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I. INTRODUCTION 

With the rapid proliferation of mobile autonomous robots in various industries in recent years, efficient 

autonomous navigation has become a critical necessity to enable robots to operate effectively in complex and 

dynamic environments [1] and [2]. This topic poses serious challenges such as mapping unknown environments, 

positioning robots in these environments, planning optimal paths towards the desired destination, and avoiding 

obstacles in real time. The most important path planning algorithms developed such as Dijkstra developed by E. 

W. Dijkstra in 1959 [3], A* developed by P. E. Hart in 1968 [4], and Rapidly-exploring Random Tree (RRT) 

developed by S. M. LaValle in 1998 [5] play a significant role in addressing these challenges while enabling robots 

to successfully perform their tasks.  

Today, with the new advancements in the field of path planning and navigation of mobile autonomous systems, 

these algorithms (A*, Dijkstra and RRT) are still widely preferred for optimal route generation. Various studies 

have investigated the performance of these widespread algorithms, compared their performance and proposed 

hybrid approaches to improve the overall efficiency of the path planning process. [6] introduced the Hybrid RRT-

A* algorithm by combining RRT algorithm’s exploration capability and A* algorithm’s optimal path generation 

to improve convergence and computational efficiency within the ROS framework. Similarly, [7] and [8] have 
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36% and RRT by 38%. In terms of CPU utilization performance criterion, RRT performed approximately 
10% better than A* and 74% better than Dijkstra. As a result, significant information was obtained about the 
strengths and weaknesses of each algorithm in selecting the most appropriate path planning strategies for 
mobile autonomous robots. 
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proposed hybrid approaches such as RRT-Dijkstra, demonstrating the improvements in execution time and path 

optimization, and therefore supporting that hybrid approaches can propose significant improvements compared to 

classic ones. Apart from proposing hybrid approaches, several studies compared the algorithms and emphasized 

the trade-offs. In this context, [9] and [10] examined and compared A* and RRT algorithms and emphasized A* 

algorithm’s advantage in creating shorter paths and RRT’s advantage in thorough exploration. In SLAM-related 

experiments, [11] examined the impact of various types of geometric shapes on mapping performance using 

TurtleBot3 robot in Gazebo, demonstrated that the object geometry can significantly affect the SLAM 

performance. [12] assessed the performance of A* and Dijkstra algorithms in the ROS framework and 

demonstrated that the Dijkstra algorithm surpasses A* by creating shorter and more continuous routes. 

Additionally, [13] and [14] provided comprehensive overviews of widespread path-planning methods by 

emphasizing the trade-offs between execution time and path efficiency across various path-planning 

methodologies. [15] proposed an improved A* algorithm within ROS framework, which outperformed the classic 

A* algorithm in both simulation environment and real-world experiments by generating shorter paths in a shorter 

time than the classic A* algorithm. In addition, [16] examined the performance of A* and RRT algorithms using 

TurtleBot3 robot within static and dynamic environments and indicated that A* is more suitable for static 

environments whereas RRT is more suitable for dynamic environments in terms of route precision.  

The aforementioned studies generally emphasize the advantages and disadvantages of A*, Dijkstra and RRT 

algorithms, providing a valuable source for robotics applications. However, these and many similar studies in the 

literature contain some research gaps. In [6, 7, 8, 9, 10, 13], only theoretical studies have been conducted and there 

is no practical simulation study with mobile robots. [11] only used SLAM navigation and did not integrate these 

path planning algorithms on the mobile robot. [12] implemented a mobile robot application using only A* and 

Dijkstra algorithms and compared them only in terms of path length. [14] has implemented all of these algorithms 

in ROS and Rviz simulation environment, but there is no realistic mobile robot study with measurement-based 

feedback. In addition, in terms of performance, only path length and duration were examined in a more limited 

way. [15] implemented only A* algorithm on a LiDAR based mobile robot in ROS and Rviz simulation 

environment, but did not make any analysis and performance comparison in terms of path length and time 

compared to other algorithms. [16] implemented simulation applications of all of these algorithms in the Gazebo 

environment of the TurtleBot mobile robot, but did not make any performance comparisons. 

Robot Operating System (ROS) is an open-source framework developed in 2007 for robotics research and 

development [17, 18]. It supports multiple programming languages and enables flexible communication between 

nodes through a master node and topics [19]. ROS's rapid growth is driven by its open-source nature and 

collaborative environment, allowing researchers to contribute to and benefit from shared resources. Gazebo is a 

ROS-based 3D simulation tool that allows robotic systems, including sensors and motors, to be designed and tested 

in a virtual environment [20]. It uses "world" models, created with the Build editor, where robots interact with 

physical elements like terrain and obstacles defined in Simulation Description Format (SDF) files. By integrating 

with ROS, users can simulate and control robots in these worlds, allowing for realistic testing and validation before 

real-world deployment. RViz is a powerful visualization tool in ROS that enables real-time monitoring of robot 

status, sensor data, and navigation information, essential for mapping and path planning [17]. During simulation 

in Gazebo, RViz helps visualize data such as laser scans, point clouds, and odometry to ensure accurate robot 

behavior and performance. According to the research gaps in the above-mentioned studies and in the literature in 
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general, this study aims to examine the performance of these algorithms by implementing a mobile robot in a more 

realistic simulation environment and to present a more comprehensive comparison result. 

SLAM (Simultaneous Localization and Mapping) is a technique widely used by robotics researchers and 

developers to create a map of an unknown environment. Using odometric data such as laser scans from LiDAR 

(Light Detection and Ranging) sensor, a map of an unknown environment can be created, and the robot can be 

positioned on the map simultaneously [21]. Among different SLAM techniques, in this paper we have chosen to 

use the Gmapping algorithm for LiDAR-based 2D mapping. The ROS navigation stack is a directory that allows 

the interaction of the packages to make a mobile robot navigate around its environment autonomously. It simply 

stitches together most of the basic competencies of a robot: self-location, path planning, obstacle avoidance, and 

motion control. When a 2D navigation goal (2DNavGoal) is set for a robot in RViz with the ROS navigation stack, 

the robot can reach the desired location autonomously. This work aims to perform a performance test comparison 

of the A*, Dijkstra, and RRT path planning algorithms on a mobile autonomous robot with LiDAR sensors and 

mecanum wheels designed in Gazebo within an indoor 'world' environment that is mapped using the SLAM 

Gmapping method within the ROS framework. 

 

II. PATH PLANNING ALGORITHMS  

2.1. A* algorithm 

Hart in [19] demonstrated the best-in-class property of a class of search strategies by explaining how heuristic 

information from the problem domain can be incorporated into the formal mathematical theory of graph search. 

A* algorithm has been determined as a heuristic search algorithm type that uses a combination of heuristic and 

exact cost to discover the most suitable route between a starting point and the goal [22]. It compares the cost values 

of its expanded nodes and selects the most cost-promising node for further exploration up to the point when the 

target node has been reached. By always expanding the node with the lowest cost, a path is formed which has a 

minimum total cost [23]. The evaluation function is expressed as 

 

𝑓𝑓(𝑛𝑛) = 𝑔𝑔(𝑛𝑛) + ℎ(𝑛𝑛) (1) 
 

with g(n) as a known cost from the start node to the node 'n' while h(n) represents a heuristic estimation (Manhattan, 

Euclidean or Chebyshev) of the cost from the current node to the goal. A* prioritizes nodes to explore by 

integrating g(n) and h(n). 

In the A* algorithm, the heuristic function h(n) is influential in its performance. The Euclidean distance heuristic 

calculates the straight-line distance between two points. This is perfect for when one can move diagonally, as in 

continuous or grid-based environments with movement based on 'free'. The Euclidean distance heuristic function 

is determined by the square root of the sum of squares of differences between the Cartesian coordinates of the 

points [24]. It is given by the equation below [25] 

 

ℎ(𝑛𝑛) =  �(𝑥𝑥2 − 𝑥𝑥1)2 + (𝑦𝑦2 − 𝑦𝑦1)2 (2) 
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where (x1, y1) is the current position and (x2, y2) is the target position in Cartesian space. 

The distance measured along the grid-based axes when the movement is constricted to vertical and horizontal paths 

is known as the entire Manhattan distance heuristic. Mathematically, it is a summation of the absolute differences 

of the positions in Cartesian space [24], given in the equation below [25] 

 

ℎ(𝑛𝑛) = |𝑥𝑥2 − 𝑥𝑥1| +  |𝑦𝑦2 − 𝑦𝑦1| (3) 
  

 
In this study, we used Euclidean and Manhattan distance heuristics for performance comparisons. 

 

2.2. Dijkstra’s algorithm 

Dijkstra’s algorithm developed by Dijkstra in [3] is a search-based shortest-path algorithm, which is used to find 

the shortest path between a starting node (which is also called the ‘source node’) and all other nodes in a weighted 

graph [26]. Its working principle is iteratively selecting the node with the shortest known distance from the starting 

node, exploring all its neighbors and updating their tentative distances if a shorter path is found. Dijkstra algorithm 

can find the shortest path with an optimal solution, but it requires more time to complete the searching process 

[27]. 

The difference between the Dijkstra and A* algorithm is that the A* algorithm uses a heuristic function to prioritize 

nodes that are likely to lead to a better path whereas Dijkstra’s algorithm explores all possible paths without 

prioritizing them [28]. 

 

2.3. RRT algorithm 

RRT, first developed in [5], is probabilistic planner that excels at addressing challenging path planning problems 

in high-dimensional spaces. RRT is a sampling-based path planning algorithm, which is based on incremental 

sampling [29]. It is a probabilistic algorithm that builds a tree by incrementally extending branches towards random 

samples in the configuration space. 

Sampling-based algorithms such as RRT have the advantage of being able to find a feasible motion plan relatively 

quickly even in complex environments. However, even though the RRT algorithm quickly finds a feasible solution, 

it may not always provide the most optimal path [29]. 

 

III. SIMULATION SETUP 

The experiments are conducted using the simulation environment of the Robot Operating System (ROS Noetic), 

with Gazebo 11.11.0. This framework operates under the Ubuntu 20.04 (64-bit) operating system. For the 

visualization of the SLAM and path-planning processes, RViz is utilized. For the data collection process, terminal 

windows are utilized for managing rosbag recordings. Rosbag allows data capture and analysis for debugging and 

testing by recording and playing back the messages that are exchanged between ROS nodes and storing the 

message data in a file. A custom Python script is implemented to start recording rosbag files when the robot starts 
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moving and automatically stop the recording when the robot reaches the target and stops. This approach assures 

that only the relevant data during the robot’s motion is captured. From the recorded rosbag files, travel times along 

routes and number of messages sent to cmd_vel topic are directly obtained. In addition, the recorded rosbag files 

are later analyzed and Python scripts are created to obtain the performance metrics such as the total traveled 

distance and average CPU utilization. These scripts process /odom topic data to calculate the traveled distance and 

monitor CPU usage during navigation by detecting when navigation starts, starting CPU logging and stopping it 

when the goal is reached. In the simulation study, each algorithm has been run under the same conditions, 

environment, mobile robot, target points and parameters given in Table 1 and Table 2 in order to make a fair 

performance comparison between the algorithms. 

 

 Table 1. Local planner configuration    
Parameter Value 
max_vel_x 
(maximum forward linear velocity)  0.4 m/s 
max_vel_x_backwards 
(maximum reverse linear velocity)  0.2 m/s 
max_vel_theta 
(maximum angular velocity)  0.3 rad/s 
acc_lim_x 
(linear acceleration limit)  0.5 m/s2 
acc_lim_theta 
(angular acceleration limit)  0.5 rad/s2 
  

3.1. Robot model 

In this study, a four-wheeled mecanum mobile robot with a LiDAR sensor is used as shown in Figure 1. Robot 

descriptions are provided in Xacro (XML Macro) format, which defines links, joints, mass, size and inertia values 

of the robot as given in Table 2. For defining the kinematics of the mobile robot, differential drive controller 

Gazebo plugin ‘diff_drive_controller’ is used. For mapping process and navigation, a LiDAR sensor was 

specifically designed with the dimensions, and an operational range, as defined in Table 3, that is suitable for 

effective mapping and navigation and mounted on top of the robot. 

 

 
Figure 1. Mecanum wheeled mobile robot model in Gazebo 

 
 Table 2. Mecanum wheeled mobile robot properties    
Parameter  Value  
Wheel torque 30 Nm  
Wheel diameter  0.13 m  
Wheel acceleration 5 rad/s2  
Mass 31.0431 kg  
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Table 3. Specifications of the LiDAR sensor designed in Gazebo 
Dimensions                   Range                     Field of View 

(m)                             (m)                               (°) 
Scanning Parameters   Noise  

Radius Height Min Max Min Max Samples Resolution 
(°) 

Type Mean 
(m) 

StdDev 
(m) 

0.12 0.07 0.3 12 -180 180 360 1 Gaussian 0 0.02 
 

The field of view (FOV) of the LiDAR sensor describes the angular range of the area it can scan. In this study, the 

LiDAR’s FOV, as given in Table 1, ranges from -180 to 180, which indicates that it can scan the entire horizontal 

plane in a full 360 degrees circle. In addition, LiDAR takes 360 samples per scan, with each sample corresponding 

to a 1 degree of interval. In other words, LiDAR collects one data point for each degree of rotation. 

 

3.2. Gazebo world 

A special Gazebo world (as shown in Figure 2) is created using the Build editor. The environment is enclosed by 

outer walls and within these walls, there are additional smaller walls and three tables. Two of the tables, identified 

by dark yellow color, are smaller and have a single leg while the third table, which is larger and gray, is supported 

with four legs. These tables and the smaller walls were added to the world to increase the complexity of the robot 

navigation process and to facilitate the testing of planning algorithm behaviors. 

 

 
Figure 2. Custom-designed Gazebo world 

 

3.3. SLAM and generated world map 

For the navigation process of the mobile robot, a map of the Gazebo world needs to be created. In this study, the 

world map is generated and provided to the navigation system using the SLAM Gmapping algorithm.   

In the SLAM algorithm’s flowchart (as shown its architecture in Figure 3), the process starts by detecting whether 

the robot is in motion.  If movement is detected, odometry data and laser data are gathered. These two inputs are 

processed by the SLAM algorithm for estimating the robot’s position while correcting errors in odometry. The 

SLAM algorithm updates the map of the environment simultaneously, and the map is managed by the map server. 
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This continuous loop allows the robot to maintain accurate localization and mapping, which is essential for 

autonomous navigation. If no motion is detected, the system stops updates until the robot resumes motion. 

 
Figure 3. SLAM localization flowchart 

 
There are several SLAM algorithms in ROS, such as HectorSLAM, Gmapping, KartoSLAM, CoreSLAM and 

LagoSLAM [30].  In this study, Gmapping is used because of its efficiency and its capability for 2D occupancy 

grid mapping. Gmapping is a SLAM algorithm, which is based on Rao-Blackwellized particle filter (RBPF) that 

creates grid maps from laser data.  It considers the latest observation from sensors and the robot’s movement to 

generate the proposal distribution [31]. 

Figure 4 shows the generated map of the custom-designed Gazebo environment in RViz after the SLAM Gmapping 

algorithm process. The map accurately depicts the characteristics of the environment, such as walls, tables and 

open spaces. 

 

 
Figure 4. Generated world map 
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3.4. Selection of target points 

As shown in Figure 5, target points in RViz are specifically selected for observing the mobile robot navigation 

effectively. These five points are strategically chosen to monitor potential collisions with the environmental 

features in the Gazebo world, such as tables and walls. By selecting the target points in critical locations (middle, 

top left, bottom left, top right, bottom right), the aim is to assess the robot’s obstacle avoidance capabilities with 

the help of path planning algorithms. 

 
Figure 5. Target points from 0 to 4 

 

3.5. ROS navigation stack 

The ROS Navigation Stack (as shown in Figure 6) is a set of software tools designed for self-localization, path 

planning, obstacle avoidance and motion control [32]. It processes all the sensor information and generates a safe 

velocity command for differential drive plugin ‘diff_drive_controller’ in Gazebo. The generated velocity 

commands are published to the ‘cmd_vel’ topic.  For localization of robots on map during navigation, AMCL 

(Adaptive Monte Carlo Localization) and ‘move_base’ packages are utilized. 

AMCL is a probabilistic localization system, used for robots operating in 2D. It employs the adaptive Monte Carlo 

localization method, which utilizes a particle filter to monitor the robot’s position relative to a known map [33]. 

AMCL estimates the robot's pose by means of the two steps: filtering and resampling. In AMCL, lasers, laser 

scans, and transformations are inputs for creating pose estimates outputs. By using AMCL, the robot will be able 

to understand precisely where it is located within the map that was made. 

The 'move_base' package in ROS works as an interface, integrating the path planning and obstacle-avoiding 

processes, enabling a robot to move from a starting point to the desired one while navigating across obstacles in 
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the environment. According to [34], it integrates a global and a local path planners and obstacle avoiders into a 

single package. The global path planner inside the 'move_base' can also use various algorithms such as A*, Dijkstra 

and RRT. For local path planning, TEB (Time Elastic Band) and DWA (Dynamic Window Approach) planners 

can be used. Some of the most important parameters of the 'move_base' package are presented in the following 

configuration file and may be altered to change the behavior of the robot. 

• ‘base_global_planner’ and ‘base_local_planner’: These parameters specify the types of global and local 

path planners to be used in navigation process.  

• ‘global_costmap’ and ‘local_costmap’: These are the parameters that define the recovery behavior for 

'move_base'. Recovery behaviors instruct the robot to try and reroute its path when faced with obstacles. 

• ‘recovery_behaviors’: This parameter defines the recovery strategies for 'move_base' to allow the robot to 

redirect itself along specified recovery behaviors when it faces obstacles [34]. 

• ‘goal_tolerance’: This parameter defines the acceptable distance to the goal position. 

• ‘goal_reached_threshold’: This parameter defines the distance at which the robot is considered to have 

reached the target. 

 
Figure 6. The architecture of ROS navigation stack 

 

The ROS ‘rqt_graph’ command is used to visualize the communication structure, which shows how nodes interact 

with each other through published or subscribed topics or services. In these graphs, each node is represented as a 

box, and the topics are represented as arrows connecting the nodes. The ‘rqt_graph’ schematic of this study is 

given in Figure 7. 

The important components in the ‘rqt_graph’ schematic can be explained as below:  
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• /map_server: This node is a part of the map_server package, which loads and publishes static 2D 

occupancy grid maps to the /map topic.  

• /map: This topic publishes the static occupancy grid map of the environment.  

• /cmd_vel: This topic publishes linear and angular velocity commands to control the robot’s movements.  

• /odom: This topic provides odometry data, which contains the robot’s position and velocity.  

• /scan: This topic publishes laser scan data obtained from the LiDAR sensor for obstacle detection, which 

is crucial for the mapping process.  

 

 

 

Figure 7. ROS graph of the simulation setup 

 

IV. RESULTS  

The performance results of A*, Dijkstra and RRT path planning algorithms, which were tested on a LiDAR-

based and mecanum wheeled mobile robot in a specially designed Gazebo environment within the ROS 

framework, were analyzed. Manhattan distance heuristics and Euclidean distance heuristics were used separately 

to analyze the A* algorithm. 

For an example of the path plans generated by the algorithms, the robot’s trajectories on Route 3-4 are shown in 

Figures 8-11.  

Figure 8 shows the path plan, depicted in black line, generated by A* (Euclidean) algorithm on Route 3-4. 
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Figure 8. A* (Euclidean) algorithm’s path plan on Route 3-4 

 

Figure 9 shows the path plan, depicted in black line, generated by A* (Manhattan) algorithm on Route 3-4. 

 

 

Figure 9. A* (Manhattan) algorithm's path plan on Route 3-4 

 

Figure 10 shows the path plan, depicted in black line, generated by Dijkstra’s algorithm on Route 3-4. 
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Figure 10. Dijkstra's algorithm's path plan on Route 3-4 

 

Figure 11 shows the path plan, depicted in black line, generated by RRT algorithm on Route 3-4. In addition, the 

green, tree-like lines show the random trees produced by the RRT algorithm, since it is a sampling-based 

algorithm. 

 

Figure 11. RRT algorithm's path plan on Route 3-4 
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Table 4 gives the positions in meters of the five target points in Cartesian space X-Y-Z, as shown in Figure 5. It 

should be noted that the mobile robot moves only in X-Y surface coordinates, and the Z coordinate is always fixed 

at 0.09 m.  

 
Table 4. Coordinates of the target points in Cartesian space 

Point  X-Coordinate 
 (m) 

Y-Coordinate 
(m) 

Z-Coordinate  
(m) 

0 0 0 0.09 
1 -5 5 0.09 
2 -5 -6 0.09 
3 3.5 5 0.09 
4 0 -7 0.09 

 

In Tables 4-8, Route 𝑖𝑖 to 𝑖𝑖 + 1 (i = 0, 1, 2, 3, 4) indicates that the robot’s trajectory starts from point 𝑖𝑖 and finishes 

at point 𝑖𝑖 + 1.  Table 5 shows the performance analysis of the algorithms based on the travel time parameter. 

 
Table 5. Travel times along routes 

Route A* (Euclidean) 
 (s) 

A* (Manhattan) 
(s) 

Dijkstra 
(s) 

RRT 
(s) 

0-1 25.2 28.8 23.4 39.9 
1-2 40.3 43.9 66 52.6 
2-3 39.4 39.3 39.7 100 
3-4 44.3 35.7 77 46.4 
4-0 22.2 22.1 23.9 75 

Total 171.4 169.8 230 313.9 
 

From the observation of Table 3, in terms of total travel times, A* algorithms (both Euclidean and Manhattan) are 

faster than Dijkstra and RRT. A*(Manhattan) is the most efficient overall with the shortest duration 169.8 seconds, 

closely followed by A*(Euclidean) at 171.4 seconds. The duration of Dijkstra and RRT algorithms are significantly 

longer, with Dijkstra taking 230 seconds in total (approximately 35% longer than A* Manhattan and 34% longer 

than A* Euclidean) and RRT taking 313.9 seconds in total (approximately 85% longer than A* Manhattan, 83% 

longer than A* Euclidean and 36% longer than Dijkstra).  

Table 6 shows the performance analysis of the algorithms based on the total traveled distance to reach the target 

points. From the observation of Table 6, in terms of total traveled distances, A* algorithms (both Euclidean and 

Manhattan) surpass Dijkstra and RRT by creating shorter paths towards the goals. The created path length with 

A* (Manhattan) is the most effective with the shortest path length 62.765 meters, closely followed by A* 

(Euclidean) with 63.637 meters. The created path lengths with Dijkstra and RRT are significantly longer, with 

Dijkstra taking 70.855 meters in total (approximately 13% longer than A* Manhattan and approximately 11% 

longer than A* Euclidean) and RRT taking 74.227 meters in total (approximately 18% longer than A* Manhattan, 

17% longer than A* Euclidean and 5% longer than Dijkstra). 

 
Table 6. Path lengths along routes 

Route A* (Euclidean) 
 (m) 

A* (Manhattan) 
(m) 

Dijkstra 
(m) 

RRT 
(m) 

0-1 9.157 9.374 8.572 8.998 
1-2 13.926 14.512 17.601 15.703 
2-3 16.462 16.296 16.279 22.215 
3-4 15.971 14.423 20.144 16.332 
4-0 8.121 8.160 8.259 10.979 

Total 63.637 62.765 70.855 74.227 
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Table 7 shows the performance analysis of the algorithms based on the number of messages sent to ‘cmd_vel’ 

topic during navigation along routes. From the observation of Table 7, in terms of the total number of messages 

sent to ‘cmd_vel’ topic, A* algorithm (both Euclidean and Manhattan variants) surpasses Dijkstra and RRT by 

sending fewer messages. A* (Manhattan) is the most efficient overall with the fewest number of messages 1699, 

followed by A* (Euclidean) with 1717. In Dijkstra and RRT algorithms, the sent messages are more, with Dijkstra 

sending 2317 (approximately 36% more than A* Manhattan and 35% more than A* Euclidean) and RRT sending 

2340 messages in total (approximately 38% more than A* Manhattan, 36% more than A* Euclidean and 1% more 

than Dijkstra). 

 

Table 7. Number of messages sent to ‘cmd_vel’ topic 

Route A* (Euclidean) 
  

A* (Manhattan) 
 

Dijkstra 
 

RRT 
 

0-1 252 289 234 272 
1-2 403 439 666 474 
2-3 395 393 398 729 
3-4 444 357 779 427 
4-0 223 221 240 438 

Total 1717 1699 2317 2340 
 

Table 8 shows the performance analysis of algorithms based on the CPU utilization averages during the navigation 

process along routes. From the observation of Table 8, in terms of average CPU utilization during navigation 

process, RRT outperforms both A* variants and Dijkstra algorithm by having lower average CPU usage. RRT is 

the most effective overall with average CPU usage of 28.69%, followed by A* variants with 30.93% (Euclidean) 

and 31.89% (Manhattan). Dijkstra algorithm’s average CPU usage is dramatically higher with having average of 

47.94% (approximately 67% higher than RRT, 55% higher than A* Euclidean and 50% higher than A* 

Manhattan). 

 

Table 8. Average CPU utilization during navigation 

Route A* (Euclidean) 
 (%) 

A* (Manhattan) 
(%) 

Dijkstra 
(%) 

RRT 
(%) 

0-1 46.19 51.14 48.10 30.41 
1-2 26.99 26.74 47.95 28.09 
2-3 26.77 27.08 47.65 27.65 
3-4 27.35 27.37 48.21 28.67 
4-0 27.33 27.14 47.80 28.63 

Average 30.93 31.89 47.94 28.69 
 

V. DISCUSSION 

In this paper, for optimal efficiency in terms of the travel times along routes and generated path lengths, 

A*(Manhattan) is shown to be the best choice with the shortest duration (169.8 seconds) and shortest total path 

length (62.765 m) according to Tables 5-6, followed by A* (Euclidean). This observation could be attributed to 

A* algorithm’s heuristic-based search process and the accuracy of the heuristics of its variants in this study. In 

general, A* (Manhattan) is generally faster in grid-based environments where only vertical and horizontal 

movements are allowed. Dijkstra’s algorithm is shown to be significantly slower and generates longer paths than 

both A* variants, likely because it does not use any heuristics and explores all possible paths, which may have led 

to longer travel times and longer distances. On the other hand, RRT algorithm is typically more suitable for 
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complex and dynamic environments where grid-based search algorithms such as A* and Dijkstra may struggle. 

However, in this study, since the environment is not very complicated and there are no dynamic objects, RRT is 

shown to be much slower and generates longer paths compared to all other algorithms. This indicates that it can 

be inefficient for simple path finding tasks. 

For optimal efficiency in terms of the number of messages sent to ‘cmd_vel’ topic, A* (Manhattan) is the best 

choice by sending the fewest number of messages (1699) to the ‘cmd_vel’ topic during navigation according to 

Table 7, followed by A* (Euclidean). Dijkstra algorithm, on the other hand, while guaranteeing an optimal path, 

results in more computational cost with a significantly higher number of messages, which is making it less efficient 

in terms of communication load. Also, the RRT algorithm tends to have a high message count; this could mean 

that more frequent adjustments are needed in navigation processes due to its approach to path-planning in dynamic 

or complex spaces. 

For the best average CPU utilization along the navigation process, based on Table 8, RRT algorithm shows the 

minimum average CPU utilization. It is then followed by both variants of A*, Euclidean and Manhattan. This will 

indicate that among the rest of the comparative algorithms, RRT algorithm has more computational efficiency in 

terms of CPU utilization than both variants of A* and Dijkstra's algorithm. This can be explained by the fact that 

RRT does search without the use of a grid, hence avoiding some of the heavy computation common in grid-based 

path-finding algorithms like A* and Dijkstra. The highest average CPU utilization is contributed by Dijkstra, 

probably because it is an exhaustive search algorithm and does not make use of heuristics. A* Euclidean and 

Manhattan variants represent a similar CPU utilization pattern but with slight variation. Its CPU utilizations are 

higher compared to RRT and lower than Dijkstra, since it uses a heuristic function that guides its search, therefore, 

making A* much more computationally efficient in the resource utilizations compared to Dijkstra. 

Although our findings provide an overview of the efficiency of various pathfinding algorithms individually, there 

are also studies that can be conducted to reveal how the algorithms can be optimized for real-world use. For 

instance, blending hybrid methods that utilize the best traits of grid-based and non-grid-based algorithms can 

enhance efficiency as well as flexibility in detailed, dynamic environments. Moreover, the application of novel 

technologies, such as machine learning to dynamically change heuristics or multi-agent systems to discover paths 

in a collaborative way, could overcome the said weaknesses of algorithms like RRT in less complex environments. 

These new approaches might offer more flexible and scalable algorithms, thereby rendering them more suitable to 

realistic robotic pathfinding issues where real-time adaptability, computational efficiency, and communication cost 

are imperative concerns. 

 

VI. CONCLUSIONS 

In this paper, performance analysis for three path planning algorithms, namely A*, Dijkstra, and RRT, was 

conducted for a LiDAR-based mecanum wheeled mobile robot in the ROS-based Gazebo simulation environment. 

By evaluating these algorithms with respect to the performance parameters such as path length, travel time, number 

of velocity commands sent and CPU utilization, the study provides significant results regarding their performance 

for specific robotic navigation tasks. In conclusion, the comparison of A*, Dijkstra, and RRT algorithms in a 

simulated ROS Gazebo environment provided essential insights into their performances on respective basis for 
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path planning in mecanum wheeled mobile robot. A* performed with better travel time, optimized path length, 

and velocity command rate, making it the optimal choice to minimize travel time and command processing 

optimization. However, RRT was more efficient compared to A* and Dijkstra in terms of CPU, suggesting that it 

might be more optimally utilized where there are stricter computational constraints. Dijkstra, despite offering a 

consistent solution, had relatively lower performance across all areas compared to the other two algorithms. In 

general, the study highlights compromises between different path planning methods and the necessity of selecting 

the appropriate algorithm based on some performance requirements and system constraints. The experiment was 

only done on simulated data, a limitation in that the results might not be entirely true under real conditions. Still, 

it is anticipated that the performance outcomes of these algorithms will be in a close proportionate ratio with the 

ones obtained in real experiments, even though they might differ because of the discrepancy between simulated 

and real environments. Future work can extend this analysis to include physical mobile robots, real-world 

environments, dynamic obstacles, and hybrid algorithm approaches to further improve the adaptability and 

efficiency of robotic navigation systems.  
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