

J. Innovative Eng. Nat. Sci., vol. 5, no. 2, pp. 589-606, 2025.

http://doi.org/10.61112/jiens.1618552

*Corresponding author. Tel.: +90-232-270-5500; e-mail: kamil.cetin@ikcu.edu.tr
589

Comparative performance analysis of path planning algorithms for mecanum
wheeled mobile robots using ROS-Gazebo

 Dilara Galelia, Bilge Kartal Cetinb and Kamil Cetina,c,*
aDepartment of Electrical and Electronics Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, 35620, Turkiye.
bDepartment of Electrical and Electronics Engineering, Faculty of Engineering, Ege University, Izmir, 35100, Turkiye.
cAkıllı Fabrika Sistemleri Uygulama ve Araştırma Merkezi, Izmir Katip Celebi University, Izmir, 35620, Turkiye.

I. INTRODUCTION

With the rapid proliferation of mobile autonomous robots in various industries in recent years, efficient

autonomous navigation has become a critical necessity to enable robots to operate effectively in complex and

dynamic environments [1] and [2]. This topic poses serious challenges such as mapping unknown environments,

positioning robots in these environments, planning optimal paths towards the desired destination, and avoiding

obstacles in real time. The most important path planning algorithms developed such as Dijkstra developed by E.

W. Dijkstra in 1959 [3], A* developed by P. E. Hart in 1968 [4], and Rapidly-exploring Random Tree (RRT)

developed by S. M. LaValle in 1998 [5] play a significant role in addressing these challenges while enabling robots

to successfully perform their tasks.

Today, with the new advancements in the field of path planning and navigation of mobile autonomous systems,

these algorithms (A*, Dijkstra and RRT) are still widely preferred for optimal route generation. Various studies

have investigated the performance of these widespread algorithms, compared their performance and proposed

hybrid approaches to improve the overall efficiency of the path planning process. [6] introduced the Hybrid RRT-

A* algorithm by combining RRT algorithm’s exploration capability and A* algorithm’s optimal path generation

to improve convergence and computational efficiency within the ROS framework. Similarly, [7] and [8] have

A R T I C L E I N F O

A B S T R A C T

Article history:
Received 12 January 2025
Received in revised form 10 March 2025
Accepted 27 March 2025

Available online

 Effective path planning is crucial for mobile robots to navigate safely and efficiently in various environments.
The main purpose of this study is to compare and investigate the performances of three important path
planning algorithms, namely A*, Dijkstra and Rapidly exploring Random Trees (RRT), for a mobile
autonomous robot with LiDAR sensors and mechanical wheels. The mobile robot can move in multiple
directions with its mecanum wheels and can precisely avoid obstacles with the help of LiDAR sensors and
decision-making mechanisms (path planning algorithms). Various scenarios with cluttered and open areas
were used in a simulated ROS Gazebo environment to evaluate the effectiveness of each algorithm. The
performance metrics among the algorithms were analyzed with respect to path length, time to reach the target,
velocity command frequency and CPU utilization. In terms of travel time performance criterion, A* performed
approximately 35% better than Dijkstra and 85% better than RRT. In terms of the path length traveled, A*
reached the target in approximately 11% shorter path length than Dijkstra and 17% shorter path length than
RRT. In terms of the number of velocity commands processed, A* outperformed Dijkstra by approximately
36% and RRT by 38%. In terms of CPU utilization performance criterion, RRT performed approximately
10% better than A* and 74% better than Dijkstra. As a result, significant information was obtained about the
strengths and weaknesses of each algorithm in selecting the most appropriate path planning strategies for
mobile autonomous robots.

Keywords:
Mobile robot
LiDAR
ROS
Gazebo
Path planning
Autonomous navigation
Performance metrics

https://orcid.org/0009-0002-4970-9865
https://orcid.org/0000-0002-3338-1538
https://orcid.org/0000-0003-1029-5626

 J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 589-606, 2025. ROS-based path plannings

590

proposed hybrid approaches such as RRT-Dijkstra, demonstrating the improvements in execution time and path

optimization, and therefore supporting that hybrid approaches can propose significant improvements compared to

classic ones. Apart from proposing hybrid approaches, several studies compared the algorithms and emphasized

the trade-offs. In this context, [9] and [10] examined and compared A* and RRT algorithms and emphasized A*

algorithm’s advantage in creating shorter paths and RRT’s advantage in thorough exploration. In SLAM-related

experiments, [11] examined the impact of various types of geometric shapes on mapping performance using

TurtleBot3 robot in Gazebo, demonstrated that the object geometry can significantly affect the SLAM

performance. [12] assessed the performance of A* and Dijkstra algorithms in the ROS framework and

demonstrated that the Dijkstra algorithm surpasses A* by creating shorter and more continuous routes.

Additionally, [13] and [14] provided comprehensive overviews of widespread path-planning methods by

emphasizing the trade-offs between execution time and path efficiency across various path-planning

methodologies. [15] proposed an improved A* algorithm within ROS framework, which outperformed the classic

A* algorithm in both simulation environment and real-world experiments by generating shorter paths in a shorter

time than the classic A* algorithm. In addition, [16] examined the performance of A* and RRT algorithms using

TurtleBot3 robot within static and dynamic environments and indicated that A* is more suitable for static

environments whereas RRT is more suitable for dynamic environments in terms of route precision.

The aforementioned studies generally emphasize the advantages and disadvantages of A*, Dijkstra and RRT

algorithms, providing a valuable source for robotics applications. However, these and many similar studies in the

literature contain some research gaps. In [6, 7, 8, 9, 10, 13], only theoretical studies have been conducted and there

is no practical simulation study with mobile robots. [11] only used SLAM navigation and did not integrate these

path planning algorithms on the mobile robot. [12] implemented a mobile robot application using only A* and

Dijkstra algorithms and compared them only in terms of path length. [14] has implemented all of these algorithms

in ROS and Rviz simulation environment, but there is no realistic mobile robot study with measurement-based

feedback. In addition, in terms of performance, only path length and duration were examined in a more limited

way. [15] implemented only A* algorithm on a LiDAR based mobile robot in ROS and Rviz simulation

environment, but did not make any analysis and performance comparison in terms of path length and time

compared to other algorithms. [16] implemented simulation applications of all of these algorithms in the Gazebo

environment of the TurtleBot mobile robot, but did not make any performance comparisons.

Robot Operating System (ROS) is an open-source framework developed in 2007 for robotics research and

development [17, 18]. It supports multiple programming languages and enables flexible communication between

nodes through a master node and topics [19]. ROS's rapid growth is driven by its open-source nature and

collaborative environment, allowing researchers to contribute to and benefit from shared resources. Gazebo is a

ROS-based 3D simulation tool that allows robotic systems, including sensors and motors, to be designed and tested

in a virtual environment [20]. It uses "world" models, created with the Build editor, where robots interact with

physical elements like terrain and obstacles defined in Simulation Description Format (SDF) files. By integrating

with ROS, users can simulate and control robots in these worlds, allowing for realistic testing and validation before

real-world deployment. RViz is a powerful visualization tool in ROS that enables real-time monitoring of robot

status, sensor data, and navigation information, essential for mapping and path planning [17]. During simulation

in Gazebo, RViz helps visualize data such as laser scans, point clouds, and odometry to ensure accurate robot

behavior and performance. According to the research gaps in the above-mentioned studies and in the literature in

ROS-based path plannings J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 589-606, 2025.

591

general, this study aims to examine the performance of these algorithms by implementing a mobile robot in a more

realistic simulation environment and to present a more comprehensive comparison result.

SLAM (Simultaneous Localization and Mapping) is a technique widely used by robotics researchers and

developers to create a map of an unknown environment. Using odometric data such as laser scans from LiDAR

(Light Detection and Ranging) sensor, a map of an unknown environment can be created, and the robot can be

positioned on the map simultaneously [21]. Among different SLAM techniques, in this paper we have chosen to

use the Gmapping algorithm for LiDAR-based 2D mapping. The ROS navigation stack is a directory that allows

the interaction of the packages to make a mobile robot navigate around its environment autonomously. It simply

stitches together most of the basic competencies of a robot: self-location, path planning, obstacle avoidance, and

motion control. When a 2D navigation goal (2DNavGoal) is set for a robot in RViz with the ROS navigation stack,

the robot can reach the desired location autonomously. This work aims to perform a performance test comparison

of the A*, Dijkstra, and RRT path planning algorithms on a mobile autonomous robot with LiDAR sensors and

mecanum wheels designed in Gazebo within an indoor 'world' environment that is mapped using the SLAM

Gmapping method within the ROS framework.

II. PATH PLANNING ALGORITHMS

2.1. A* algorithm

Hart in [19] demonstrated the best-in-class property of a class of search strategies by explaining how heuristic

information from the problem domain can be incorporated into the formal mathematical theory of graph search.

A* algorithm has been determined as a heuristic search algorithm type that uses a combination of heuristic and

exact cost to discover the most suitable route between a starting point and the goal [22]. It compares the cost values

of its expanded nodes and selects the most cost-promising node for further exploration up to the point when the

target node has been reached. By always expanding the node with the lowest cost, a path is formed which has a

minimum total cost [23]. The evaluation function is expressed as

𝑓𝑓(𝑛𝑛) = 𝑔𝑔(𝑛𝑛) + ℎ(𝑛𝑛) (1)

with g(n) as a known cost from the start node to the node 'n' while h(n) represents a heuristic estimation (Manhattan,

Euclidean or Chebyshev) of the cost from the current node to the goal. A* prioritizes nodes to explore by

integrating g(n) and h(n).

In the A* algorithm, the heuristic function h(n) is influential in its performance. The Euclidean distance heuristic

calculates the straight-line distance between two points. This is perfect for when one can move diagonally, as in

continuous or grid-based environments with movement based on 'free'. The Euclidean distance heuristic function

is determined by the square root of the sum of squares of differences between the Cartesian coordinates of the

points [24]. It is given by the equation below [25]

ℎ(𝑛𝑛) = �(𝑥𝑥2 − 𝑥𝑥1)2 + (𝑦𝑦2 − 𝑦𝑦1)2 (2)

 J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 589-606, 2025. ROS-based path plannings

592

where (x1, y1) is the current position and (x2, y2) is the target position in Cartesian space.

The distance measured along the grid-based axes when the movement is constricted to vertical and horizontal paths

is known as the entire Manhattan distance heuristic. Mathematically, it is a summation of the absolute differences

of the positions in Cartesian space [24], given in the equation below [25]

ℎ(𝑛𝑛) = |𝑥𝑥2 − 𝑥𝑥1| + |𝑦𝑦2 − 𝑦𝑦1| (3)

In this study, we used Euclidean and Manhattan distance heuristics for performance comparisons.

2.2. Dijkstra’s algorithm

Dijkstra’s algorithm developed by Dijkstra in [3] is a search-based shortest-path algorithm, which is used to find

the shortest path between a starting node (which is also called the ‘source node’) and all other nodes in a weighted

graph [26]. Its working principle is iteratively selecting the node with the shortest known distance from the starting

node, exploring all its neighbors and updating their tentative distances if a shorter path is found. Dijkstra algorithm

can find the shortest path with an optimal solution, but it requires more time to complete the searching process

[27].

The difference between the Dijkstra and A* algorithm is that the A* algorithm uses a heuristic function to prioritize

nodes that are likely to lead to a better path whereas Dijkstra’s algorithm explores all possible paths without

prioritizing them [28].

2.3. RRT algorithm

RRT, first developed in [5], is probabilistic planner that excels at addressing challenging path planning problems

in high-dimensional spaces. RRT is a sampling-based path planning algorithm, which is based on incremental

sampling [29]. It is a probabilistic algorithm that builds a tree by incrementally extending branches towards random

samples in the configuration space.

Sampling-based algorithms such as RRT have the advantage of being able to find a feasible motion plan relatively

quickly even in complex environments. However, even though the RRT algorithm quickly finds a feasible solution,

it may not always provide the most optimal path [29].

III. SIMULATION SETUP

The experiments are conducted using the simulation environment of the Robot Operating System (ROS Noetic),

with Gazebo 11.11.0. This framework operates under the Ubuntu 20.04 (64-bit) operating system. For the

visualization of the SLAM and path-planning processes, RViz is utilized. For the data collection process, terminal

windows are utilized for managing rosbag recordings. Rosbag allows data capture and analysis for debugging and

testing by recording and playing back the messages that are exchanged between ROS nodes and storing the

message data in a file. A custom Python script is implemented to start recording rosbag files when the robot starts

ROS-based path plannings J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 589-606, 2025.

593

moving and automatically stop the recording when the robot reaches the target and stops. This approach assures

that only the relevant data during the robot’s motion is captured. From the recorded rosbag files, travel times along

routes and number of messages sent to cmd_vel topic are directly obtained. In addition, the recorded rosbag files

are later analyzed and Python scripts are created to obtain the performance metrics such as the total traveled

distance and average CPU utilization. These scripts process /odom topic data to calculate the traveled distance and

monitor CPU usage during navigation by detecting when navigation starts, starting CPU logging and stopping it

when the goal is reached. In the simulation study, each algorithm has been run under the same conditions,

environment, mobile robot, target points and parameters given in Table 1 and Table 2 in order to make a fair

performance comparison between the algorithms.

 Table 1. Local planner configuration
Parameter Value
max_vel_x
(maximum forward linear velocity) 0.4 m/s
max_vel_x_backwards
(maximum reverse linear velocity) 0.2 m/s
max_vel_theta
(maximum angular velocity) 0.3 rad/s
acc_lim_x
(linear acceleration limit) 0.5 m/s2
acc_lim_theta
(angular acceleration limit) 0.5 rad/s2

3.1. Robot model

In this study, a four-wheeled mecanum mobile robot with a LiDAR sensor is used as shown in Figure 1. Robot

descriptions are provided in Xacro (XML Macro) format, which defines links, joints, mass, size and inertia values

of the robot as given in Table 2. For defining the kinematics of the mobile robot, differential drive controller

Gazebo plugin ‘diff_drive_controller’ is used. For mapping process and navigation, a LiDAR sensor was

specifically designed with the dimensions, and an operational range, as defined in Table 3, that is suitable for

effective mapping and navigation and mounted on top of the robot.

Figure 1. Mecanum wheeled mobile robot model in Gazebo

 Table 2. Mecanum wheeled mobile robot properties
Parameter Value
Wheel torque 30 Nm
Wheel diameter 0.13 m
Wheel acceleration 5 rad/s2
Mass 31.0431 kg

 J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 589-606, 2025. ROS-based path plannings

594

Table 3. Specifications of the LiDAR sensor designed in Gazebo
Dimensions Range Field of View

(m) (m) (°)
Scanning Parameters Noise

Radius Height Min Max Min Max Samples Resolution
(°)

Type Mean
(m)

StdDev
(m)

0.12 0.07 0.3 12 -180 180 360 1 Gaussian 0 0.02

The field of view (FOV) of the LiDAR sensor describes the angular range of the area it can scan. In this study, the

LiDAR’s FOV, as given in Table 1, ranges from -180 to 180, which indicates that it can scan the entire horizontal

plane in a full 360 degrees circle. In addition, LiDAR takes 360 samples per scan, with each sample corresponding

to a 1 degree of interval. In other words, LiDAR collects one data point for each degree of rotation.

3.2. Gazebo world

A special Gazebo world (as shown in Figure 2) is created using the Build editor. The environment is enclosed by

outer walls and within these walls, there are additional smaller walls and three tables. Two of the tables, identified

by dark yellow color, are smaller and have a single leg while the third table, which is larger and gray, is supported

with four legs. These tables and the smaller walls were added to the world to increase the complexity of the robot

navigation process and to facilitate the testing of planning algorithm behaviors.

Figure 2. Custom-designed Gazebo world

3.3. SLAM and generated world map

For the navigation process of the mobile robot, a map of the Gazebo world needs to be created. In this study, the

world map is generated and provided to the navigation system using the SLAM Gmapping algorithm.

In the SLAM algorithm’s flowchart (as shown its architecture in Figure 3), the process starts by detecting whether

the robot is in motion. If movement is detected, odometry data and laser data are gathered. These two inputs are

processed by the SLAM algorithm for estimating the robot’s position while correcting errors in odometry. The

SLAM algorithm updates the map of the environment simultaneously, and the map is managed by the map server.

ROS-based path plannings J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 589-606, 2025.

595

This continuous loop allows the robot to maintain accurate localization and mapping, which is essential for

autonomous navigation. If no motion is detected, the system stops updates until the robot resumes motion.

Figure 3. SLAM localization flowchart

There are several SLAM algorithms in ROS, such as HectorSLAM, Gmapping, KartoSLAM, CoreSLAM and

LagoSLAM [30]. In this study, Gmapping is used because of its efficiency and its capability for 2D occupancy

grid mapping. Gmapping is a SLAM algorithm, which is based on Rao-Blackwellized particle filter (RBPF) that

creates grid maps from laser data. It considers the latest observation from sensors and the robot’s movement to

generate the proposal distribution [31].

Figure 4 shows the generated map of the custom-designed Gazebo environment in RViz after the SLAM Gmapping

algorithm process. The map accurately depicts the characteristics of the environment, such as walls, tables and

open spaces.

Figure 4. Generated world map

 J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 589-606, 2025. ROS-based path plannings

596

3.4. Selection of target points

As shown in Figure 5, target points in RViz are specifically selected for observing the mobile robot navigation

effectively. These five points are strategically chosen to monitor potential collisions with the environmental

features in the Gazebo world, such as tables and walls. By selecting the target points in critical locations (middle,

top left, bottom left, top right, bottom right), the aim is to assess the robot’s obstacle avoidance capabilities with

the help of path planning algorithms.

Figure 5. Target points from 0 to 4

3.5. ROS navigation stack

The ROS Navigation Stack (as shown in Figure 6) is a set of software tools designed for self-localization, path

planning, obstacle avoidance and motion control [32]. It processes all the sensor information and generates a safe

velocity command for differential drive plugin ‘diff_drive_controller’ in Gazebo. The generated velocity

commands are published to the ‘cmd_vel’ topic. For localization of robots on map during navigation, AMCL

(Adaptive Monte Carlo Localization) and ‘move_base’ packages are utilized.

AMCL is a probabilistic localization system, used for robots operating in 2D. It employs the adaptive Monte Carlo

localization method, which utilizes a particle filter to monitor the robot’s position relative to a known map [33].

AMCL estimates the robot's pose by means of the two steps: filtering and resampling. In AMCL, lasers, laser

scans, and transformations are inputs for creating pose estimates outputs. By using AMCL, the robot will be able

to understand precisely where it is located within the map that was made.

The 'move_base' package in ROS works as an interface, integrating the path planning and obstacle-avoiding

processes, enabling a robot to move from a starting point to the desired one while navigating across obstacles in

ROS-based path plannings J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 589-606, 2025.

597

the environment. According to [34], it integrates a global and a local path planners and obstacle avoiders into a

single package. The global path planner inside the 'move_base' can also use various algorithms such as A*, Dijkstra

and RRT. For local path planning, TEB (Time Elastic Band) and DWA (Dynamic Window Approach) planners

can be used. Some of the most important parameters of the 'move_base' package are presented in the following

configuration file and may be altered to change the behavior of the robot.

• ‘base_global_planner’ and ‘base_local_planner’: These parameters specify the types of global and local

path planners to be used in navigation process.

• ‘global_costmap’ and ‘local_costmap’: These are the parameters that define the recovery behavior for

'move_base'. Recovery behaviors instruct the robot to try and reroute its path when faced with obstacles.

• ‘recovery_behaviors’: This parameter defines the recovery strategies for 'move_base' to allow the robot to

redirect itself along specified recovery behaviors when it faces obstacles [34].

• ‘goal_tolerance’: This parameter defines the acceptable distance to the goal position.

• ‘goal_reached_threshold’: This parameter defines the distance at which the robot is considered to have

reached the target.

Figure 6. The architecture of ROS navigation stack

The ROS ‘rqt_graph’ command is used to visualize the communication structure, which shows how nodes interact

with each other through published or subscribed topics or services. In these graphs, each node is represented as a

box, and the topics are represented as arrows connecting the nodes. The ‘rqt_graph’ schematic of this study is

given in Figure 7.

The important components in the ‘rqt_graph’ schematic can be explained as below:

 J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 589-606, 2025. ROS-based path plannings

598

• /map_server: This node is a part of the map_server package, which loads and publishes static 2D

occupancy grid maps to the /map topic.

• /map: This topic publishes the static occupancy grid map of the environment.

• /cmd_vel: This topic publishes linear and angular velocity commands to control the robot’s movements.

• /odom: This topic provides odometry data, which contains the robot’s position and velocity.

• /scan: This topic publishes laser scan data obtained from the LiDAR sensor for obstacle detection, which

is crucial for the mapping process.

Figure 7. ROS graph of the simulation setup

IV. RESULTS

The performance results of A*, Dijkstra and RRT path planning algorithms, which were tested on a LiDAR-

based and mecanum wheeled mobile robot in a specially designed Gazebo environment within the ROS

framework, were analyzed. Manhattan distance heuristics and Euclidean distance heuristics were used separately

to analyze the A* algorithm.

For an example of the path plans generated by the algorithms, the robot’s trajectories on Route 3-4 are shown in

Figures 8-11.

Figure 8 shows the path plan, depicted in black line, generated by A* (Euclidean) algorithm on Route 3-4.

ROS-based path plannings J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 589-606, 2025.

599

Figure 8. A* (Euclidean) algorithm’s path plan on Route 3-4

Figure 9 shows the path plan, depicted in black line, generated by A* (Manhattan) algorithm on Route 3-4.

Figure 9. A* (Manhattan) algorithm's path plan on Route 3-4

Figure 10 shows the path plan, depicted in black line, generated by Dijkstra’s algorithm on Route 3-4.

 J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 589-606, 2025. ROS-based path plannings

600

Figure 10. Dijkstra's algorithm's path plan on Route 3-4

Figure 11 shows the path plan, depicted in black line, generated by RRT algorithm on Route 3-4. In addition, the

green, tree-like lines show the random trees produced by the RRT algorithm, since it is a sampling-based

algorithm.

Figure 11. RRT algorithm's path plan on Route 3-4

ROS-based path plannings J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 589-606, 2025.

601

Table 4 gives the positions in meters of the five target points in Cartesian space X-Y-Z, as shown in Figure 5. It

should be noted that the mobile robot moves only in X-Y surface coordinates, and the Z coordinate is always fixed

at 0.09 m.

Table 4. Coordinates of the target points in Cartesian space

Point X-Coordinate
 (m)

Y-Coordinate
(m)

Z-Coordinate
(m)

0 0 0 0.09
1 -5 5 0.09
2 -5 -6 0.09
3 3.5 5 0.09
4 0 -7 0.09

In Tables 4-8, Route 𝑖𝑖 to 𝑖𝑖 + 1 (i = 0, 1, 2, 3, 4) indicates that the robot’s trajectory starts from point 𝑖𝑖 and finishes

at point 𝑖𝑖 + 1. Table 5 shows the performance analysis of the algorithms based on the travel time parameter.

Table 5. Travel times along routes

Route A* (Euclidean)
 (s)

A* (Manhattan)
(s)

Dijkstra
(s)

RRT
(s)

0-1 25.2 28.8 23.4 39.9
1-2 40.3 43.9 66 52.6
2-3 39.4 39.3 39.7 100
3-4 44.3 35.7 77 46.4
4-0 22.2 22.1 23.9 75

Total 171.4 169.8 230 313.9

From the observation of Table 3, in terms of total travel times, A* algorithms (both Euclidean and Manhattan) are

faster than Dijkstra and RRT. A*(Manhattan) is the most efficient overall with the shortest duration 169.8 seconds,

closely followed by A*(Euclidean) at 171.4 seconds. The duration of Dijkstra and RRT algorithms are significantly

longer, with Dijkstra taking 230 seconds in total (approximately 35% longer than A* Manhattan and 34% longer

than A* Euclidean) and RRT taking 313.9 seconds in total (approximately 85% longer than A* Manhattan, 83%

longer than A* Euclidean and 36% longer than Dijkstra).

Table 6 shows the performance analysis of the algorithms based on the total traveled distance to reach the target

points. From the observation of Table 6, in terms of total traveled distances, A* algorithms (both Euclidean and

Manhattan) surpass Dijkstra and RRT by creating shorter paths towards the goals. The created path length with

A* (Manhattan) is the most effective with the shortest path length 62.765 meters, closely followed by A*

(Euclidean) with 63.637 meters. The created path lengths with Dijkstra and RRT are significantly longer, with

Dijkstra taking 70.855 meters in total (approximately 13% longer than A* Manhattan and approximately 11%

longer than A* Euclidean) and RRT taking 74.227 meters in total (approximately 18% longer than A* Manhattan,

17% longer than A* Euclidean and 5% longer than Dijkstra).

Table 6. Path lengths along routes

Route A* (Euclidean)
 (m)

A* (Manhattan)
(m)

Dijkstra
(m)

RRT
(m)

0-1 9.157 9.374 8.572 8.998
1-2 13.926 14.512 17.601 15.703
2-3 16.462 16.296 16.279 22.215
3-4 15.971 14.423 20.144 16.332
4-0 8.121 8.160 8.259 10.979

Total 63.637 62.765 70.855 74.227

 J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 589-606, 2025. ROS-based path plannings

602

Table 7 shows the performance analysis of the algorithms based on the number of messages sent to ‘cmd_vel’

topic during navigation along routes. From the observation of Table 7, in terms of the total number of messages

sent to ‘cmd_vel’ topic, A* algorithm (both Euclidean and Manhattan variants) surpasses Dijkstra and RRT by

sending fewer messages. A* (Manhattan) is the most efficient overall with the fewest number of messages 1699,

followed by A* (Euclidean) with 1717. In Dijkstra and RRT algorithms, the sent messages are more, with Dijkstra

sending 2317 (approximately 36% more than A* Manhattan and 35% more than A* Euclidean) and RRT sending

2340 messages in total (approximately 38% more than A* Manhattan, 36% more than A* Euclidean and 1% more

than Dijkstra).

Table 7. Number of messages sent to ‘cmd_vel’ topic

Route A* (Euclidean)

A* (Manhattan)

Dijkstra

RRT

0-1 252 289 234 272
1-2 403 439 666 474
2-3 395 393 398 729
3-4 444 357 779 427
4-0 223 221 240 438

Total 1717 1699 2317 2340

Table 8 shows the performance analysis of algorithms based on the CPU utilization averages during the navigation

process along routes. From the observation of Table 8, in terms of average CPU utilization during navigation

process, RRT outperforms both A* variants and Dijkstra algorithm by having lower average CPU usage. RRT is

the most effective overall with average CPU usage of 28.69%, followed by A* variants with 30.93% (Euclidean)

and 31.89% (Manhattan). Dijkstra algorithm’s average CPU usage is dramatically higher with having average of

47.94% (approximately 67% higher than RRT, 55% higher than A* Euclidean and 50% higher than A*

Manhattan).

Table 8. Average CPU utilization during navigation

Route A* (Euclidean)
 (%)

A* (Manhattan)
(%)

Dijkstra
(%)

RRT
(%)

0-1 46.19 51.14 48.10 30.41
1-2 26.99 26.74 47.95 28.09
2-3 26.77 27.08 47.65 27.65
3-4 27.35 27.37 48.21 28.67
4-0 27.33 27.14 47.80 28.63

Average 30.93 31.89 47.94 28.69

V. DISCUSSION

In this paper, for optimal efficiency in terms of the travel times along routes and generated path lengths,

A*(Manhattan) is shown to be the best choice with the shortest duration (169.8 seconds) and shortest total path

length (62.765 m) according to Tables 5-6, followed by A* (Euclidean). This observation could be attributed to

A* algorithm’s heuristic-based search process and the accuracy of the heuristics of its variants in this study. In

general, A* (Manhattan) is generally faster in grid-based environments where only vertical and horizontal

movements are allowed. Dijkstra’s algorithm is shown to be significantly slower and generates longer paths than

both A* variants, likely because it does not use any heuristics and explores all possible paths, which may have led

to longer travel times and longer distances. On the other hand, RRT algorithm is typically more suitable for

ROS-based path plannings J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 589-606, 2025.

603

complex and dynamic environments where grid-based search algorithms such as A* and Dijkstra may struggle.

However, in this study, since the environment is not very complicated and there are no dynamic objects, RRT is

shown to be much slower and generates longer paths compared to all other algorithms. This indicates that it can

be inefficient for simple path finding tasks.

For optimal efficiency in terms of the number of messages sent to ‘cmd_vel’ topic, A* (Manhattan) is the best

choice by sending the fewest number of messages (1699) to the ‘cmd_vel’ topic during navigation according to

Table 7, followed by A* (Euclidean). Dijkstra algorithm, on the other hand, while guaranteeing an optimal path,

results in more computational cost with a significantly higher number of messages, which is making it less efficient

in terms of communication load. Also, the RRT algorithm tends to have a high message count; this could mean

that more frequent adjustments are needed in navigation processes due to its approach to path-planning in dynamic

or complex spaces.

For the best average CPU utilization along the navigation process, based on Table 8, RRT algorithm shows the

minimum average CPU utilization. It is then followed by both variants of A*, Euclidean and Manhattan. This will

indicate that among the rest of the comparative algorithms, RRT algorithm has more computational efficiency in

terms of CPU utilization than both variants of A* and Dijkstra's algorithm. This can be explained by the fact that

RRT does search without the use of a grid, hence avoiding some of the heavy computation common in grid-based

path-finding algorithms like A* and Dijkstra. The highest average CPU utilization is contributed by Dijkstra,

probably because it is an exhaustive search algorithm and does not make use of heuristics. A* Euclidean and

Manhattan variants represent a similar CPU utilization pattern but with slight variation. Its CPU utilizations are

higher compared to RRT and lower than Dijkstra, since it uses a heuristic function that guides its search, therefore,

making A* much more computationally efficient in the resource utilizations compared to Dijkstra.

Although our findings provide an overview of the efficiency of various pathfinding algorithms individually, there

are also studies that can be conducted to reveal how the algorithms can be optimized for real-world use. For

instance, blending hybrid methods that utilize the best traits of grid-based and non-grid-based algorithms can

enhance efficiency as well as flexibility in detailed, dynamic environments. Moreover, the application of novel

technologies, such as machine learning to dynamically change heuristics or multi-agent systems to discover paths

in a collaborative way, could overcome the said weaknesses of algorithms like RRT in less complex environments.

These new approaches might offer more flexible and scalable algorithms, thereby rendering them more suitable to

realistic robotic pathfinding issues where real-time adaptability, computational efficiency, and communication cost

are imperative concerns.

VI. CONCLUSIONS

In this paper, performance analysis for three path planning algorithms, namely A*, Dijkstra, and RRT, was

conducted for a LiDAR-based mecanum wheeled mobile robot in the ROS-based Gazebo simulation environment.

By evaluating these algorithms with respect to the performance parameters such as path length, travel time, number

of velocity commands sent and CPU utilization, the study provides significant results regarding their performance

for specific robotic navigation tasks. In conclusion, the comparison of A*, Dijkstra, and RRT algorithms in a

simulated ROS Gazebo environment provided essential insights into their performances on respective basis for

 J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 589-606, 2025. ROS-based path plannings

604

path planning in mecanum wheeled mobile robot. A* performed with better travel time, optimized path length,

and velocity command rate, making it the optimal choice to minimize travel time and command processing

optimization. However, RRT was more efficient compared to A* and Dijkstra in terms of CPU, suggesting that it

might be more optimally utilized where there are stricter computational constraints. Dijkstra, despite offering a

consistent solution, had relatively lower performance across all areas compared to the other two algorithms. In

general, the study highlights compromises between different path planning methods and the necessity of selecting

the appropriate algorithm based on some performance requirements and system constraints. The experiment was

only done on simulated data, a limitation in that the results might not be entirely true under real conditions. Still,

it is anticipated that the performance outcomes of these algorithms will be in a close proportionate ratio with the

ones obtained in real experiments, even though they might differ because of the discrepancy between simulated

and real environments. Future work can extend this analysis to include physical mobile robots, real-world

environments, dynamic obstacles, and hybrid algorithm approaches to further improve the adaptability and

efficiency of robotic navigation systems.

ACKNOWLEDGMENT

This project is supported by TÜBİTAK with project No. 1139B412302608, 2023. The authors thank TÜBİTAK

for their supports.

REFERENCES

1. Levine S, Shah D (2022) Learning robotic navigation from experience: principles, methods and recent
results. Phil Trans R Soc B 378:20210447. https://doi.org/10.1098/rstb.2021.0447

2. Sahoo SK, Choudhury BB (2023) A review of methodologies for path planning and optimization of mobile
robots. Journal of process management and new technologies 11(1-2):122-140.
https://doi.org/10.5937/jpmnt11-45039

3. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numerische Mathematik 1:269–271.
https://doi.org/10.1007/BF01386390

4. Hart PE, Nilsson NJ, Raphael B (1968) A Formal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cybernetics 4(2):100–7. https://doi:
10.1109/TSSC.1968.300136

5. LaValle SM (1998) Rapidly-exploring random trees: A new tool for path planning. Technical Report
Computer Science Department, Iowa State University.

6. Al-Ansarry, Suhaib, Al-Darraji S (2021) Hybrid RRT-A*: An Improved Path Planning Method for an
Autonomous Mobile Robots. Iraqi Journal for Electrical & Electronic Engineering 17(1):1-10.
https://doi.org/10.37917/ijeee.17.1.13

7. Dirik M, Kocamaz F (2020) Rrt-dijkstra: An improved path planning algorithm for mobile robots. Journal
of Soft Computing and Artificial Intelligence 1(2):69-77.

8. Chen R, Hu J, Xu W (2022) An RRT-Dijkstra-Based Path Planning Strategy for Autonomous Vehicles.
Applied Sciences 12(23):11982. https://doi.org/10.3390/app122311982

9. Zammit C, Van Kampen EJ (2022) Comparison between A* and RRT algorithms for 3D UAV path planning.
Unmanned Systems 10(02):129-146. https://doi.org/10.1142/S2301385022500078

10. Cai Q (2024) A Comparison Between A* and RRT Algorithm in Path Planning for Mobile Robot. Highlights
in Science, Engineering and Technology 97:282-287. https://doi.org/10.54097/2stv5y97

11. Aydemir H, Tekerek M, Gök M (2021) Examining of the Effect of Geometric Objects on SLAM
Performance Using ROS and Gazebo. El-Cezeri 8(3):1441-1454. https://doi.org/10.31202/ecjse.943364

12. Zhou L, Zhu C, Su X (2022) Slam algorithm and navigation for indoor mobile robot based on ros. IEEE
International Conference on Software Engineering and Artificial Intelligence pp. 230-236. Xiamen, China,
June 10-12. https://doi.org/10.1109/SEAI55746.2022.9832313

https://doi.org/10.1098/rstb.2021.0447
https://doi.org/10.5937/jpmnt11-45039
https://doi.org/10.1007/BF01386390
https://doi:%2010.1109/TSSC.1968.300136
https://doi:%2010.1109/TSSC.1968.300136
https://doi.org/10.37917/ijeee.17.1.13
https://doi.org/10.3390/app122311982
https://doi.org/10.1142/S2301385022500078
https://doi.org/10.54097/2stv5y97
https://doi.org/10.31202/ecjse.943364
https://doi.org/10.1109/SEAI55746.2022.9832313

ROS-based path plannings J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 589-606, 2025.

605

13. Karur K, Sharma N, Dharmatti C, Siegel JE (2021) A survey of path planning algorithms for mobile robots.
Vehicles 3(3):448-468. https://doi.org/10.3390/vehicles3030027

14. Gök M, Akçam ÖŞ, Tekerek M (2022) Performance Analysis of Search Algorithms for Path Planning, KSU
Journal of Engineering Sciences 26(2):379-394. https://doi.org/10.17780/ksujes.1171461

15. Yao J (2023) Path planning algorithm of indoor mobile robot based on ROS system. IEEE International
Conference on Image Processing and Computer Applications pp. 523-529. Changchun, China, August 11-
13. https://doi.org/10.1109/ICIPCA59209.2023.10257966

16. Tamang MT, Maheriya D, Sharif MS, Sutharssan T (2024) Autonomous Navigation for TurtleBot3 Robots
in Gazebo Simulation Environment. International Conference on Innovation and Intelligence for Informatics,
Computing, and Technologies pp. 568-574. Sakhir, Bahrain, November 17-19.
https://doi.org/10.1109/3ict64318.2024.10824668

17. Megalingam RK, Rajendraprasad A, Manoharan SK (2020) Comparison of planned path and travelled path
using ROS navigation stack. International Conference for Emerging Technology pp. 1-6. Belgaum, India,
June 5-7. https://doi.org/10.1109/INCET49848.2020.9154132

18. Breiling B, Dieber B, Schartner P (2017) Secure communication for the robot operating system. IEEE
international systems conference pp. 1-6. Montreal, QC, Canada, April 24-27.
https://doi.org/10.1109/SYSCON.2017.7934755

19. Quigley M, Conley K, Gerkey B et al (2009) ROS: an open-source Robot Operating System. 3-3.2, p. 5.
ICRA workshop on open source software, Kobe, Japan, May 12-17.

20. Rivera ZB, De Simone MC, Guida D (2019). Unmanned ground vehicle modelling in Gazebo/ROS-based
environments. Machines, 7(2), 42. https://doi.org/10.3390/machines7020042

21. Qiao J, Guo J, Li Y (2024) Simultaneous localization and mapping (SLAM)-based robot localization and
navigation algorithm. Appl Water Sci 14, 151. https://doi.org/10.1007/s13201-024-02183-6

22. Duchoň F, Babinec A, Kajan M, Beňo P, Florek M, Fico T, Jurišica L (2014) Path planning with modified a
star algorithm for a mobile robot. Procedia engineering, 96:59-69.
https://doi.org/10.1016/j.proeng.2014.12.098

23. Zhang L, Li Y (2021) Mobile robot path planning algorithm based on improved a star. Journal of Physics:
Conference Series 1848-1, p.012013, Sanya, China, Jan. 29-31. https://doi.org/10.1088/1742-
6596/1848/1/012013

24. Nayak S, Bhat, M, Reddy NS, Rao BA (2022) Study of distance metrics on k-nearest neighbor algorithm for
star categorization. Journal of Physics: Conference Series v.2161-1, pp.012004, Manipal, India, Oct. 28-30.
https://doi.org/10.1088/1742-6596/2161/1/012004

25. Bernardo GT, Vogás LM, Rodrigues SD, Lopes TG et al (2022) A-star based algorithm applied to target
search and rescue by a uav swarm. Latin American Robotics Symposium, Brazilian Symposium on Robotics,
and Workshop on Robotics in Education, pp.49-54. São Bernardo do Campo, Brazil, Oct. 18-21.
https://doi.org/10.1109/LARS/SBR/WRE56824.2022.9996054

26. Javaid A (2013) Understanding Dijkstra's algorithm. SSRN 2340905. https://doi.org/10.2139/ssrn.2340905
27. Candra A, Budiman MA, Hartanto K (2020) Dijkstra's and a-star in finding the shortest path: A tutorial.

International Conference on Data Science, Artificial Intelligence, and Business Analytics pp.28-32, Medan,
Indonesia, July 16-17. https://doi.org/10.1109/DATABIA50434.2020.9190342

28. Rachmawati D, Gustin L (2020) Analysis of Dijkstra’s algorithm and A* algorithm in shortest path problem.
Journal of Physics: Conference Series, Medan 1566-1, pp.012061, Indonesia, Nov. 26-27, 2019.
https://doi.org/10.1088/1742-6596/1566/1/012061

29. Karaman S, Walter MR, Perez A, Frazzoli E, Teller S (2011) Anytime motion planning using the RRT. IEEE
international conference on robotics and automation pp.1478-1483, Shanghai, China, May 9-13.
https://doi.org/10.1109/ICRA.2011.5980479

30. Duchoň F, Hažík J, Rodina J et al (2019) Verification of slam methods implemented in ros. Journal of
Multidisciplinary Engineering Science and Technology, 6(9):2458-9403. https://doi.org/10.22223/tr.2016-
1/2011

31. Rojas-Fernández M, Mújica-Vargas D, Matuz-Cruz M, López-Borreguero D (2018) Performance
comparison of 2D SLAM techniques available in ROS using a differential drive robot. International
Conference on Electronics, Communications and Computers pp.50-58, Cholula, Mexico, Feb. 21-23.
https://doi.org/10.1109/CONIELECOMP.2018.8327175

32. Walenta R, Schellekens T, Ferrein A, Schiffer S (2017) A decentralised system approach for controlling
AGVs with ROS. IEEE AFRICON pp.1436-1441, Cape Town, South Africa, Sept. 18-20.
https://doi.org/10.1109/AFRCON.2017.8095693

33. Thale SP, Prabhu MM, Thakur PV, Kadam P (2020) ROS based SLAM implementation for Autonomous
navigation using Turtlebot. ITM Web of conferences v.32 p.01011, Navi Mumbai, India, June 27-28.
https://doi.org/10.1051/itmconf/20203201011

https://doi.org/10.3390/vehicles3030027
https://doi.org/10.17780/ksujes.1171461
https://doi.org/10.1109/ICIPCA59209.2023.10257966
https://doi.org/10.1109/3ict64318.2024.10824668
https://doi.org/10.1109/INCET49848.2020.9154132
https://doi.org/10.1109/SYSCON.2017.7934755
https://doi.org/10.3390/machines7020042
https://doi.org/10.1007/s13201-024-02183-6
https://doi.org/10.1016/j.proeng.2014.12.098
https://doi.org/10.1088/1742-6596/1848/1/012013
https://doi.org/10.1088/1742-6596/1848/1/012013
https://doi.org/10.1088/1742-6596/2161/1/012004
https://doi.org/10.1109/LARS/SBR/WRE56824.2022.9996054
https://doi.org/10.1109/DATABIA50434.2020.9190342
https://doi.org/10.1088/1742-6596/1566/1/012061
https://doi.org/10.1109/ICRA.2011.5980479
https://doi.org/10.22223/tr.2016-1/2011
https://doi.org/10.22223/tr.2016-1/2011
https://doi.org/10.1109/CONIELECOMP.2018.8327175
https://doi.org/10.1109/AFRCON.2017.8095693
https://doi.org/10.1051/itmconf/20203201011

 J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 589-606, 2025. ROS-based path plannings

606

34. Chen SP, Peng CY, Huang GS, Lai CC, Chen CC, Yen MH (2023). Comparison of 2D and 3D LiDARs
Trajectories and AMCL Positioning in ROS-Based move_base Navigation. IEEE International Conference
on Omni-layer Intelligent Systems pp. 1-6, Berlin, Germany, July 23-25.
https://doi.org/10.1109/COINS57856.2023.10189271

https://doi.org/10.1109/COINS57856.2023.10189271

