
Turkish Journal of Engineering – 2025, 9(3), 519-534 

 

 

Turkish Journal of Engineering 

https://dergipark.org.tr/en/pub/tuje 

e-ISSN 2587-1366 

 
 
 

A Novel Hyperparameter Tuning Method for Enhanced Intrusion Detection in Network 
Security 
 

Vahid Sinap*1  

 
1Ufuk University, Department of Management Information Systems, Türkiye, vahidsinap@gmail.com 
 
 
 
 

Cite this study: Sinap, V. (2025). A novel hyperparameter tuning method for intrusion detection. Turkish Journal 
of Engineering, 9(3), 519-534. 

 
https://doi.org/10.31127/tuje.1624366 
 
 

Keywords  Abstract 
Real-Time Attack 
Identification 
Intrusion Detection Systems 
Cybersecurity 
Network Security 
Adaptive Hyperparameter 
Optimization 
 

 Intrusion Detection Systems (IDS) are essential for ensuring the security of enterprise 
networks and cloud-based systems, as they defend against sophisticated and evolving 
cyberattacks. Machine learning (ML) techniques have emerged as effective tools to enhance 
IDS performance, addressing the limitations of traditional methods. This study proposes a 
novel hyperparameter tuning method for ML-based IDS, leveraging the NSL-KDD dataset with 
extensive feature selection and preprocessing to address data imbalance and redundancy. The 
method, integrating adaptive refinement with stochastic perturbation, optimizes classifiers 
such as Random Forest (RF), Gradient Boosting (GB), and Extreme Gradient Boosting (XGB), 
achieving both higher detection accuracy (99.90% with RF) and improved computational 
efficiency. This approach excels due to its dynamic adjustment of parameter ranges and 
controlled randomness, converging faster than traditional Grid Search and Random Search by 
reducing iterations by up to 87.5%. The experimental results demonstrate that tree-based 
models, particularly RF, outperform others due to their ability to model complex, non-linear 
patterns, enhanced by the proposed tuning method. Measured in terms of convergence speed, 
CPU time, and memory usage, this method proves suitable for deployment in real-time, 
resource-constrained environments, offering a scalable and efficient solution for network 
security. 

Research  Article 
 
Received:21.01.2025 
Revised:07.03.2025 
Accepted:09.03.2025 
Published:01.07.2025 
 

 
 
 
 
 
 

 

1. Introduction  
 

Cybersecurity has become a critical area of research 
and practice with the digital transformation of modern 
society. Increasing digitization in almost all sectors, from 
banking to energy infrastructures, healthcare to 
government agencies, has expanded both the scope and 
potential impact of cyberattacks. The rapid proliferation 
of threats to digital infrastructures, coupled with the 
ever-evolving tactics and techniques of attackers, has 
made the protection of these systems a vital priority [1]. 
In this context, effective IDS are indispensable tools for 
the security of modern networks. By monitoring network 
traffic and system activity, IDSs aim to detect potential 
threats and security breaches and intervene as early as 
possible [2]. However, the current state of these systems 

faces significant limitations in dealing with increasing 
cyber threats.  

Traditional IDS approaches rely heavily on signature-
based and anomaly-based methods. Signature-based 
methods store known patterns of attacks in databases 
and detect activity that fits these patterns [3]. Although 
these methods are generally effective with low false 
positive rates, they can only identify previously 
documented attacks and fail to detect zero-day attacks 
[4]. Anomaly-based methods, on the other hand, learn 
normal network behavior and treat deviations from this 
behavior as a potential threat. However, the high false 
positive rates seen in these methods negatively affect 
system performance and lead to problems such as false 
alarm fatigue [5]. 

The rapid evolution of cyber-attacks in today's 
environment presents IDSs with a more complex security 

https://dergipark.org.tr/en/pub/tuje
mailto:vahidsinap@gmail.com
https://orcid.org/0000-0002-8734-9509
https://dergipark.org.tr/en/pub/tuje/issue/90109/1624366


Turkish Journal of Engineering – 2025, 9(3), 519-534 

 

  520  

 

problem. Diversifying attack types increase the scope 
and sophistication of attacks and exceed the scope of 
traditional methods. For example, distributed denial of 
service (DDoS) attacks, chained attacks, insider threats, 
and advanced persistent threats (APT) not only require 
high detection accuracy but also require timely detection. 
In addition, the sheer size and heterogeneity of modern 
networks greatly limits the performance of IDS systems 
in terms of data volume, speed and variety [6]. In 
addition, ever-changing attack tactics cause existing 
models to rapidly lose their effectiveness if they lack 
adaptive learning capabilities [7]. Moreover, the need for 
real-time intrusion detection in networks brings 
performance and latency issues. An IDS needs not only to 
accurately identify attacks, but also to do so 
instantaneously without negatively impacting network 
performance [8]. However, many traditional methods 
without real-time processing capabilities prevent the 
timely detection of attacks in high-throughput networks 
and lead to the growth of potential damage [9]. All these 
factors clearly demonstrate the limitations of current IDS 
in cybersecurity. Therefore, IDS systems not only need to 
become more accurate and faster, but also adaptive, 
scalable and resource efficient. In this context, machine 
learning and related techniques stand out as an 
important tool to overcome these challenges and make 
IDS systems more resilient. 

ML has created a paradigm shift in cybersecurity and 
opened up new opportunities for IDS. ML algorithms, 
with their ability to learn patterns in high-dimensional 
and complex datasets, provide significant advantages in 
detecting sophisticated threats such as zero-day attacks, 
DDoS and APT [10]. By analyzing network traffic or user 
behavior, these algorithms can identify malicious activity 
with high accuracy. However, the use of ML in IDS brings 
with it the potential to quickly adapt not only to known 
threats, but also to threats that may emerge in the future. 

While ML-based IDS offers more effective and 
adaptive solutions than traditional methods, there are 
still significant challenges in this area. Factors such as 
unstable datasets, real-time processing requirements, 
and the constant change of attack vectors complicate the 
design and applicability of these solutions. Attacks are 
rare events, often representing a very small fraction of 
large datasets [11]. This hinders the balanced training 
process needed for high performance of the models and 
often leads to high false positive rates by incorrectly 
recognizing normal traffic as a threat. Such false alarms 
can cause alert fatigue for network administrators, 
weakening security [12]. On the other hand, high false 
negative rates can lead to major security vulnerabilities 
as a result of missed attacks. In addition, another major 
challenge in cyber security is the diversification and 
constant change in attack vectors [13]. Traditional or 
static models can quickly become ineffective against 
these new forms of attacks. Therefore, adaptive learning 
capabilities of ML-based IDSs should be developed. With 
the ability to learn from new types of data over time, 
adaptive methods can become more resilient to the 
changing strategies of attackers. However, this 
adaptation process must be carefully managed to avoid 
overfitting models or making them more sensitive to 
variability than necessary [14]. Hyperparameter tuning 

of ML models is also an important challenge [15]. As 
critical elements that optimize the model's learning 
capacity and performance, hyperparameters directly 
affect model accuracy, overall performance and 
generalization ability [16]. However, identifying the right 
hyperparameters, especially in complex datasets, is a 
complex and time-consuming process [17]. Traditional 
search methods often face excessive computational costs 
and low optimization efficiency because they operate 
over a large parameter space [18]. Therefore, the 
development of an efficient hyperparameter 
optimization process is a critical requirement for 
building faster and more accurate ML-based IDSs. All 
these factors highlight the importance of feature 
extraction, adaptive learning capabilities, efficient 
hyperparameter optimization methods, and 
comprehensive evaluation frameworks. A successful IDS 
in cybersecurity requires an approach that is resilient not 
only against current threats, but also against unknown 
future threats. This requires the combination of multiple 
disciplines, from data analytics to algorithm engineering, 
and the continuous innovative development of solution 
processes. 

The primary aim of this research is to enhance 
intrusion detection capabilities by utilizing ML 
classifiers, including Logistic Regression (LR), RF, GB, 
Decision Tree (DT), Naive Bayes (NB), and XGB. Central 
to this goal is the development of a custom 
hyperparameter tuning method that not only optimizes 
the detection accuracy of these classifiers but also 
significantly improves computational efficiency, 
scalability, and adaptability to evolving cyber threats. 
This method has been extensively evaluated against 
traditional approaches such as grid search and random 
search in terms of accuracy, resource utilization and time 
efficiency. By addressing key limitations in both 
hyperparameter optimization and intrusion detection, 
this study contributes to the advancement of strong, 
efficient, and adaptive security solutions that are well-
suited for modern, resource-constrained environments. 

 

2. Related research 
 

The rapid advancement of technology, especially in 
cloud computing, has led to a significant increase in 
digital information and, consequently, network 
intrusions. This growth necessitates the development of 
effective network IDS to safeguard sensitive data and 
ensure the integrity of digital infrastructures. Research in 
this field primarily focuses on leveraging benchmark 
datasets and implementing ML techniques to improve 
the accuracy and efficiency of detecting malicious 
activities within networks. This section summarizes 
recent studies that have contributed to this domain, 
emphasizing their objectives, methodologies, and key 
findings. 

Vibhute et al. [19] explored the development of a 
NIDS using the benchmark NSL-KDD dataset. Their 
primary objective was to enhance feature selection and 
improve classification accuracy. The study employed 
ensemble learning with an RF algorithm to identify 
optimal features. For the detection and classification of 
network intrusions, they utilized three ML models: 



Turkish Journal of Engineering – 2025, 9(3), 519-534 

 

  521  

 

Support Vector Machine (SVM), LR, and K-Nearest 
Neighbors (KNN). Among these, KNN achieved the 
highest validation accuracy of 98.24%, followed by LR at 
88.86% and SVM at 87.58%. 

Barach [20] proposes a novel approach to network 
IDS by combining channel attention with Convolutional 
Neural Networks (CNN) to enhance the detection of 
anomalies. Using the NSL-KDD dataset, which includes 
43 features with labels “attack” and “level,” the study 
introduces a method that achieves an impressive 
accuracy rate of 99.728%. The CNN-based model, 
integrated with channel attention, significantly 
outperforms previous methods such as ensemble 
learning, CNN, RBM, ANN, hybrid auto-encoders, MCNN, 
and adaptive algorithms, demonstrating a substantial 
improvement in intrusion detection. 

Abdullah [21] investigates the effectiveness of 
various ML algorithms for cyber-attack detection using 
the NSL-KDD dataset. The study compares RNN, MLP, 
CNN-LSTM, and ANN in terms of classification accuracy. 
The results show that RNN and MLP outperform the 
other models, with RNN achieving an accuracy of 0.9980. 

Zakariah et al. [22] proposed a novel IDS utilizing 
Artificial Neural Networks (ANNs) to address the 
challenges posed by intrusive network traffic. Using the 
NSL-KDD dataset for both training and testing, they 
developed a custom ANN architecture with optimized 
nodes, layers, and activation functions, designed to 
capture intricate patterns in network data. The model 
achieved a detection accuracy of 97.5% and 
demonstrated superior generalizability on untried data. 

Türk [23] conducted a study focused on intrusion 
detection using the UNSW-NB15 and NSL-KDD datasets. 
The aim was to implement and evaluate ML and deep 
learning algorithms for both binary and multi-class 
classification. The study employed RF and Multi-Layer 
Perceptron (MLP) as the key classifiers. For the UNSW-
NB15 dataset, accuracies of 98.6% and 98.3% were 
achieved for binary and multi-class classification, 
respectively. Similarly, in the NSL-KDD dataset, 97.8% 
and 93.4% accuracies were obtained for binary and 
multi-class classification, respectively. 

Rastogi et al. [24] investigated the performance of 
various supervised learning algorithms for intrusion 
detection using the NSL-KDD dataset. The study aimed to 
enhance detection accuracy and evaluate model 
efficiency in terms of accuracy and runtime. Among the 
tested models, RF achieved the best results, with an 
accuracy of 98.47%, a training time of 3.56 seconds, and 
a testing time of 0.16 seconds. This demonstrates RF's 
effectiveness in accurately and efficiently detecting 
network intrusions. 

Ravipati and Abualkibash [25] addressed the 
limitations of anomaly-based IDS, specifically high false 
alarm rates and moderate detection accuracy. They 
evaluated various ML algorithms on the KDD-99 Cup and 
NSL-KDD datasets. The RF algorithm emerged as the 
best-performing model, achieving an exceptional 
accuracy of 99.7% with a reasonable false alarm rate. 

Shrivas and Dewangan [26] propose an ensemble 
technique combining Artificial Neural Network (ANN) 
and Bayesian Net with Gain Ratio (GR) feature selection 
for IDS. The study aims to enhance the performance of 

intrusion detection by addressing the irrelevant features 
in datasets. They apply individual classification 
techniques as well as the proposed ensemble model on 
the KDD99 and NSL-KDD datasets to evaluate the 
robustness of the models. The inclusion of the GR feature 
selection technique further refines the model’s 
performance, resulting in the highest accuracy of 97.76% 
compared to other methods. 

This research sets itself apart by introducing a custom 
hyperparameter tuning method designed to optimize the 
performance of multiple ML classifiers for intrusion 
detection. While existing studies, such as those by 
Vibhute et al. [19] and Shrivas and Dewangan [26], have 
successfully demonstrated the effectiveness of various 
ML algorithms, ensemble methods, and feature selection 
techniques, this study extends beyond conventional 
classifier evaluation. By integrating a novel and highly 
adaptive hyperparameter optimization approach, it 
offers a significant improvement over traditional 
techniques like grid search and random search. This 
enhanced tuning strategy ensures more efficient model 
performance and enables the development of stronger, 
dynamic IDS capable of adapting to evolving cyber 
threats, making a substantial contribution to the field. 

 

3. Method 
 

In this section, an overview of the dataset used, the 
data preparation process, the classification algorithms 
employed, the cross-validation (CV) and feature selection 
techniques, and the performance metrics for evaluating 
the models are described. The goal is to lay the 
methodological and analytical foundation for the 
research, ensure its reproducibility, and enhance the 
scientific contribution of the study. Detailed descriptions 
of the datasets, algorithms, and experimental setups are 
provided, offering a comprehensive overview of the 
methods used to optimize and compare the classifiers in 
detecting intrusion activities. 

 

3.1. Dataset 
 

The NSL-KDD dataset was utilized as the primary 
benchmark for evaluating the proposed intrusion 
detection methodology. This dataset, a refined version of 
the KDD’99 dataset, addresses several limitations of its 
predecessor, including the removal of redundant and 
duplicate records, ensuring a more balanced and reliable 
dataset [27]. It consists of 43 features that capture 
diverse network traffic characteristics, enabling a 
comprehensive analysis of network behavior. The 
dataset comprises a total of 125,972 instances, all of 
which are included in the training set. These instances 
are categorized into normal and attack classes, with the 
attack types further divided into four major categories: 
DoS, Probe, Remote-to-Local (R2L), and User-to-Root 
(U2R). The diversity of attack types within the training 
data ensures a comprehensive foundation for the 
development and evaluation of the proposed model, 
allowing for the assessment of its ability to detect various 
intrusion patterns effectively.  

The dataset consists of 43 features that can be broadly 
categorized into three main groups: basic features, 
content features, and traffic features. Basic features 



Turkish Journal of Engineering – 2025, 9(3), 519-534 

 

  522  

 

capture fundamental attributes of a network connection 
and include characteristics such as duration, which 
represents the length of a connection, protocol_type, 
indicating the protocol used (e.g., TCP, UDP), service, 
specifying the network service on the destination (e.g., 
HTTP, FTP), and flag, which identifies the status of the 
connection. Additional features such as src_bytes and 
dst_bytes describe the amount of data transferred 
between source and destination, while land is a binary 
feature indicating whether the connection originates and 
terminates at the same host. Content features delve into 
the specifics of the data payload within network packets, 
often highlighting signs of malicious behavior. These 
include num_failed_logins, which tracks unsuccessful 
login attempts, root_shell, a binary feature indicating 
whether root access was obtained, and hot, which counts 
occurrences of suspicious activities such as creating 
executables. Other significant features in this category 
include num_compromised, which counts the number of 
compromised conditions, and su_attempted, indicating 
attempts to use the super-user command. Traffic 

features describe the statistical properties of 
connections observed over a specified time window. 
These features include count, the number of connections 
to the same host as the current connection, srv_count, 
representing connections to the same service, and 
same_srv_rate, the percentage of connections to the same 
service. Additional traffic-related features, such as 
dst_host_count and dst_host_srv_count, count the total 
number of connections and those to the same service on 
the destination host, respectively. Features like 
diff_srv_rate and srv_diff_host_rate provide metrics on 
the diversity of services and hosts, while serror_rate and 
srv_serror_rate measure the rate of connections with 
SYN errors. Similarly, rerror_rate and srv_rerror_rate 
track the rate of connections with REJ errors. The dataset 
also includes advanced traffic metrics such as 
dst_host_same_srv_rate, representing the percentage of 
connections to the same service on a destination host, 
and dst_host_srv_diff_host_rate, which measures how 
often a service is accessed by different hosts.

 

 
Figure 1. Attack counts over protocol types
 

The bar chart presented in Figure 1 shows the 
distribution of various attack types across ICMP, TCP and 
UDP protocol types. Each color in the chart corresponds 
to a specific attack type, as detailed in the accompanying 
legend. The figure highlights that TCP-based attacks are 
significantly more prevalent compared to attacks on UDP 
and ICMP protocols. A large proportion of attacks on the 
TCP protocol include categories such as “normal,” 
“smurf,” and “Neptune,” whereas ICMP attacks are 
primarily dominated by “smurf.” In contrast, UDP shows 
a lower volume of attacks, with a more balanced 
distribution across multiple categories. 

 

3.2. Data preparation 

The dataset underwent a thorough preprocessing 
phase to ensure its readiness for analysis and modeling. 
As part of this process, the data was carefully examined 
for quality and consistency. Initially, the dataset was 
inspected for significant outliers. Since no notable 
outliers were detected, further outlier treatment was 
deemed unnecessary. Additionally, a detailed analysis 
confirmed the absence of duplicate records and missing 
values, ensuring that the data was both complete and 
reliable for subsequent tasks. To handle categorical 
variables effectively, the target feature “attack” was 
transformed into a numerical format using a label 
encoding approach. This method systematically 
converted categorical attack types into corresponding 



Turkish Journal of Engineering – 2025, 9(3), 519-534 

 

  523  

 

numerical representations, enabling the dataset to be 
utilized efficiently by ML algorithms. Furthermore, the 
dataset was examined for class balance, and it was 
determined to be largely balanced, with 53.5% of the 
records classified as “normal” and 46.5% as “attack.” 

 

3.3. Classification algorithms 
 

In this study, six ML algorithms are employed for 
intrusion detection on the NSL-KDD dataset: LR, RF, GB, 
DT, NB, and XGB. Each algorithm is selected for its unique 
strengths in handling classification tasks within the 
context of cybersecurity. Below, the mathematical 
foundations and key characteristics of these algorithms 
are described. 

LR is a linear model used for binary and multi-class 
classification [28]. It estimates the probability of a class 
using the logistic function, as shown in Equation 1: 

 𝑃(𝑦 = 1|x) =  
1

1 + 𝑒−(w𝑇x+𝑏)
 (1) 

where w is the weight vector, x is the feature vector, 
and 𝑏 is the bias term. The model is trained by 
minimizing the log-loss function, defined in Equation 2: 

𝐿(w, 𝑏) =  − ∑[𝑦𝑖 log(𝑃(𝑦𝑖 = 1|x𝑖))

𝑛

𝑖=1

+ (1

− 𝑦𝑖 log(1

− 𝑃(𝑦𝑖 = 1|x𝑖)))] 

(2) 

RF is an ensemble learning method that constructs 
multiple decision trees during training and outputs the 
mode of the classes (for classification) or the mean 
prediction (for regression) of the individual trees [29]. 
Each tree is trained on a bootstrap sample of the data, 
and at each split, a random subset of features is 
considered [30]. The final prediction is given by Equation 
3: 

 �̂� =  mode({𝑇1(x), 𝑇2(x), … , 𝑇𝑚(x)}) (3) 

where 𝑇𝑖(x) is the prediction of the 𝑖𝑡ℎ tree. 
GB is another ensemble technique that builds trees 

sequentially, where each tree corrects the errors of the 
previous one. The model is trained by minimizing a loss 
function (e.g., log-loss) using gradient descent [31]. The 
prediction for an instance x is given by Equation 4: 

 �̂� =  ∑ 𝛾𝑖𝑇𝑖(x)

𝑚

𝑖=1

 (4) 

where 𝛾𝑖  is the weight of the 𝑖𝑡ℎ tree. GB is known for 
its high predictive accuracy and ability to handle complex 
data patterns. 

DT is a non-parametric model that splits the data into 
subsets based on feature values, creating a tree-like 
structure. The splits are chosen to maximize information 
gain or minimize Gini impurity [32]. For a feature vector 
x, the prediction is obtained by traversing the tree from 
the root to a leaf node. The Gini impurity for a node is 
defined in Equation 5: 

 Gini(𝐷) =  1 − ∑ 𝑝𝑖
2

𝑘

𝑖=1

 (5) 

where 𝑝𝑖  is the proportion of class 𝑖 in the node. 
NB is a probabilistic classifier based on Bayes' 

theorem, with the “naive” assumption of feature 
independence given the class [33]. The posterior 
probability of a class 𝑦 given a feature vector x is 
calculated as shown in Equation 6: 

 𝑃(𝑦|x) =  
𝑃(𝑦) ∏ 𝑃(𝑥𝑗|𝑦)𝑑

𝑗=1

𝑃(x)
 (6) 

where 𝑃(𝑦) is the prior probability of class 𝑦, 

and 𝑃(𝑥𝑗|𝑦) is the likelihood of feature 𝑥𝑗  given class 𝑦.  

XGB is an optimized implementation of GB that 
incorporates regularization to prevent overfitting [34]. 
The objective function includes both the loss function 
and regularization terms, as defined in Equation 7: 

 𝐿(𝜙) =  ∑ 𝑙(𝑦𝑖 , �̂�𝑖)

𝑛

𝑖=1

+ ∑ Ω(𝑇𝑘)

𝑚

𝑘=1

 (7) 

where 𝑙(𝑦𝑖 , �̂�𝑖) is the loss function, and Ω(𝑇𝑘) is the 
regularization term for the 𝑘𝑡ℎ tree. 

 

3.4. Cross validation 
 

In this study, K-fold CV technique was employed to 
evaluate the performance of the model. The dataset was 
randomly partitioned into 𝑘 = 10 qually sized subsets, 
referred to as “folds.” During each iteration, one-fold was 
designated as the validation set, while the remaining 𝑘 −
1 folds were utilized as the training set. This process was 
repeated for 𝑘 iterations, ensuring that each fold served 
as the validation set exactly once. The model's 
performance metrics, such as accuracy or F1-score, were 
computed for each iteration. Subsequently, the average 
of these metrics across all 𝑘 iterations was taken as the 
final estimate of the model’s performance. This approach 
provides a stronger and reliable evaluation by mitigating 
the risks of overfitting and ensuring that every data point 
in the dataset is included in the validation process at least 
once [35]. The formula used for computing the average 
performance is given in Equation 8: 

 𝑃 =  
1

𝑘
 ∑ 𝑃𝑖

𝑘

𝑖=1
 (8) 

where 𝑃 represents the final performance metric, 𝑘 
is the number of folds, and 𝑃𝑖  denotes the performance 
metric obtained in the 𝑖𝑡ℎ iteration. By leveraging 10-fold 
CV, the inherent variability in model evaluation due to 
data partitioning was reduced, leading to a more 
generalizable assessment of the model's predictive 
capabilities. The methodology ensures that the model's 
evaluation is comprehensive and less biased toward any 
specific subset of the data [36]. 

 

3.5. Feature selection 
 

In this study, Recursive Feature Elimination (RFE), a 
widely used feature selection method, is employed to 
identify the most relevant features from the NSL-KDD 
dataset. RFE is an iterative technique that recursively 
removes the least important features based on the 
model's performance, ultimately retaining the most 
discriminative features for intrusion detection [37]. 



Turkish Journal of Engineering – 2025, 9(3), 519-534 

 

  524  

 

The RFE process begins by training an ML model (e.g., 
a classifier) on the entire set of features. The importance 
of each feature is then evaluated, typically using 
coefficients from linear models or feature importance 
scores from tree-based models. The least important 
feature(s) are removed, and the model is retrained on the 
remaining features. This process is repeated iteratively 
until a predefined number of features is reached or until 
further feature removal degrades the model's 
performance. 

The RFE method is implemented through a structured 
process that begins with training a ML model, such as LR 
or RF, on the full set of features. Once the model is 
trained, features are ranked based on their importance 
scores. For instance, in LR, the absolute values of the 
coefficients are used to determine feature importance, 
while in RF, the importance scores are derived from 
metrics like Gini impurity or information gain. After 
ranking, the least important feature(s) are eliminated 
from the dataset. The model is then retrained on the 
reduced feature set, and this iterative process of ranking, 
elimination, and retraining continues until a predefined 
number of features is achieved or until further feature 
removal negatively impacts the model's performance. 
This approach ensures that only the most relevant and 
discriminative features are retained, enhancing both the 
efficiency and effectiveness of the model. 

In this study, RFE is applied using an RF classifier due 
to its ability to provide robust feature importance scores. 
The number of features to retain is determined through 
CV, ensuring that the selected features contribute to 
optimal model performance. The final set of features 
obtained through RFE is used to train and evaluate the 
ML classifiers, as described in the Model Setups section. 
As illustrated in Figure 2, the most significant features for 
intrusion detection include src_bytes, same_srv_rate, and 
dst_host_srv_serror_rate, which collectively play a crucial 
role in distinguishing between normal and malicious 
network activities. 

 

 
Figure 2. Distribution of the top 15 feature importance 
values 

 

3.6. Performance metrics 
 

In this study, several performance metrics are 
employed to evaluate the effectiveness of the proposed 
intrusion detection models. These metrics provide a 
comprehensive assessment of the models' ability to 
correctly classify normal and attack instances. The 
following metrics are used: accuracy, precision, recall, F1 

score, and the Area Under the Curve (AUC). Each metric 
is defined and calculated as follows: 

Accuracy: Accuracy measures the proportion of 
correctly classified instances out of the total number of 
instances [33]. Accuracy is provided in Equation 9. 

 Accuracy =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (9) 

Precision: Precision measures the proportion of 
correctly predicted positive instances out of all instances 
predicted as positive [38]. The formula for precision is 
given in Equation 10. 

 Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10) 

Recall: Recall, also known as sensitivity, measures the 
proportion of correctly predicted positive instances out 
of all actual positive instances. The calculation for recall 
is provided in Equation 11. 

 Recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11) 

F1 Score: The F1 score is the harmonic mean of 
precision and recall, providing a single metric that 
balances both concerns [39]. The F1 Score is provided in 
Equation 12. 

 F1 Score = 2 ×  
Precision × Recall

Precision + Recall
 (12) 

Area Under the Curve (AUC): The AUC measures the 
entire two-dimensional area underneath the Receiver 
Operating Characteristic (ROC) curve, which plots the 
true positive rate against the false positive rate at various 
threshold settings. The AUC provides an aggregate 
measure of performance across all possible classification 
thresholds. A higher AUC indicates better model 
performance. 

 

3.7. Model setups 
 

In this study, the NSL-KDD dataset is divided into two 
parts, with 75% allocated for training and 25% for 
testing. A random state of 42 is used to ensure 
reproducibility in the data splitting process. To 
determine the optimal hyperparameters for the ML 
classifiers, three hyperparameter optimization 
techniques are employed: Grid Search, Random Search, 
and the Custom Hyperparameter Tuning 
Method proposed in this study. Each of these techniques 
offers distinct advantages in exploring the 
hyperparameter space and identifying the best 
configurations for the models. 
1. Grid Search: Grid Search is a traditional 

hyperparameter optimization technique that 
exhaustively searches through a predefined set of 
hyperparameter values. It evaluates all possible 
combinations of hyperparameters within the 
specified grid, ensuring that the optimal 
configuration is found. However, this method can be 
computationally expensive, especially for high-
dimensional parameter spaces [16]. The Grid Search 
configuration in this study includes a predefined grid 



Turkish Journal of Engineering – 2025, 9(3), 519-534 

 

  525  

 

of hyperparameters for each classifier, as shown in 
Table 1. 

2. Random Search: Random Search, unlike Grid Search, 
randomly samples hyperparameter values from a 
specified distribution. This method is less 
computationally intensive than Grid Search, as it does 
not evaluate all possible combinations. Instead, it 
focuses on a random subset of the hyperparameter 
space, which can still yield competitive results [40-
41]. The Random Search configuration in this study 
involves sampling hyperparameters from uniform 
distributions for each classifier, as detailed in Table 1. 

3. Custom Hyperparameter Tuning Method: The 
proposed custom hyperparameter tuning method 

combines stochastic perturbation and adaptive 
refinement to efficiently converge on high-
performing parameter configurations. This method 
iteratively refines the search space around the best-
performing parameters and introduces stochastic 
perturbations to avoid premature convergence. The 
custom method is designed to balance exploration 
and exploitation, ensuring faster convergence to 
optimal solutions. The detailed steps of this method 
are described in the Proposed Hyperparameter 
Tuning Method section, and the final hyperparameter 
settings obtained through this method are presented 
in Table 1.

 

Table 1. Hyperparameter settings for models optimized using different techniques 
Model Hyperparameter Grid Search Settings Random Search Settings Custom Method Settings 
LR C 0.12 0.12 0.12 
  max_iter 200 200 215 
  solver 'liblinear' 'liblinear' 'liblinear' 
RF n_estimators 100 237 187 
  max_depth 15 17 13 
  min_samples_split 5 9 7 
  min_samples_leaf 2 2 3 
GB n_estimators 200 290 245 
  learning_rate 0.1 0.09 0.042 
  subsample 0.8 0.72 0.85 
  max_features 'sqrt' 'log2' 'log2' 
DT max_depth 10 14 9 
  min_samples_split 5 6 7 
  min_samples_leaf 2 3 2 
  splitter 'best' 'best' 'random' 
NB var_smoothing 1e-8 2.2e-8 3.7e-8 
XGB n_estimators 200 245 162 
  max_depth 7 8 8 
  learning_rate 0.1 0.08 0.07 
  colsample_bytree 0.8 0.85 0.9 

The data analysis and model testing are conducted 
using the Python programming language. For data 
processing and manipulation, the pandas and NumPy 
libraries are employed, providing robust tools for 
handling large datasets. The scikit-learn library is 
utilized for model development and evaluation, offering 
a comprehensive range of ML algorithms and 
performance metrics. All analyses are performed within 
the Jupyter Notebook environment, which integrates 
code, text, and visualizations seamlessly. The 
computational experiments are executed on a PC 
equipped with an AMD Ryzen 7800X3D processor, 
operating at 4.2 GHz, and an NVIDIA GeForce RTX 4070 
Ti GPU, supported by 32 GB of 6000 MHz DDR5 RAM. The 
system runs on Windows 11, ensuring a stable and 
efficient development environment. By employing these 
optimization techniques and model setups, the study 
aims to identify the most effective hyperparameter 
configurations for each classifier, ultimately enhancing 
the performance of the IDS on the NSL-KDD dataset. 

 

3.8. Proposed hyperparameter tuning method 
 

The process of hyperparameter optimization is 
critical for the performance of ML models, as it 
determines the optimal configuration of parameters that 
govern the learning process. Traditional methods, such 

as Grid Search and Random Search, while widely used, 
suffer from inefficiencies and limitations. Grid Search is 
computationally expensive, requiring exhaustive 
evaluation of all possible combinations, whereas 
Random Search lacks a structured approach to focus on 
promising areas of the parameter space. These 
shortcomings become pronounced in high-dimensional 
parameter spaces or when computational resources are 
constrained. To address these issues, a novel 
hyperparameter tuning method was developed that 
combines stochastic perturbation and adaptive 
refinement, aiming to efficiently converge on high-
performing parameter configurations.  

The proposed method operates iteratively, 
incorporating three main components: a baseline grid 
search, adaptive refinement of the search space, and 
stochastic perturbations to avoid premature 
convergence. Each component is designed to address 
specific inefficiencies in existing methods. 

Initial Grid Evaluation: The optimization process 
begins by evaluating a predefined parameter grid, 𝑃, 
encompassing the user-specified ranges for each 
hyperparameter. This step involves training the model 
on shuffled training data to eliminate bias due to data 
ordering. Shuffling is implemented using a fixed random 
state to maintain reproducibility: 



Turkish Journal of Engineering – 2025, 9(3), 519-534 

 

  526  

 

 
{𝑋train

′ , 𝑦train
′ }

=  shuffle(𝑋train, 𝑦train, random_state 
= 42) 

(13) 

For every parameter configuration, 𝜃 ∈  𝑃, CV is 
performed over 𝑘 folds, and the average score is 
computed using the scoring metric selected by the user 
(e.g., weighted F1 score). The mean CV score for a given 
configuration is given by: 

 Scoreavg =  
1

𝑘
∑ 𝑆𝑖(𝜃)

𝑘

𝑖=1

 (14) 

As shown in Equation 14, this score serves as the 
criterion to evaluate and rank parameter configurations. 
The best-performing configuration, 𝜃∗, is identified after 
the initial evaluation. 

Adaptive Refinement: In subsequent iterations, the 
parameter grid is dynamically refined around 𝜃∗, 
enabling the search to focus on promising regions of the 
parameter space. For continuous parameters, this is 
achieved by applying adaptive scaling: 

 

𝜃𝑖
′  

∈  [max(𝜃𝑖(1 − 𝛼), min(𝑃)), min(𝜃𝑖(1

+ 𝛼), max(𝑃)) ]  

(15) 

Here, 𝛼 is a user-defined perturbation scale factor 
that controls the range of exploration around 𝜃𝑖 . 
Equation 15 ensures that the refined grid balances 
exploration of new values while maintaining proximity to 
the best-performing parameters. For categorical 
parameters, all original options are retained to preserve 
diversity in the search. 

Stochastic Perturbations: To prevent the search from 
becoming trapped in local optima, stochastic 
perturbations are introduced at each iteration. These 
perturbations apply random adjustments to the refined 
parameter grid, ensuring variability in the sampled 
configurations. This mechanism enables the algorithm to 
explore near-optimal solutions and uncover potentially 
superior configurations overlooked in deterministic 
refinements. 

Iterative Search: The process of adaptive refinement 
and stochastic perturbation is repeated over a 
predefined number of iterations, 𝑛. At each iteration, the 
refined grid, 𝑃′, is evaluated, and the best-performing 
configuration is updated if it surpasses the previous best 
score: 

 𝜃∗ = argmax𝜃∈𝑃′Scoreavg (16) 

As shown in Equation 16, the algorithm continuously 
updates � ∗ θ ∗ to reflect the highest performance 
achieved thus far. 

Final Model Training: Upon completing all iterations, 
the best configuration, 𝜃∗, is used to train the model on 
the full training dataset, ensuring that the optimal 
hyperparameters are applied holistically. The historical 
results, including parameter configurations and 
corresponding scores, are recorded to allow for 
performance analysis and reproducibility. 

This novel method introduces significant advantages 
over conventional approaches. Adaptive refinement 
reduces computational overhead by narrowing the 
search space iteratively, while stochastic perturbations 

maintain exploration potential. The method achieves a 
balance between exploitation of promising regions and 
exploration of new configurations, enabling faster 
convergence to optimal solutions. Its scalability and 
efficiency make it suited for scenarios involving high-
dimensional parameter spaces or limited computational 
resources. 

 

4. Experimental study and findings 
 

In this section, the experimental results of the 
proposed intrusion detection models are presented. The 
performance of the classifiers -LR, RF, GB, DT, NB, and 
XGB- is evaluated using three hyperparameter 
optimization techniques: Grid Search, Random Search, 
and the Custom Hyperparameter Tuning Method. To 
further validate the proposed method’s robustness and 
applicability, additional experiments were conducted on 
the UNSW-NB15 and CIC-IDS2017 datasets, and a 
comparison with deep learning models CNN and LSTM) 
was performed. The results are summarized in the 
following tables, and the key findings are discussed. 

 

Table 2. Confusion matrix for models optimized using 
grid search 

  Predicted 
   Normal Attack 

A
ct

u
al

 

LR 
Normal 13673 3047 
Attack 1132 13641 

RF 
Normal 16301 409 
Attack 204 14569 

GB 
Normal 16029 691 
Attack 512 14261 

DT 
Normal 16137 583 
Attack 210 14563 

NB 
Normal 15739 981 
Attack 324 14449 

XGB 
Normal 15722 998 
Attack 601 14172 

 

Upon examining Table 2, the confusion matrix for 
models optimized using Grid Search reveals that RF 
achieved the lowest number of misclassifications, with 
only 409 normal instances misclassified as attacks and 
204 attacks misclassified as normal. In contrast, LR 
exhibited the highest misclassification rates, with 3047 
false positives and 1132 false negatives. This indicates 
that tree-based models such as RF and GB outperform 
linear models like LR when optimized using Grid Search. 

 

Table 3. Performance metrics for models optimized 
using grid search 

Model Accuracy Precision Recall F1 Score AUC 
LR 0.867 0.817 0.923 0.867 0.942 
RF 0.980 0.972 0.986 0.979 0.993 
GB 0.961 0.953 0.965 0.959 0.994 
DT 0.974 0.961 0.985 0.973 0.987 
NB 0.958 0.936 0.978 0.956 0.978 
XGB 0.949 0.934 0.959 0.946 0.986 

 

Table 3 presents the performance metrics for models 
optimized using Grid Search. It is observed that RF 
achieved the highest accuracy (0.980) and AUC (0.993), 
followed closely by DT and GB. LR, on the other hand, 
recorded the lowest accuracy (0.867) and AUC (0.942), 



Turkish Journal of Engineering – 2025, 9(3), 519-534 

 

  527  

 

confirming its limitations in handling complex intrusion 
detection tasks. 

 

Table 4. Confusion matrix for models optimized using 
random search 

  Predicted 
   Normal Attack 

A
ct

u
al

 

LR 
Normal 13675 3045 
Attack 1131 13642 

RF 
Normal 16668 52 
Attack 108 14665 

GB 
Normal 16422 298 
Attack 306 14467 

DT 
Normal 16595 125 
Attack 211 14562 

NB 
Normal 15968 752 
Attack 301 14472 

XGB 
Normal 16272 448 
Attack 262 14511 

 

Table 4, which displays the confusion matrix for 
models optimized using Random Search, demonstrates 
significant improvements over Grid Search. RF achieved 
near-perfect classification, with only 52 false positives 
and 108 false negatives. GB and DT also exhibited 
reduced misclassification rates compared to Grid Search. 
However, LR continued to underperform, with high false 
positive and false negative rates, further emphasizing its 
limitations in this domain. 

 

Table 5. Performance metrics for models optimized 
using random search 

Model Accuracy Precision Recall F1 Score AUC 
LR 0.867 0.817 0.923 0.867 0.942 
RF 0.994 0.996 0.992 0.994 0.998 
GB 0.980 0.979 0.979 0.979 0.999 
DT 0.989 0.991 0.985 0.988 0.997 
NB 0.966 0.950 0.979 0.964 0.985 
XGB 0.977 0.970 0.982 0.976 0.993 

 

Table 5 highlights the performance metrics for 
models optimized using Random Search. RF achieved the 
highest accuracy (0.994) and AUC (0.998), 
demonstrating its superiority over other models. GB and 
DT also showed strong performance, with accuracy 
values above 0.980. LR, nevertheless, remained the 
weakest model, with no improvement in accuracy or AUC 
compared to Grid Search, further validating its 
inadequacy for this task. 

 

Table 6. Confusion matrix for models optimized using 
custom hyperparameter tuning 

  Predicted 
   Normal Attack 

A
ct

u
al

 LR 
Normal 13672 3048 
Attack 1132 13641 

RF 
Normal 16714 6 
Attack 18 14755 

GB Normal 16648 78 

Attack 95 14678 

DT 
Normal 16676 44 
Attack 85 14688 

NB 
Normal 16528 192 
Attack 207 14566 

XGB 
Normal 16649 71 
Attack 78 14695 

 

Table 6, which presents the confusion matrix for 
models optimized using the Custom Hyperparameter 
Tuning Method, reveals remarkable improvements in 
classification accuracy. RF achieved near-perfect results, 
with only 6 false positives and 18 false negatives. GB and 
DT also demonstrated significant reductions in 
misclassification rates. LR, however, continued to 
perform poorly, further highlighting its limitations in 
handling complex intrusion detection tasks. 

 

Table 7. Performance metrics for models optimized 
using custom hyperparameter tuning 

Model Accuracy Precision Recall F1 Score AUC 
LR 0.867 0.817 0.923 0.867 0.942 
RF 0.999 0.999 0.998 0.999 0.999 
GB 0.994 0.994 0.993 0.994 0.999 
DT 0.995 0.997 0.994 0.995 0.998 
NB 0.987 0.987 0.986 0.986 0.999 
XGB 0.995 0.995 0.994 0.995 0.999 

 

Table 7 provides performance metrics for models 
optimized using the Custom Hyperparameter Tuning 
Method. RF achieved the highest accuracy (0.999) and 
AUC (0.999), followed closely by GB and DT. LR showed 
no improvement, further confirming its unsuitability for 
this task. The high F1 scores and AUC values across all 
models (except LR) indicate that the custom tuning 
method significantly enhances model performance. 

Figure 3 illustrates the comparison of model 
accuracies across the three optimization techniques: Grid 
Search, Random Search, and Custom Hyperparameter 
Tuning. It is evident that the Custom Hyperparameter 
Tuning Method consistently outperforms the other 
techniques, achieving the highest accuracy for all 
classifiers. Random Search also shows improvements 
over Grid Search, particularly for tree-based models like 
RF and GB. 

Figure 4 presents the F1 scores for all models across 
the three optimization techniques. The Custom 
Hyperparameter Tuning Method achieves the highest F1 
scores for RF, GB, and DT, indicating a strong balance 
between precision and recall. LR consistently 
underperforms, with the lowest F1 scores across all 
techniques. 

Figure 5 displays the AUC values for all models across 
the three optimization techniques. The Custom 
Hyperparameter Tuning Method achieves near-perfect 
AUC values for RF, GB, and DT, indicating excellent 
discrimination between normal and attack instances.

 



Turkish Journal of Engineering – 2025, 9(3), 519-534 

 

  528  

 

 
Figure 3. Comparison of model accuracies across optimization techniques 

 
Figure 4. F1 scores across different models 

Figure 5. AUC values for all models
 

 
Figure 6. F1 score stability and performance across 
optimization techniques 
 

Upon examining Figure 6, the mean F1 scores and 
their stability across different optimization techniques 
are presented. The Custom Hyperparameter Tuning 
Method consistently achieves the highest mean F1 
scores, indicating superior performance in balancing 
precision and recall. The stability of the F1 scores is also 
notably higher for the custom method, suggesting that it 
is less sensitive to variations in the dataset compared to 
Grid Search and Random Search. This stability is crucial 
for real-world applications where consistent 
performance is required. In contrast, LR shows the 
lowest mean F1 scores and the highest variability, 
further emphasizing its limitations in handling complex 
intrusion detection tasks. 
 

 



Turkish Journal of Engineering – 2025, 9(3), 519-534 

 

  529  

 

 
Figure 7. False negative rates 
 

Figure 7 highlights the false negative rates for all 
models across the three optimization techniques. The 
Custom Hyperparameter Tuning Method achieves 
exceptionally low false negative rates, particularly for RF 
and GB, with rates approaching zero. This is a critical 
advantage in cybersecurity, where failing to detect an 
attack (false negatives) can have severe consequences. 
The custom method's ability to minimize false negatives 
while maintaining high precision and recall 
demonstrates its effectiveness in identifying malicious 
activities with high confidence. On the other hand, LR 
struggles with high false negative rates, further 
emphasizing its inadequacy in detecting sophisticated 
attacks. The low false negative rates for tree-based 
models like RF and GB highlight their suitability for 
intrusion detection, where the cost of missing an attack 
is significantly higher than the cost of a false alarm. 
 

 
Figure 8. Search times 
 

Figure 8 presents the search times for the three 
hyperparameter optimization techniques: Grid Search, 
Random Search, and the Custom Hyperparameter Tuning 
Method. Grid Search, as expected, has the longest search 
times due to its exhaustive nature in high-dimensional 
parameter spaces. This makes it impractical for large-
scale or real-time applications. Random Search 
significantly reduces search times by randomly sampling 
the parameter space, but it lacks the structured approach 
needed to consistently find optimal configurations. The 
Custom Hyperparameter Tuning Method, however, 
strikes an optimal balance between efficiency and 
effectiveness. It achieves search times comparable to 
Random Search while delivering superior model 
performance. This efficiency is valuable in scenarios 

where computational resources are limited or where 
rapid model deployment is required. The custom 
method's ability to converge on high-performing 
configurations with fewer iterations makes it a practical 
choice for real-world IDS. 

 

 
Figure 9. Tested parameter combinations 
 

Figure 9 illustrates the number of parameter 
combinations tested during the hyperparameter 
optimization process for each technique. Grid Search 
tests the largest number of combinations, resulting in 
high computational cost and inefficiency in complex 
parameter spaces. Random Search reduces the number 
of tested combinations by randomly sampling the 
parameter space, but it often fails to explore the most 
promising regions effectively. The Custom 
Hyperparameter Tuning Method, on the other hand, 
employs a more intelligent approach by dynamically 
refining the search space around the best-performing 
configurations. This targeted exploration allows the 
custom method to test fewer combinations while still 
identifying optimal hyperparameters. The ability to focus 
on promising regions of the parameter space not only 
reduces computational overhead but also increases the 
likelihood of finding high-performing configurations. 
This makes the custom method particularly well-suited 
for high-dimensional and complex optimization tasks, 
such as those encountered in intrusion detection. 

To assess the generalizability of the proposed 
method, additional experiments were conducted on the 
UNSW-NB15 and CIC-IDS2017 datasets, which represent 
more diverse and modern network traffic scenarios. The 
UNSW-NB15 dataset, containing 2,540,044 records with 
49 features and nine attack types (e.g., exploits, fuzzers, 
reconnaissance), was split into 75% training and 25% 
testing sets. The CIC-IDS2017 dataset, comprising real-
world traffic with 2,830,743 instances and 80 features, 
including advanced attacks like botnets and brute force, 
was similarly partitioned. For these experiments, RF, GB, 
and XGB were optimized using the Custom 
Hyperparameter Tuning Method, as they demonstrated 
the strongest performance on NSL-KDD. Results are 
summarized in Table 8. 

 

Table 8. Performance metrics for models optimized 
using custom hyperparameter tuning on UNSW-NB15 
and CIC-IDS2017 datasets 

Dataset Model Accuracy Precision Recall F1-Sc. AUC 

UNSW-NB15 RF 0.9875 0.986 0.989 0.987 0.996 

UNSW-NB15 GB 0.9832 0.981 0.985 0.983 0.994 



Turkish Journal of Engineering – 2025, 9(3), 519-534 

 

  530  

 

Dataset Model Accuracy Precision Recall F1-Sc. AUC 

UNSW-NB15 XGB 0.9892 0.990 0.987 0.988 0.997 

CIC-IDS2017 RF 0.9912 0.992 0.990 0.991 0.998 

CIC-IDS2017 GB 0.9885 0.987 0.989 0.988 0.997 

CIC-IDS2017 XGB 0.9905 0.991 0.989 0.990 0.998 

 

Table 8 shows that RF achieved an accuracy of 
98.75% on UNSW-NB15 and 99.12% on CIC-IDS2017, 
with AUC values of 0.996 and 0.998, respectively. GB and 
XGB also performed well, with accuracy ranging from 
98.32% to 98.92% on UNSW-NB15 and 98.85% to 
99.05% on CIC-IDS2017. The slightly lower accuracy on 
UNSW-NB15 compared to NSL-KDD (99.90%) reflects 
the dataset’s increased complexity and diversity of attack 
types, while the strong performance on CIC-IDS2017 
highlights the method’s adaptability to real-world traffic. 

To compare the proposed method with state-of-the-
art techniques, deep learning models—a CNN with 
channel attention (inspired by Barach [20]) and an 
LSTM—were optimized using the Custom 
Hyperparameter Tuning Method and tested on the NSL-
KDD and CIC-IDS2017 datasets. The CNN architecture 
included three convolutional layers with 64, 128, and 
256 filters, followed by max-pooling and a dense layer, 
while the LSTM model featured two stacked LSTM layers 
with 100 units each. Hyperparameters such as learning 
rate, batch size, and layer configurations were tuned 
using the custom method. Results are presented in Table 
9. 

 

Table 9. Performance metrics for deep learning models 
optimized using custom hyperparameter tuning 

Dataset Model Accuracy Precision Recall F1-Sc. AUC 

NSL-KDD CNN 0.9978 0.998 0.997 0.997 0.999 

NSL-KDD LSTM 0.9965 0.996 0.997 0.996 0.998 

CIC-IDS2017 CNN 0.9932 0.994 0.992 0.993 0.998 

CIC-IDS2017 LSTM 0.9945 0.995 0.994 0.994 0.999 

 

Table 9 reveals that the CNN achieved an accuracy of 
99.78% and AUC of 0.999 on NSL-KDD, while the LSTM 
reached 99.65% accuracy and 0.998 AUC. On CIC-
IDS2017, LSTM outperformed the CNN with 99.45% 
accuracy and 0.999 AUC, compared to the CNN’s 99.32% 
and 0.998, reflecting LSTM’s strength in capturing 
temporal dependencies in real-world traffic. Although RF 
(99.90% on NSL-KDD, 99.12% on CIC-IDS2017) 
outperformed these deep learning models on NSL-KDD, 
the LSTM’s edge on CIC-IDS2017 suggests that temporal 
modeling could complement the custom tuning method 
for sequential data. 

 

5. Discussion 
 

The findings of this study underscore the 
effectiveness of the proposed Custom Hyperparameter 
Tuning Method in optimizing ML classifiers for intrusion 
detection on the NSL-KDD dataset. This innovative 
approach consistently outperformed traditional 
techniques like Grid Search and Random Search, 
particularly for tree-based models such as RF, GB, and 
DT. The superior performance of tree-based models, 
especially RF, can be attributed to their ability to handle 

high-dimensional and imbalanced datasets, a common 
challenge in cybersecurity applications. This aligns with 
the findings of Türk [23] and Rastogi et al. [24], who 
highlighted the effectiveness of ensemble methods like 
RF in achieving high accuracy in intrusion detection. 
However, this study advances the field by introducing a 
hyperparameter tuning approach that not only enhances 
model performance but also addresses the 
computational inefficiencies of traditional methods.  

The custom method's adaptive refinement and 
stochastic perturbation mechanisms enable efficient 
exploration of the hyperparameter space, focusing on 
promising regions and avoiding exhaustive searches. 
This targeted approach significantly reduces the number 
of parameter combinations tested, leading to faster 
convergence, lower computational costs, and superior 
accuracy. For instance, the fine-tuning of 
hyperparameters for RF and GB achieved near-perfect 
accuracy (0.999) and AUC (0.999), significantly reducing 
false positives and false negatives. This improvement is 
crucial for real-world IDS, where missed attacks (false 
negatives) can have severe consequences, as emphasized 
by Ravipati and Abualkibash [25]. By minimizing 
computational burdens while maintaining high 
performance, the proposed method provides a scalable 
solution for modern cybersecurity challenges, where the 
complexity and volume of network data are continuously 
increasing. These findings set a new benchmark for 
hyperparameter optimization techniques in 
cybersecurity applications, reinforcing the importance of 
balancing accuracy and efficiency in IDS. 

To further validate the generalizability of the 
proposed method, additional experiments were 
conducted on more diverse datasets, namely UNSW-
NB15 and CIC-IDS2017. The UNSW-NB15 dataset, which 
includes modern attack types such as exploits, fuzzers, 
and reconnaissance, provided a broader testbed for 
evaluating the method's adaptability. The RF model, 
optimized with the custom tuning method, achieved an 
accuracy of 98.75% on UNSW-NB15, slightly lower than 
the 99.90% on NSL-KDD, reflecting the increased 
complexity and diversity of attack patterns. Similarly, on 
the CIC-IDS2017 dataset, which features real-world 
traffic and sophisticated attacks like botnets and brute 
force, the method yielded an accuracy of 99.12% with RF. 
These results indicate that while the custom method 
maintains high performance across diverse datasets, its 
effectiveness may vary slightly depending on the 
dataset's characteristics, such as attack diversity and 
feature complexity. 

In addition, a comparison with deep learning models 
was performed to assess the proposed method's 
competitiveness against state-of-the-art techniques. A 
CNN with channel attention, inspired by Barach [20], and 
a LSTM model were optimized using the custom tuning 
method and tested on the NSL-KDD dataset. The CNN 
achieved an accuracy of 99.78%, surpassing Barach’s 
reported 99.72%, while the LSTM model reached 
99.65%. Although these deep learning models exhibited 
strong performance, RF with the custom tuning method 
(99.90%) outperformed them, demonstrating that tree-
based models, when optimally tuned, can rival or exceed 
deep learning approaches in this context. However, deep 



Turkish Journal of Engineering – 2025, 9(3), 519-534 

 

  531  

 

learning models showed advantages in capturing 
temporal dependencies, particularly with the CIC-
IDS2017 dataset, where LSTM achieved 99.45% accuracy 
compared to RF’s 99.12%. 

In contrast, LR, a linear model, consistently 
underperformed across all optimization techniques. This 
is consistent with the findings of Vo et al. [42], who also 
observed that linear models like LR struggle to capture 
the complex patterns in network traffic data. LR's high 
false positive and false negative rates make it unsuitable 
for modern intrusion detection tasks, where the ability to 
detect sophisticated and evolving attacks is critical. This 
observation highlights the critical role of selecting 
appropriate model architecture tailored to the specific 
demands of cybersecurity applications. In modern IDS, 
the complexity and evolving nature of cyber threats 
require models that can not only generalize well but also 
adapt to diverse attack patterns with high precision. 
Models such as LR, despite their simplicity and 
interpretability, often struggle with detecting nuanced, 
multi-dimensional attack behaviors, resulting in elevated 
false positive and false negative rates [43]. These 
limitations can compromise the overall reliability of an 
IDS, potentially allowing sophisticated threats to evade 
detection [44]. As emphasized by Bolívar et al. [45], 
leveraging advanced architectures with capabilities 
suited to handle large, imbalanced, and high-dimensional 
datasets is paramount. Tree-based models, such as RF 
and GB, excel in these scenarios due to their ability to 
capture intricate, non-linear relationships between 
features while maintaining robustness against 
overfitting. Their inherent capacity to rank features by 
importance and adapt to varied types of attacks makes 
them advantageous in building scalable and resilient IDS 
[46]. Thus, the choice of model architecture directly 
impacts on the efficacy of cybersecurity measures, 
underscoring the importance of continuous exploration 
and adoption of methodologies that align with the 
complexities of the field [47].  

The effectiveness of the proposed Custom 
Hyperparameter Tuning Method can be further 
contextualized by comparing it to recent advancements 
in optimization techniques across related domains. For 
instance, innovative approaches in studies exploring 
optimization techniques applied to automatic voltage 
regulator (AVR) control systems using Matlab-Simulink 
[48] and those enhancing electro-hydraulic position 
servo control systems with the ant lion optimizer [49] 
demonstrate the power of meta-heuristic optimization in 
achieving precise control and efficiency. These principles 
resonate with our method’s adaptive refinement and 
stochastic perturbation strategies. Similarly, research on 
implementing parallel robots with fractional-order PID 
(FOPID) controllers combined with fuzzy type-2 logic 
and the social spider optimization algorithm [50], as well 
as evaluations of 3-DOF helicopter dynamic control 
models using FOPID controllers optimized by advanced 
algorithms [51], highlight the balance of exploration and 
exploitation. This balance is key to our method’s 
achievement of an 87.5% reduction in parameter 
combinations compared to Grid Search. Additionally, a 
systematic review of unmanned aerial vehicle (UAV) 
control, addressing challenges, solutions, and meta-

heuristic optimization [52], underscores the scalability of 
such approaches in real-time systems. This aligns with 
our findings of a 70% CPU time reduction, making the 
custom method suitable for resource-constrained IDS 
environments. These studies collectively reinforce the 
value of tailored optimization, supporting our method’s 
superior convergence speed (5 vs. 20 iterations for RF) 
and its potential adaptability to diverse applications 
beyond intrusion detection, such as those requiring 
dynamic control or real-time processing. 

Table 10 provides a comprehensive comparison of 
various studies on intrusion detection, highlighting the 
methods, datasets, and accuracies achieved by different 
approaches. The proposed Custom Hyperparameter 
Tuning Method in this study achieves an accuracy of 
99.90% with RF on the NSL-KDD dataset, which is 
notably higher than most of the existing methods listed 
in the table. For instance, Vibhute et al. [19] achieved an 
accuracy of 98.24% using KNN, while Barach [20] 
reported a slightly higher accuracy of 99.72% using a 
CNN with channel attention. Abdullah [21] achieved the 
highest accuracy among the compared studies at 99.80% 
using Recurrent Neural Networks (RNN). However, the 
proposed method in this study surpasses even this high 
benchmark, demonstrating the effectiveness of the 
custom hyperparameter tuning approach. The 
comparison also reveals that RF consistently performs 
well across multiple studies. For example, Rastogi et al. 
[24] and Türk [23] reported accuracies of 98.47% and 
97.80%, respectively, using RF on the NSL-KDD dataset. 
Ravipati and Abualkibash [25] achieved an accuracy of 
99.70% with RF, which is close to the performance of the 
proposed method. This consistency underscores the 
strength of RF in handling the high-dimensional and 
imbalanced nature of intrusion detection datasets. 
However, the proposed custom tuning method further 
enhances RF's performance, achieving near-perfect 
accuracy and reducing false negatives, which is critical in 
cybersecurity applications. In contrast, simpler models 
like LR and traditional methods such as Grid Search and 
Random Search, as evidenced by the lower accuracies in 
this study, struggle to match the performance of more 
advanced techniques. The proposed method's ability to 
fine-tune hyperparameters for RF and GB not only 
improves accuracy but also reduces computational 
overhead, making it a more practical solution for real-
world IDS. 
 

Table 10. Comparison of literature studies on intrusion 
detection 

Study Method Dataset Accuracy 
Vibhute et al. 
[19] 

RF, SVM, KNN NSL-
KDD 

98.24% 
(KNN) 

Barach [20] CNN with Channel 
Attention 

NSL-
KDD 

99.72% 

Abdullah [21] RNN, MLP, CNN-
LSTM 

NSL-
KDD 

99.80% 
(RNN) 

Zakariah et al. 
[22] 

Custom ANN NSL-
KDD 

97.50% 

Türk [23] RF, MLP NSL-
KDD 

97.80% 
(RF) 

Rastogi et al. 
[24] 

RF, SVM, DT NSL-
KDD 

98.47% 
(RF) 



Turkish Journal of Engineering – 2025, 9(3), 519-534 

 

  532  

 

Ravipati and 
Abualkibash 
[25] 

RF NSL-
KDD 

99.70% 

Shrivas and 
Dewangan 
[26] 

Ensemble (ANN + 
Bayesian Net) 

NSL-
KDD 

97.76% 

This Study 
(Proposed 
Method) 

Custom 
Hyperparameter 
Tuning (RF) 

NSL-
KDD 

99.90% 

 

6. Conclusion 
 

This study introduced a Custom Hyperparameter 
Tuning Method that significantly enhances the 
performance of ML classifiers for intrusion detection on 
the NSL-KDD dataset. By combining adaptive refinement 
and stochastic perturbation, the method outperformed 
traditional techniques like Grid Search and Random 
Search, achieving higher accuracy, precision, recall, and 
F1 scores while reducing computational overhead. This 
makes it a practical and efficient solution for real-world 
IDS, where both performance and scalability are critical. 
The results highlighted the superiority of tree-based 
models, particularly RF, which achieved near-perfect 
accuracy (0.999) and AUC (0.999) when optimized using 
the custom method. GB and DT also demonstrated strong 
performance, confirming their effectiveness in handling 
the high-dimensional and imbalanced nature of 
cybersecurity datasets. In contrast, LR, a linear model, 
consistently underperformed, underscoring the 
limitations of simpler models in detecting complex and 
evolving cyber threats. A key contribution of this study is 
the custom method's ability to minimize false negative 
rates, a critical metric in cybersecurity where undetected 
attacks can have severe consequences. By balancing 
precision and recall, the method enhances the reliability 
of IDS, reducing the risk of alert fatigue and improving 
overall system effectiveness.  

The Custom Hyperparameter Tuning Method 
demonstrated significant advantages in terms of 
computational efficiency. It achieved faster search times 
compared to traditional methods like Grid Search, which 
exhaustively evaluates all possible parameter 
combinations, and Random Search, which lacks a 
structured approach to exploring the parameter space. 
The custom method intelligently refines the search space 
around the best-performing configurations, testing fewer 
parameter combinations while still identifying optimal 
hyperparameters. This targeted exploration not only 
reduces computational overhead but also increases the 
likelihood of finding high-performing configurations, 
making it well-suited for high-dimensional and complex 
optimization tasks, such as those encountered in 
intrusion detection. The method's ability to converge on 
optimal solutions with fewer iterations and less 
computational resources further underscores its 
practicality for real-time and resource-constrained 
environments. 

Testing on additional datasets, such as UNSW-NB15 
(98.75% accuracy) and CIC-IDS2017 (99.12% accuracy), 
confirmed the method's robustness, though slight 
variations in performance suggest opportunities for 
further adaptation to diverse attack types. Comparisons 
with deep learning models (CNN: 99.78%, LSTM: 99.65% 

on NSL-KDD) demonstrated that while the custom 
method excels with tree-based models, integrating it 
with temporal deep learning architectures could enhance 
its performance on sequential data, as evidenced by 
LSTM's edge on CIC-IDS2017 (99.45%). 

The practical implications of this research are 
significant. The custom method's efficiency and 
scalability make it suitable for deployment in resource-
constrained environments, enabling the development of 
strong and adaptive IDS capable of responding to 
evolving threats. Future work should focus on validating 
the method on more diverse datasets and exploring its 
application to advanced models, such as deep learning 
architectures, to further enhance its real-world 
applicability. Briefly, this study advances the field of 
cybersecurity by providing a novel and efficient 
hyperparameter tuning method that improves the 
performance of ML-based IDS. The findings underscore 
the importance of selecting appropriate model 
architectures, with tree-based models like RF and GB 
emerging as the most effective for intrusion detection 
tasks. By addressing the limitations of traditional 
optimization techniques, this research covers the way for 
more reliable and scalable IDS capable of defending 
against increasingly sophisticated cyber threats. 

 

Funding 
 

This research received no external funding. 
 

Author contributions 
 

Vahid Sinap: Conceptualization, Methodology, Data 
Curation, Formal Analysis, Investigation, Software, 
Validation, Visualization, Writing—Original Draft, 
Writing—Review & Editing. 
 

Conflicts of interest 
 

The authors declare no conflicts of interest. 
 

References  
 

1. Rudner, M. (2013). Cyber-threats to critical national 
infrastructure: An intelligence 
challenge. International Journal of Intelligence and 
CounterIntelligence, 26(3), 453-481. 

2. Patel, A., Taghavi, M., Bakhtiyari, K., & Júnior, J. C. 
(2013). An intrusion detection and prevention 
system in cloud computing: A systematic review. 
Journal of Network and Computer Applications, 
36(1), 25-41. 

3. Basil, N., Ahammad, S. H., & Elsayed, E. E. (2024). 
Enhancing wireless subscriber performance 
through AODV routing protocol in simulated mobile 
Ad-hoc networks. Engineering Applications, 3(1), 
16-26. 

4. Kothamali, P. R., & Banik, S. (2022). Limitations of 
signature-based threat detection. Revista de 
Inteligencia Artificial en Medicina, 13(1), 381-391. 

5. Olateju, O. O., Okon, S. U., Igwenagu, U. T. I., Salami, 
A. A., Oladoyinbo, T. O., & Olaniyi, O. O. (2024). 
Combating the challenges of false positives in AI-
driven anomaly detection systems and enhancing 



Turkish Journal of Engineering – 2025, 9(3), 519-534 

 

  533  

 

data security in the cloud. Asian Journal of Research 
in Computer Science, 17(6), 264-292. 

6. Zuech, R., Khoshgoftaar, T. M., & Wald, R. (2015). 
Intrusion detection and big heterogeneous data: A 
survey. Journal of Big Data, 2, 1-41. 

7. Ferdous, J., Islam, R., Mahboubi, A., & Islam, M. Z. 
(2023). A review of state-of-the-art malware attack 
trends and defense mechanisms. IEEE Access, 11, 
121118–121141. 

8. Anwar, S., Mohamad Zain, J., Zolkipli, M. F., Inayat, Z., 
Khan, S., Anthony, B., & Chang, V. (2017). From 
intrusion detection to an intrusion response system: 
Fundamentals, requirements, and future directions. 
Algorithms, 10(2), 39. 

9. Raza, S., Wallgren, L., & Voigt, T. (2013). SVELTE: 
Real-time intrusion detection in the Internet of 
Things. Ad Hoc Networks, 11(8), 2661-2674. 

10. Ali, S., Rehman, S. U., Imran, A., Adeem, G., Iqbal, Z., & 
Kim, K. I. (2022). Comparative evaluation of AI-
based techniques for zero-day attacks detection. 
Electronics, 11(23), 3934. 

11. Shyalika, C., Wickramarachchi, R., & Sheth, A. P. 
(2024). A comprehensive survey on rare event 
prediction. ACM Computing Surveys, 57(3), 1-39. 

12. Nayak, A. K., Reimers, A., Feamster, N., & Clark, R. 
(2009, August). Resonance: Dynamic access control 
for enterprise networks. In Proceedings of the 1st 
ACM workshop on Research on Enterprise 
Networking (pp. 11-18). ACM. 

13. Zheng, Y., Li, Z., Xu, X., & Zhao, Q. (2022). Dynamic 
defenses in cyber security: Techniques, methods 
and challenges. Digital Communications and 
Networks, 8(4), 422-435. 

14. İncekara, Ç. Ö. (2023). Industrial internet of things 
(IIoT) in energy sector. Advanced Engineering 
Science, 3, 21-30. 

15. Mema, B., Basholli, F., & Hyka, D. (2024). Learning 
transformation and virtual interaction through 
ChatGPT in Albanian higher education. Advanced 
Engineering Science, 4, 130-140. 

16. Yang, L., & Shami, A. (2020). On hyperparameter 
optimization of machine learning algorithms: 
Theory and practice. Neurocomputing, 415, 295-
316. 

17. Keskin, S., & Sevli, O. (2024). Machine learning based 
classification for spam detection. Sakarya University 
Journal of Science, 28(2), 270-282. 

18. Hao, P., Liu, H., Feng, S., Wang, G., Zhang, R., & Wang, 
B. (2023). A high-dimensional optimization method 
combining projection correlation-based Kriging and 
multimodal parallel computing. Structural and 
Multidisciplinary Optimization, 66(1), 18. 

19. Vibhute, A. D., Patil, C. H., Mane, A. V., & Kale, K. V. 
(2024). Towards detection of network anomalies 
using machine learning algorithms on the NSL-KDD 
benchmark datasets. Procedia Computer Science, 
233, 960-969. 

20. Barach, J. (2024, December). Enhancing intrusion 
detection with CNN attention using NSL-KDD 
dataset. In 2024 Artificial Intelligence for Business 
(AIxB) (pp. 15-20). IEEE. 

21. Abdullah, H. S. A. (2024). A comparison of several 
intrusion detection methods using the NSL-KDD 

dataset. Wasit Journal of Computer and Mathematics 
Science, 3(2), 32-41. 

22. Zakariah, M., AlQahtani, S. A., Alawwad, A. M., & 
Alotaibi, A. A. (2023). Intrusion detection system 
with customized machine learning techniques for 
NSL-KDD dataset. Computers, Materials & Continua, 
77(3), 4025-4054. 

23. Türk, F. (2023). Analysis of intrusion detection 
systems in UNSW-NB15 and NSL-KDD datasets with 
machine learning algorithms. Bitlis Eren University 
Journal of Science, 12(2), 465-477. 

24. Rastogi, S., Shrotriya, A., Singh, M. K., & Potukuchi, R. 
V. (2022). An analysis of intrusion detection 
classification using supervised machine learning 
algorithms on NSL-KDD dataset. Journal of 
Computing Research and Innovation, 7(1), 124-137. 

25. Ravipati, R. D., & Abualkibash, M. (2019). Intrusion 
detection system classification using different 
machine learning algorithms on KDD-99 and NSL-
KDD datasets: A review paper. International Journal 
of Computer Science & Information Technology 
(IJCSIT), 11(3), 65-80. 

26. Shrivas, A. K., & Dewangan, A. K. (2014). An 
ensemble model for classification of attacks with 
feature selection based on KDD99 and NSL-KDD 
data set. International Journal of computer 
applications, 99(15), 8-13. 

27. Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. 
(2009). A detailed analysis of the KDD CUP 99 data 
set. 2009 IEEE Symposium on Computational 
Intelligence for Security and Defense Applications 
(CISDA), 1–6. 

28. Mao, Y., Li, Y., Teng, F., Sabonchi, A. K., Azarafza, M., 
& Zhang, M. (2024). Utilizing hybrid machine 
learning and soft computing techniques for 
landslide susceptibility mapping in a Drainage 
Basin. Water, 16(3), 380. 

29. Zela, K., & Saliaj, L. (2023). Forecasting through 
neural networks: Bitcoin price prediction. 
Engineering Applications, 2(3), 218-224. 

30. James, G., Witten, D., Hastie, T., Tibshirani, R., & 
Taylor, J. (2023). Tree-based methods. In an 
Introduction to Statistical Learning: With 
Applications in Python (pp. 331–366). Springer 
International Publishing. 

31. Liu, W., Fan, H., & Xia, M. (2022). Credit scoring 
based on tree-enhanced gradient boosting decision 
trees. Expert Systems with Applications, 189, 
116034. 

32. Tangirala, S. (2020). Evaluating the impact of GINI 
index and information gain on classification using 
decision tree classifier algorithm. International 
Journal of Advanced Computer Science and 
Applications, 11(2), 612-619. 

33. Karabatak, M. (2015). A new classifier for breast 
cancer detection based on Naïve Bayesian. 
Measurement, 72, 32-36. 

34. Budholiya, K., Shrivastava, S. K., & Sharma, V. (2022). 
An optimized XGBoost based diagnostic system for 
effective prediction of heart disease. Journal of King 
Saud University-Computer and Information 
Sciences, 34(7), 4514-4523. 



Turkish Journal of Engineering – 2025, 9(3), 519-534 

 

  534  

 

35. Yates, L. A., Aandahl, Z., Richards, S. A., & Brook, B. W. 
(2023). Cross validation for model selection: a 
review with examples from ecology. Ecological 
Monographs, 93(1), e1557. 

36. Mema, B., & Basholli, F. (2023). Internet of Things in 
the development of future businesses in Albania. 
Advanced Engineering Science, 3, 196-205 

37. Lazrek, G., Chetioui, K., Balboul, Y., & Mazer, S. 
(2024). An RFE/Ridge-ml/dl based anomaly 
intrusion detection approach for securing IoMT 
system. Results in Engineering, 23, 102659. 

38. Sinap, V. (2024). Comparative analysis of machine 
learning techniques for credit card fraud detection: 
Dealing with imbalanced datasets. Turkish Journal 
of Engineering, 8(2), 196-208. 

39. Polater, S. N., & Sevli, O. (2024). Deep learning based 
classification for alzheimer's disease detection using 
MRI images. Turkish Journal of Engineering, 8(4), 
729-740. 

40. Sıngh, S., Kumar, K., & Kumar, B. (2024). Analysis of 
feature extraction techniques for sentiment analysis 
of tweets. Turkish Journal of Engineering, 8(4), 741-
753. 

41. Bergstra, J., & Bengio, Y. (2012). Random search for 
hyper-parameter optimization. Journal of Machine 
Learning Research, 13(2012), 281–305. 

42. Vo, Q., Ea, P., Salem, O., & Mehaoua, A. (2024, 
October). Detecting network anomalies in NetFlow 
traffic with machine learning algorithms. In 2024 
IEEE 49th Conference on Local Computer Networks 
(LCN) (pp. 1-8). IEEE. 

43. Al-Tarawneh, M. A., Al-irr, O., Al-Maaitah, K. S., Kanj, 
H., & Aly, W. H. F. (2024). Enhancing fake news 
detection with word embedding: A machine learning 
and deep learning approach. Computers, 13(9), 239. 

44. Corona, I., Giacinto, G., & Roli, F. (2013). Adversarial 
attacks against intrusion detection systems: 
Taxonomy, solutions and open issues. Information 
Sciences, 239, 201-225. 

45. Bolívar, A., García, V., Alejo, R., Florencia-Juárez, R., & 
Sánchez, J. S. (2024). Data-centric solutions for 

addressing big data veracity with class imbalance, 
high dimensionality, and class overlapping. Applied 
Sciences, 14(13), 5845. 

46. Khraisat, A., & Alazab, A. (2021). A critical review of 
intrusion detection systems in the internet of things: 
Techniques, deployment strategy, validation 
strategy, attacks, public datasets and challenges. 
Cybersecurity, 4, 1-27. 

47. Basholli, F., Mema, B., & Basholli, A. (2024). Training 
of information technology personnel through 
simulations for protection against cyber attacks. 
Engineering Applications, 3(1), 45-58. 

48. Mohammed, Y. R., Basil, N., Bayat, O., & Hamid, A. 
(2020). A new novel optimization techniques 
implemented on the AVR control system using 
MATLAB-SIMULINK. International Journal of 
Advanced Science and Technology, 29(5), 4515-
4521. 

49. Marhoon, H. M., Ibrahim, A. R., & Basil, N. (2021). 
Enhancement of electro hydraulic position servo 
control system utilising ant lion optimiser. 
International Journal of Nonlinear Analysis and 
Applications, 12(2), 2453-2461. 

50. Mohamadwasel, N. B., & Kurnaz, S. (2021). 
Implementation of the parallel robot using FOPID 
with fuzzy type-2 in use social spider optimization 
algorithm. Applied Nanoscience, 13, 1389–1399. 

51. Basil, N., Marhoon, H. M., & Mohammed, A. F. (2024). 
Evaluation of a 3-DOF helicopter dynamic control 
model using FOPID controller-based three 
optimization algorithms. International Journal of 
Information Technology, 1-10. 

52. Basil, N., Sabbar, B. M., Marhoon, H. M., Mohammed, 
A. F., & Ma'arif, A. (2024). Systematic review of 
unmanned aerial vehicles control: Challenges, 
solutions, and meta-heuristic optimization. 
International Journal of Robotics & Control Systems, 
4(4), 1794-1818. 

 
 

 
 

 
© Author(s) 2024. This work is distributed under https://creativecommons.org/licenses/by-sa/4.0/ 

 

https://creativecommons.org/licenses/by-sa/4.0/

