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Abstract:   The opening of the Suez Canal and the construction of the Aswan Dam have significantly impacted 
the Mediterranean ecosystem. These changes increased species migration from the Red Sea to the 
Mediterranean, leading to the spread of new species, causing economic losses and threats to human health. 
Among these, the pufferfish is a toxic species with no natural predators and wide distribution. This study 
focuses on training an object detection model to identify pufferfish (Lagocephalus sceleratus) using computer 
vision and deep learning techniques. YOLO (You Only Look Once), a leading algorithm, was used. Training 
data was gathered from diving schools and instructors in the Mediterranean. Frames extracted from 
underwater videos were labeled to create a dataset of 2,473 images. The YOLOv8m version achieved the 
best result with a mAP (Mean Average Precision) of 96.90%. The model was better at detecting pufferfish 
from head and side angles. However, challenges in manual labeling, particularly with tails and fins, slightly 
affected the model’s focus. This study’s findings could help control pufferfish populations using underwater 
robots and automated systems, contributing to ecological balance. 
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I. Introduction 
 

The Suez Canal, completed in 1869, connected the Mediterranean Sea and Indian Ocean, sparking a significant 
migration of species from the Red Sea [1]-[4]. Zenetos et al. [5] documented 903 migrant species, with alien 
species along Turkish coasts increasing from 400 in 2010 to 539 by 2020 [6], [7]. Among these, the pufferfish 
Lagocephalus sceleratus, identified in the Gulf of Gökova in 2003 [8], stands out due to its tetrodotoxin (TTX) 
content [9]. With no natural predators, it preys on shrimp, crabs, and small fish, disrupting ecosystems, damaging 
fishing nets, and causing economic losses [10]. Fatalities from human consumption have also been reported [11]. 
Traditional overfishing methods are in use [12], but advanced solutions like computer vision and deep learning 
remain underexplored for pufferfish detection [13]-[16]. This study applies the YOLO algorithm to detect L. 
sceleratus, aiming to enhance sustainable marine management with underwater robots. 
Artificial intelligence (AI), evolving since the mid-20th century [17], has advanced with artificial neural networks 
(ANNs) [18] and deep learning [19], driven by increased computational power [20]. AI now supports applications 
in mobile devices [21], healthcare [22], finance [23], and beyond [24]. ANNs, inspired by the human brain [25], 
model complex data relationships for tasks like image and speech recognition [26]. Deep learning, a subset of 
machine learning, uses multi-layered networks to extract high-level features from data [27], enabling object and 
face recognition [28], [29]. Computer vision, a key AI domain, interprets digital imagery [30] and is vital for 
underwater applications where optical challenges like refraction hinder traditional observation [31]-[33]. The YOLO 
(You Only Look Once) algorithm, introduced in 2016 [34], excels in real-time object detection with a single-stage 
approach [35]. Trained on datasets like Pascal VOC [36], it predicts object classes and locations efficiently [37]. 
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Evolving through versions like YOLOv10 [38], developed by communities [39] and companies [40], it offers 
enhanced accuracy and speed [41]. 
Underwater studies leverage these technologies effectively. Deep learning models address detection, tracking, and 
classification challenges in marine environments [42], with various algorithms applied [43]. Li et al. [44] achieved 
an 81.4% Mean Average Precision (mAP) using Fast R-CNN on 24,277 fish images, outperforming prior studies by 
80% in speed. Villon et al. [45] reported a 94.9% accuracy with CNNs, surpassing human performance (89.3%), 
especially for obscured fish. Hridayami et al. [46] used VGG16 with transfer learning, achieving a 96.4% acceptance 
rate on mixed RGB datasets. Allken et al. [47] reached 94% accuracy with synthetic data for species classification, 
addressing data scarcity. Jalal et al. [48] combined YOLO with optical flow, yielding a 95.47% F-score for moving 
and camouflaged fish. Salman et al. [49] achieved 87.44% accuracy with R-CNN using movement-based regions. 
Hussain et al. [50] modified AlexNet for 90.48% accuracy, improving on the original 86.65% with dropout layers. 
Wang et al. [51] enhanced YOLOV5 with SiamRPN++, achieving 99.4% AP50 for abnormal fish behavior detection, 
with 76.7% tracking accuracy. Patro et al. [52] used YOLOv5-CNN for 86% precision in adverse conditions, aiding 
fish farm monitoring. 
 
These studies highlight computer vision’s role in fish detection [30], disease identification [32], and net monitoring 
[33], yet pufferfish-specific applications are scarce [12]-[16]. Li et al. [44] and Villon et al. [45] focused on broad 
species recognition, while Hridayami et al. [46] and Allken et al. [47] tackled diverse datasets. Jalal et al. [48] and 
Salman et al. [49] improved detection in complex scenes, and Hussain et al. [50] optimized model efficiency. Wang 
et al. [51] and Patro et al. [52] addressed real-time challenges, but none specifically targeted L. sceleratus. This 
gap motivates our study, building on YOLO’s proven capabilities [34]-[41] to address ecological and economic 
impacts [1]-[11] through precise, automated detection. 
 
II. Materials And Methods 

 
In underwater environments, light refraction, water turbidity, and intense background noise make fish detection and 
tracking challenging. Observing fish and tracking their movements through human observation in such conditions is 
difficult. To address this issue and focus on detecting pufferfish in underwater environments, our study initially 
collected video footage containing pufferfish. The collected video footage was divided into frames, the pufferfish in 
the images were labeled, and a dataset was created for training the object detection model using these labeled 
frames. YOLOv8 and YOLOv5 models were trained using the labeled frames from the videos, and their training 
performance was compared based on precision, recall, and average precision values.  
 
A. Dataset 

 
In this study, videos used for detecting pufferfish were obtained from some diving schools and professional diving 
instructors operating in the Mediterranean region. The acquired videos were divided into frames for training the 
YOLO model. The code required to convert the videos into frames was written using the Python programming 
language in the PyCharm IDE, with the help of the OpenCV library.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Roboflow image annotation tool 
The frames need to be labeled for use in the training process of the dataset. For labeling the images, the annotation 
interface provided by the Roboflow platform was used (Figure 1). Roboflow is an online platform that facilitates the 
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creation and management of computer vision projects, available for both paid and free use. Through its API 
(Application Programming Interface), the dataset containing labeled images in YOLO format can be used in model 
training within the Google Colab environment. Google Colab was chosen as the training environment for this study. 
Google Colab is a cloud-based Jupyter Notebook service provided by Google, accessible through a web interface, 
offering integration with Google Drive, and free GPU and TPU support. 
 
Since YOLOv8 and YOLOv5 models can use images of size 640×640 for training, the images were resized to 640×640 
dimensions. Data augmentation operations, including horizontal flip, vertical flip, and rotations by 90 degrees 
clockwise and counterclockwise, were performed on the data. After augmentation, the dataset consisted of a total 
of 2473 images, including 1773 for training, 450 for validation, and 250 for testing (approximately 70:20:10). These 
values align with similar studies [53]. The data processing script used OpenCV’s cv2.VideoCapture to extract frames 
at 1-second intervals, followed by resizing with cv2.resize and augmentation via Roboflow’s built-in tools. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Examples of annotated images used during training 
 
As seen in Figure 2, care was taken to ensure that the selected pufferfish images for annotation included examples 
from different angles. In the bounding box process, emphasis was placed on the fish's body, while the fins and tails 
of the fish were given less consideration in the annotations. The reasons for this are explained in the subsequent 
sections. 
 
B. Training Process 

 
In the study conducted for pufferfish detection, the dataset containing 2473 images was trained in the Google Colab 
environment. Ultralytics YOLOv8.0.134 and YOLOv5 v7.0-72 versions were used for training the model in the Colab 
environment. Python 3.10.12 and torch 2.0.1+cu118 libraries were utilized. The training code adapted from 
Ultralytics’ repositories is publicly available at github.com/username/pufferfish-detection. Key hyperparameters 
included a learning rate of 0.01, batch size of 16, momentum of 0.937, and weight decay of 0.0005, optimized for 
convergence over 300 epochs. The patience parameter was set to 100 to halt training if validation loss did not 
improve, preventing overfitting. 
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Before training, a compute unit was purchased on Google Colab, and A100 and V100 graphics processing units were 
used during the study. The system specifications used during the study on Google Colab were a 12-core processor, 
83.5 GB RAM, 166.8 GB disk space, and either a 40GB Nvidia A100 SXM graphics processing unit or a 16GB Nvidia 
V100 graphics processing unit. The driver version of the graphics processing unit was 525.105.17, and the CUDA 
version was 12.0. 
 
After preparing the dataset, it was uploaded to the Colab environment, and the YOLO algorithms' codes were run 
step-by-step with a value of 300 epochs to perform the training, validation, and testing processes. The entire process 
can be summarized as shown in Figure 3. Training involved the following steps: (1) loading the dataset in YOLO 
format, (2) initializing pre-trained weights (e.g., yolov8m.pt), (3) running the train.py script with specified 
hyperparameters, and (4) saving the best model weights based on validation mAP. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Stages of the study 
 
C. Evaluation Methods (Metrics) 

 
After model training is completed, the model is evaluated from various perspectives. The confusion matrix is one of 
the fundamental tools used to assess the performance of classification models. Typically presented as a two-
dimensional table, this matrix shows the relationships between the classes predicted by the model and the actual 
classes. This matrix and its values are provided in Table 1. 

 
Table 1: Confusion Matrix Structure 

 Predicted Values 

Actual Values 
TP FN 

FP TN 
 

TP (True Positives): These are the examples correctly predicted as positive by the model. In our study, it represents 
the number of images correctly identified as pufferfish. 

TN (True Negatives): These are the examples correctly predicted as negative by the model. In our study, it represents 
the number of images correctly identified as not containing pufferfish. 

FP (False Positives): These are the examples predicted as positive by the model but are actually negative. In our 
study, it represents the number of images where pufferfish is not present but the model incorrectly identified 
them as containing pufferfish. 

FN (False Negatives): These are the examples predicted as negative by the model but are actually positive. In our 
study, it represents the number of images where pufferfish is present but the model incorrectly identified them as 
not containing pufferfish. 
Precision indicates how many of the positive predictions are actually correct, which is particularly important in cases 
of imbalanced classes. Recall, also known as sensitivity or true positive rate, shows how many of the actual positive 
examples are correctly predicted. Accuracy represents the ratio of correct predictions to the total number of 
predictions and is often used with balanced datasets. The F1 Score balances precision and recall by calculating their 
harmonic mean. Additionally, Average Precision (AP) and mean Average Precision (mAP), which summarize the 
model's performance in terms of precision and recall across different classes into a single metric, are used to 
characterize the model's precision and evaluate its accuracy. 
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Additionally, the PR curve (precision and recall curve) shows the trade-off between precision and recall at different 
thresholds. By calculating the area under the precision-recall curve, average precision (AP) is obtained for each class, 
and the mean of these values provides the mean Average Precision (mAP). mAP is a critical metric for assessing the 
overall performance of the model and the balance across classes. It is calculated by averaging the AP values for each 
class using a 0.5 IoU threshold [54]. 
 
D. Performance Parameter 
 
For deep learning models like YOLO, performance parameters provide information about the model's efficiency and 
applicability. Measurements under this category include processing speed (in milliseconds or seconds), frame rate 
(frames per second), model size, memory usage, training time, computational complexity, and energy consumption 
[55]. 
 
E. Loss Functions 
 
In addition to the metrics mentioned above, the loss functions used during model training include Box Loss, 
Classification Loss (cls loss), and Distribution Focal Loss (dfl loss). These functions are used to improve the training 
performance of the model and measure how much the predictions deviate from the actual values. Loss functions 
are fundamental tools for optimizing model performance. 
 
Box Loss measures how well the predicted bounding boxes overlap with the actual bounding boxes. It consists of 
components such as box localization loss and box size loss. Classification Loss measures how well the predicted 
class labels match the actual class labels; a lower classification loss indicates better alignment between the predicted 
and actual class labels. DFL Loss assesses how well the predicted boxes overlap with the actual bounding boxes, 
similar to box localization loss, but uses different methods for calculation [56], [57]. 
 
III. Results And Discussion 

 
Detecting the invasive pufferfish, which is increasingly populating the Mediterranean and causing various economic 
and social impacts, is an important step in mitigating the damage they cause and may cause in the future. In the 
study, the epoch value for each model was set to 300, and the patience value was set to 100. An epoch represents 
a single pass of the entire training data through the model. The patience value monitors consecutive epochs and 
terminates the training if no better values are achieved within the specified number of epochs, without waiting for 
all epochs to complete. This value was set to 100 to avoid wasting resources when the model is no longer learning 
effectively. If the patience value equals the number of epochs, training will continue until all epochs are completed; 
if set to 0, training will continue until all epochs are completed. The training results for the YOLOv5 and YOLOv8 
models included in the study are provided in Table 2. 
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Table 2: Training Results of the Models 

Model Precision Recall Average Precision GPU Duration 

YOLOv5n %97,20 %88,70 %92,40 V100 1 hour 06 min 53 sec 

YOLOv5m %95,10 %89,70 %93,40 V100 2 hour 45 min 50 sec 

YOLOv8n %93,90 %93,90 %95,80 V100 1 hour 06 min 18 sec 

YOLOv8m %97,60 %92,70 %96,90 V100 1 hour 55 min 02 sec 
YOLOv8l %97,40 %92,30 %96,70 A100 1 hour 47 min 13 sec 

 
The values in Table 2 were automatically generated at the end of training based on the precision and recall formulas 
applied to the error matrices of the validation dataset. The average precision values were obtained using the area 
under the precision-recall curve, which was also automatically calculated after training. In the Google Colab 
environment, the A100 GPU was selected for the image processing unit. However, Colab provided the V100 GPU 
instead of the A100. Colab's resource allocation may provide alternatives to the requested GPU based on availability. 
The difference in GPUs used during training affects the training duration. 
 
An examination of the data in Table 2 reveals that the YOLOv8n model achieved better average precision and training 
duration compared to the YOLOv5n model. Additionally, when comparing the average precision and training duration 
of the YOLOv5m model with the YOLOv8m model, the YOLOv8m model delivered superior results. There was also 
an approximate 51-minute difference in training completion time between the two trainings conducted with the 
same GPUs. 
 
A. Loss Functions 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

Figure 4: YOLOv8m Training Charts 
 
Examining the training results for the YOLOv8m model presented in Figure 4, it is observed that after 200 epochs, 
the model's recall, precision, and average precision values stabilized. Between 250 and 300 epochs, the model 
exhibited stable performance in average precision. In the validation (val) graphs, an increase in the DFL loss value 
was noted after 250 epochs. In the Google Colab environment, training with 300 epochs for the YOLOv8m model 
was completed in approximately 1 hour and 55 minutes, while the average precision and completion times for other 
models are listed in Table 2. The highest average precision value was observed with the YOLOv8m model. 
 
Figure 5. displays the training results for the YOLOv8n model. The graphs show the variations in values throughout 
the training process conducted over 300 epochs. An increase in the validation box loss and DFL loss values is 
observed between 200 and 300 epochs. 
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Figure 5: YOLOv8n Training Charts 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: YOLOv8l Training Charts 
 
Figure 6. shows the training results for the YOLOv8l model. The analysis of the training results indicates that the 
validation (val) box loss and DFL loss values remained higher compared to the YOLOv8n and YOLOv8m models. 
Additionally, it was observed that the DFL values increased after 250 epochs. 
 
Figure 7. presents the training results for the YOLOv5n model. Due to differences between YOLOv5 and YOLOv8 
models, the YOLOv5 model calculated the classification loss as 0 for single-class examples. It was observed that the 
validation (val) objective loss values increased after 200 epochs. 
 
Figure 8. shows the training results for the YOLOv5m model. It was observed that the validation (val) objective loss 
exhibited an increasing trend after 200 epochs. 
 
B. Metrics 
 
Figure 9. presents the error matrices for the models used in the study. In the YOLOv8 models, for single-class tasks, 
the confusion matrices produced by YOLO do not display the true negative values. Overall, it was observed that all 
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three models performed quite well in detecting pufferfish. However, some errors were noted, such as misidentifying 
backgrounds as pufferfish and failing to detect some pufferfish. Generally, the YOLOv8m model demonstrated the 
best performance during the validation and testing phases. 
 
The Precision-Recall curves for the YOLOv8n, YOLOv8m, and YOLOv8l models during validation and testing at a 0.50 
threshold are presented in Figure 10. In these PR graphs, the closer the curve is to the top corner of the graph, the 
better the model's performance, indicating high precision and recall. The area under the curve (AUC-PR) value 
summarizes the model's overall performance, and a high AUC-PR value is indicative of good performance. According 
to this:  
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 7: YOLOv5n Training Charts 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. YOLOv5m Training Charts 
 
 
The YOLOv8n model's average precision during validation was found to be 96.10%. These high precision and recall 
values indicate that the model accurately identifies a high proportion of true positives and that a large portion of the 
positive predictions are correct. The average precision on the test set was found to be 98%. Similarly, high precision 
and recall values were observed on the test set, demonstrating that the model's generalization capability is quite 
strong. 
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a. YOLOv8n Validation b. YOLOv8m Validation c. YOLOv8l Validation 

   

   
d. YOLOv8n Test e. YOLOv8m Test f. YOLOv8l Test 

 
Figure 9: Error Matrices of the Models in the Study 

 

   
a. YOLOv8n Validation  
Precision-Recall Curve 

b. YOLOv8m Validation Precision-
Recall Curve 

c. YOLOv8l Validation  
Precision-Recall Curve 

   

   

d. YOLOv8n Test  
Precision-Recall Curve 

e. YOLOv8m Test  
Precision-Recall Curve 

f. YOLOv8l Test  
Precision-Recall Curve 

 
Figure 10: Precision-Recall (PR) Curves of the Models in the Study 

 
 
The YOLOv8m model's average precision during validation was found to be 96.90%. The model's high precision and 
recall values indicate a high accuracy rate and strong detection capability. The average precision during testing was 
found to be 98.80%. The model's performance on the test set was similar to the validation set, demonstrating that 
the model could generalize well from the training data to the test set. 
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The YOLOv8l model's average precision during validation was found to be 96.80%. The high precision and recall 
values during validation show the model's ability to accurately predict positive classes. The average precision on the 
test set was found to be 98.40%. The model's performance on the test set was very close to that on the validation 
set, indicating good generalization ability. 
 
Both the YOLOv8m and YOLOv8l models exhibit high consistency and performance on both the validation and test 
sets. Their PR curves indicate that these models have high positive classification abilities with low false negative and 
false positive rates. While the YOLOv8m model shows the best performance with an excellent PR curve, a slight 
performance drop was observed in the YOLOv8n model. 
 
C. Test Phase Examples 
 

    

a. Pufferfish detected using 
the trained model weights 

b. Pufferfish detected using the 
YOLOv8m model in low-light 

nighttime conditions 

c. Pufferfish detected using the 
YOLOv8m model in well-lit 

nighttime conditions 

d. Pufferfish detected using the 
YOLOv8m model in a high-

noise nighttime environment 

   

e. Pufferfish detected using the YOLOv8m 
model in daylight conditions with normal 

lighting 

f. Pufferfish detected using the 
YOLOv8m model in daylight 

conditions with normal lighting 

g. Pufferfish detected using the YOLOv8m 
model in a noisy environment 

Figure 11: Pufferfish Detection Under Various Lighting and Noise Conditions 
 
Figures 11.a to 11.g shows the YOLOv8m model's performance in detecting pufferfish under various lighting and 
noise conditions. Figures 11.a through 11.g showcase the performance of the YOLOv8m model in detecting pufferfish 
under various lighting and noise conditions. Figure 11.a: The model achieved a 90% accuracy in detecting the 
pufferfish in a noisy environment with artificial lighting. This demonstrates the model's ability to perform with high 
accuracy even under complex lighting conditions. Figure 11.b: During a low-light nighttime shoot, the model achieved 
a 79% accuracy. This result highlights the model's capability to make reliable predictions even in low-light conditions. 
Figure 11.c: The model attained a 69% accuracy in a nighttime shoot with high artificial lighting. This indicates that 
the model can operate with reasonable accuracy even in highly illuminated environments. Figure 11.d: In a high-
noise environment, the model achieved 81% accuracy. This shows that the model can accurately detect pufferfish in 
noisy conditions. Figure 11.e: Under daylight and natural lighting conditions, the model achieved a 94% accuracy, 
indicating high performance under ideal lighting conditions. Figure 11.f: In daylight with normal lighting, the model 
achieved an 89% accuracy, suggesting consistent high accuracy under natural lighting conditions. Figure 11.g: The 
model detected pufferfish with a 54% accuracy from a rear dorsal view in a noisy environment. This finding shows 
that while the model performs reasonably well in challenging conditions, performance can drop in such atypical 
scenarios. Overall, the YOLOv8m model demonstrates high accuracy in detecting pufferfish across various lighting 
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and noise conditions. The results suggest that the model can be effectively used in a range of real-world scenarios 
and has strong generalization capabilities. 
 
D. Challenges Encountered In Underwater Environments 

 
In training a deep learning model for high-accuracy pufferfish detection in underwater environments, obtaining a 
sufficient number of correctly labeled examples is crucial. However, accessing the data needed to train the model 
and achieve accurate results is a challenging process. Underwater images are often taken under low light conditions 
or are blurred, making it difficult to detect fish species, including pufferfish. Low image quality can hinder labeling 
accuracy and affect the model's ability to accurately detect pufferfish examples. Additionally, pufferfish may be viewed 
from various perspectives and sizes underwater. Some pufferfish are captured up close, while others are seen from 
a distance. This variability necessitates additional data for the model to recognize different perspectives and sizes 
effectively. 
 
 

  
a. b. c. d. 

 
Figure 12: Representative Examples of Challenging Underwater Environments 

 
The underwater environment is complex and challenging. Objects such as algae, rocks, and corals can complicate 
pufferfish detection and hinder the model's ability to produce accurate results. Figure 12 illustrates these challenging 
environments. Figure 12.a Shows an underwater scene captured at night with high noise. The low light and high 
noise levels make it difficult to detect pufferfish. Figure 12.b displays an environment where other fish are present, 
and the pufferfish blends with the sandy sea floor. As the fish gets closer to the sand, distinguishing it from its 
surroundings becomes challenging. Figure 12.c Depicts an environment with insufficient lighting, which further 
complicates accurate pufferfish detection. Figure 12.d Features a dark underwater scene captured with artificial 
lighting. Even under these artificial light conditions, detecting pufferfish can be difficult. In such environments, the 
model's ability to produce accurate results depends on its effectiveness in filtering out noise and distinguishing the 
pufferfish from its surroundings. 
 
Figure 13. shows labeled pufferfish images from the dataset, sourced from the Roboflow platform, captured in various 
underwater environments. Figure 13.a Illustrates a scene where pufferfish are found alongside other fish species, 
highlighting the complexity of detection in mixed environments. Figure 13.b Features a night-time shot with low 
lighting, where the pufferfish is clearly visible, demonstrating detection capabilities under low-light conditions. Figure 
13.c shows a pufferfish close to the camera, with visible noise in the recording environment, emphasizing challenges 
in high-noise settings. Figure 13.d displays a scene where the pufferfish is near the sandy sea floor and camouflaged 
with the sand, illustrating the fish’s natural camouflaging ability and the difficulty in detection. These images provide 
crucial reference points for evaluating the model's performance in various underwater scenarios. 
 
In this study, the potential of the YOLO deep learning algorithm was explored for developing an automatic pufferfish 
detection system capable of accurately identifying pufferfish samples in real-time. Initially, a unique dataset consisting 
of 2473 images was created, with 1773 images for training, 450 images for validation, and 250 images for testing. 
YOLOv5 and YOLOv8 versions, including n, m, and l packages, were trained using this dataset, and the weights of 
the models were obtained upon completion of the training process. 
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In the training conducted with 300 epochs, it was observed that pufferfish could be better detected from the head 
and side views. This outcome can be attributed to the effectiveness of the manual labeling process of the images. 
During the manual labeling process, some images were attempted to be annotated with bounding boxes around 
the areas covered by the pufferfish. However, due to the unclear appearance of the tail and fins, only the more visible 
part, the body, could be included within the bounding boxes. Challenges encountered during manual labeling 
included images with excessive noise (e.g., Figures 11.d, g), very high or low lighting (e.g., Figures 11.b, c), and 
pufferfish camouflaged among other objects and fish in the environment. In such problematic images, bounding 
boxes were included only if the fish’s fins and tail could be clearly distinguished. This situation naturally influenced 
the model’s performance as well (e.g., Figures 11.e, f) [58]. 
 

  
a. b. c. d. 

Figure 13: Labeled Pufferfish Images from the Dataset 
 
At the end of the training, the YOLOv8 model achieved the expected success, and the performance of YOLOv5 was 
compared with YOLOv8. YOLOv8 models demonstrated better average precision performance compared to YOLOv5 
models. The success of the YOLOv8 model compared to YOLOv5 aligns with the success comparisons of YOLO 
versions published by Ultralytics [59]. Both YOLO versions were trained for pufferfish detection, and the results, 
including precision, recall, and average precision values shown in Table 2, indicate that the model provides 
acceptable results regarding its performance [60]-[63]. 
 
Figures 4, 5, and 6, which display the training results for YOLOv8 models, show an increase in dfl loss values after 
250 epochs. Similarly, Figures 7 and 8, which depict the training results for YOLOv5 models, reveal an increase in 
objective loss values after 250 epochs. Overfitting is a phenomenon where a model performs well on the training 
data but poorly on new, unseen test data [64], [65]. This indicates that overfitting problems emerged in the models 
after 250 epochs of training. During the training of the models, the patience value was set to 100. Generally, the 
patience value is used to manage the training process in a balanced way and control overfitting. If a lower patience 
value is applied, the training might be concluded before completing 300 epochs. Setting the patience value too low 
can lead to prematurely halting the training, which may reduce the model's chances of learning generalization and 
showing its true potential [66], [67]. Carefully adjusting the patience value is important to ensure the model trains 
for a sufficient duration, allowing it to adapt to the training data while also learning generalization [68]. Properly 
setting this value provides flexibility while monitoring the model's performance on validation data and reduces the 
likelihood of overfitting. Selecting a lower patience value to complete the training within 250 epochs or less could 
potentially enhance the models' performance. 
 
Box loss, classification loss, and dfl values can vary depending on the model's complexity, the dataset, and the training 
process [69], [70]. Lower dfl loss values indicate better object detection performance by the model [71], [72]. The 
results obtained show that the model is able to correctly classify pufferfish in images taken from the head and side 
angles but struggles with accurately determining their locations. The higher dfl loss compared to other values 
suggests that the model makes errors, particularly in bounding box predictions, indicating that the predicted 
bounding boxes are not well-aligned with or overlapping with the ground truth bounding boxes. It appears that the 
model has difficulties dealing with rare classes or challenging examples and requires more data to accurately classify 
these objects and predict their bounding boxes [73], [74]. Although the high DFL loss causes some inconsistencies 
in the model's bounding box estimates, it was observed that this loss did not seriously reduce the overall accuracy 
rate of the model. This shows that the model has the ability to successfully detect pufferfish from various angles. 
However, since there may be possible inconsistencies in the bounding box estimates, it is very important to create a 
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data set that includes more image diversity and especially views of the fish from different angles to avoid this 
problem. 
 
IV. Conclusion 

 
In this study, a model for detecting pufferfish using computer vision and deep learning was trained with ESA-based 
YOLOv8 and YOLOv5 models, including some of their subversions (n, m, l). The videos used in the study were 
recorded in the Mediterranean Sea. An original dataset consisting of 2473 images was created from frames extracted 
from videos containing pufferfish obtained from various diving schools. For model training, the images were divided 
into training, validation, and test sets in a 70-20-10 ratio. The models were compared based on precision, recall, and 
average precision metrics, with the best performance achieved by the YOLOv8m model, which obtained an average 
precision of 96.90%. 
 
In this study, YOLOv8 models have been demonstrated to be effective for detecting specialized species like pufferfish 
in underwater environments, achieving successful detection. Given the unique challenges of underwater 
environments and the specific issues posed by classifying fish, such as whether to include features like fins and tails 
in labeling, it would be beneficial to repeat the study with datasets containing more data. Although the precision, 
recall, and average precision values obtained throughout the study are high, different optimization strategies and 
hyperparameter tuning could be explored to reduce the dfl loss. To address the issue of image blurriness affecting 
focus on the body, clearer images can be used, and higher resolution images could be incorporated into training 
using methods like "patch-based training" [75] or "sliding window approach" [76]. The model developed in this study 
can serve as a foundation for future work, enabling the use of underwater robots or drones for unmanned detection 
and monitoring of pufferfish. However, this study has limitations, including the relatively small dataset size, which 
may not fully represent the variability of Lagocephalus sceleratus across different conditions and regions. Manual 
labeling difficulties, particularly in low-light or noisy underwater images, also impacted detection accuracy for certain 
angles. Furthermore, the focus on Mediterranean data limits its geographic applicability, and the use of only YOLOv5 
and YOLOv8 excludes other potentially effective algorithms. For further improvement, future studies could expand 
the dataset with diverse environmental samples, employ automated labeling tools to enhance consistency, using 
transfer learning methods and test additional deep learning models to optimize performance. 
 
This study could be integrated into unmanned underwater vehicles (UUVs) to monitor and control pufferfish 
populations in real-time, reducing ecological damage in the Mediterranean. Fishermen could use this technology via 
mobile apps or onboard systems to avoid catching pufferfish, minimizing net damage and economic losses. In 
aquaculture, the model could identify pufferfish intrusions in fish farms, protecting native species and improving 
yield. Environmental agencies might deploy it to track invasive species spread, informing policy decisions. For public 
health, coastal authorities could use it to issue warnings about pufferfish presence, preventing consumption-related 
incidents. These applications extend beyond detection, offering actionable insights for sustainability and safety. 
Expanding these application examples, the model could support biodiversity studies by mapping pufferfish 
distribution, assist in automated culling systems to curb overpopulation, or integrate with drone-based surveillance 
for large-scale monitoring. Such implementations could amplify its impact on marine conservation, fishing efficiency, 
and public safety. 
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