by
means of stress intensity factors. Mode I stress intensity factors at the edges of the internal ring-shaped crack are defined and
calculated in the form

k,, =limy2(a—r)o.(r,0) = (fﬁ) i Ea

a

~—
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. __ \/E,u gl*(b
by =120 =b)o.(n0) = T4 ) g (15a,b)

~—

Mode I and II stress intensity factors at the edges of the internal rigid inclusion may be similarly calculated as

k,, =limy2(r—c)o.(r,L)
ky, =lim2(r - )z, (r,L)

V2 owv-1 o 1.
ki, :2|:2(1_V)g2(1)_\/§g3(1):|p0\/g

b= 2| i+ 20 e

2 [V al-) (16a-d)

5. NUMERICAL RESULTS

The system of linear algebraic equations, Eqgs. (11a-c) and (12a,b), are solved numerically and the unknown functions
91(@), g:(n) (i = 2,3) are calculated at separate points. Then, the physically significant quantities, for example, the stress
intensity factors at the edges of the crack, at the edges of the inclusion and around the clamped corners of the finite cylinder
can be calculated.

Figures 3 to 4 present the variation of normalized stress intensity factors (Eqgs. 17-18) vs. varying geometric and material
properties. Normalized stress intensity factors may be defined and calculated as:

%m _ kln _ gl(_l)
porflb—a)/2  41-v)
%lb _ km —_ gl(l)

Cpflb-a)i2 - 4-v) (17a,b)
for the crack and

kic

po\/g ’

for the rigid inclusions.

ki = (i=12) (18)

Figure 3 illustrates the variations of the Mode I normalized stress intensity factors #wand k» defined in Egs. (17a,b) at the
edges of the crack with relative crack width (b-a)/4 when ¢ = 0.54, b+a = A and v = 0.3 for the case of an infinite cylinder
with internal crack and inclusions. The center line of the ring-shaped crack is at » = 4/2. Results are given for L/4 = 0.25 and

0.5 noting that the numerical results for kuand kw» remain unchanged for values of L/4 greater than 0.5 which means that the

effect of the rigid inclusions will fade away when L/4 < 0.5. From the figure, it can be observed that ki is greater than kw for
especially wider cracks. This may be due to the interaction of the inner edges of the crack around the axis of the cylinder. Both

ki and k» increase as (b-a)/A increases which is an expected observation.

Figure 4 shows variations of the normalized stress intensity factors 4.and - defined in Eqs. (18a,b) at the edge of the
internal rigid inclusion with relative inclusion radius ¢/4 when (b-a)/4A = L = 0.54 and again b+a = A. From the figure, it can be
observed that k.and % are heavily dependent on the Poisson’s ratio v. Here, it should be remembered that the rigid inclusions
are effective on the deformation characteristics of the cylinder and therefore on the stress distributions for relatively large
values of v. In the limiting case of v — 0, rigid inclusions will practically disappear. In particular, &xis larger for larger values
of v. k. is larger for larger values of v and for relatively larger values of ¢/A.
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Figure 3. Normalized stress intensity factors k;, and k;, when ¢ = 0.54, b+a =A and v=0.3.

1.0
tttttipg
—k,. v=0.1 -—=k,. v=0.1 %
0.8 - - ” L
— ki 03 | | T ka 03 — .
— - ¥
— k4 05 | | U k,. 05 c::T—@
0.6 - ia bllp
_ “""'s‘ i A
k 1c 04 i “'\\ i—'

@\__../
TR

02 - T

.-

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4. Normalized stress intensity factors k,, and k,. when b-a = L = 0.54 and b+a = A.
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Nomenclature
a b Inner and outer radii of ring-shaped crack
Radius of cylinder
c Radius of penny-shaped inclusions
G Weighting constants of the Gauss-Lobatto polynomials
d;j Coefficient functions
ai1(r) Crack surface displacement derivative
a1’ () Holder-continuous function on crack
g.(r) Normalized bounded part of gi(»)
ax(r), g3(r) Normal and shear stress jumps on rigid inclusions

2' (1), g () Hélder-continuous functions on inclusions
92:(1), gz(r) Normalized bounded parts of g»(r), g3(r)
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Modified Bessel functions of the 1* and 2" kinds of order zero and one
Bessel functions of the 1* kind of order zero and one

Mode I stress intensity factors at the edges of crack

Stress intensity factors at the edge of internal rigid inclusions
Normalized stress intensity factors at the edges of crack

Normalized stress intensity factors at the edge of internal rigid inclusions
Complete elliptic integrals of the 1% and the 2™ kinds

Integrands of the kernels Nj;

Dominants part of L;; as a—o0

Distance between crack and inclusions

Kernels of the integral equations

Bounded and singular parts of Nj as a—o

Intensity of the axial tensile load

Jacobi polynomials

Cylindrical coordinates

Integration variable

Displacement components in r- and z-directions

Weighting constants of the Jacobi polynomials

Fourier transform variable

Powers of singularity at the edges of the crack an inclusion
Normalized variables on inclusions

Normalized variables on crack

Shear modulus of elasticity

Poisson’s ratio

Normal and shear stresses

Bounded and singular parts of o, at the edges of the crack and inclusions
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