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Abstract— Gastrointestinal (GI) diseases remain a significant 

global health challenge, particularly in low-income settings where 

diagnostic resources are often scarce. Endoscopic examination is 

essential for detecting and monitoring these diseases, yet the 

manual analysis of the resulting images is time-consuming, prone 

to observer variability, and demanding of clinical expertise. 

Recent advances in computer-aided diagnosis (CAD) using deep 

convolutional neural networks (CNNs) have shown promise in 

automating endoscopic image classification, but limited annotated 

data and the subtlety of GI findings continue to pose challenges. 

To address these constraints, this study proposes a two-level 

stacking ensemble framework that combines three pre-trained 

CNN architectures—ResNet50, DenseNet201, and 

MobileNetV3Large—with four classical machine-learning meta-

classifiers (Logistic Regression, Random Forest, Support Vector 

Machine, and K-Nearest Neighbors). The KvasirV2 dataset, 

comprising 8,000 GI endoscopic images across eight classes, was 

used to train and evaluate the models. Results indicate that the 

stacking ensemble achieved a top accuracy of 94.33%, surpassing 

individual CNN baselines by 1–2%. Notably, this multi-level 

ensemble approach demonstrated improved diagnostic 

consistency for challenging classes like early-stage esophagitis and 

normal Z-line, suggesting that synergizing diverse CNN feature 

extractors can mitigate the limitations of single-network methods. 

These findings underscore the potential of ensemble-based 

transfer learning to enhance clinical decision support, reduce 

observer variability, and facilitate earlier, more accurate detection 

of GI diseases. 

 
 

Index Terms—: Ensemble Learning, Transfer learning, 

Gastrointestinal Endoscopy, Deep Convolutional Neural 

Networks (CNNs), Computer-Aided Diagnosis (CAD) 

 

I. INTRODUCTION 

ASTROINTESTINAL(GI) DISEASES pose a major global 

health concern, ranking as the seventh leading cause of 

death in low-income countries in 2021, according to the World 

Health Organization (WHO) [1]. The diversity of 

gastrointestinal disorders, ranging from mild inflammatory 

conditions to life-threatening cancers, underscores the need for 

accurate and timely diagnosis to prevent complications and 

improve patient outcomes.  

A primary method for diagnosing GI diseases is endoscopic 

examination, which involves the use of a flexible tube with an 

attached camera to visualize the GI tract in real time. While this 

technique facilitates direct observation of the esophagus, 

stomach, and intestines, and permits biopsy or treatment during 

the procedure, it also places substantial demands on clinical 

resources. Gastroenterologists spend considerable time 

interpreting large numbers of images or videos, which may 

result in increased workload and heightened fatigue. Moreover, 

visual assessment is inherently susceptible to inter- and intra-

observer variability, as clinicians may reach different 

conclusions depending on their expertise, training, or even 

geographic practice environment.  

In response to these diagnostic challenges, computer-aided 

diagnosis (CAD) systems have gained momentum as valuable 

clinical support tools. By harnessing the power of artificial 

intelligence (AI), these systems can potentially standardize 

diagnostic criteria, detect abnormalities more consistently, and 

expedite the process of disease identification. Specifically, deep 

convolutional neural networks (CNNs) have shown promise for 

classifying endoscopic images, as they autonomously extract 

relevant features from raw data, thereby reducing the need for 

manual feature engineering. However, one persistent obstacle 

in developing robust deep learning models in medicine is the 

limited availability of annotated data, given that privacy 

regulations often constrain the sharing of medical images 

among institutions.  

To address this limitation, transfer learning has emerged as a 

strategic approach. Rather than training a deep neural network 

from scratch, researchers leverage pre-trained models from 

large-scale datasets—such as ImageNet—and adapt them to 

medical image classification tasks [2], [3]. This process not 

only reduces computational burden but also allows the model 

to inherit feature representations from millions of natural 

images, improving performance on smaller and more 

specialized medical datasets. Overall, the confluence of 

increased GI disease prevalence, the growing volume of 

endoscopic data, and advancements in deep learning highlights 

an urgent need for integrating AI-driven diagnostic tools into 

clinical practice. By doing so, healthcare systems can 

potentially detect pathologies earlier, reduce clinician 

workload, and enhance patient care. A summary of the studies 

in the literature is as follows:  
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Gebreslassie et al. [4] compared DenseNet121 and ResNet50 

on a subset of 2,000 images from the Kvasir v2 dataset, 

employing a split ratio of 0.6, 0.3, and 0.1 for training, testing, 

and validation, respectively. Their findings indicated that 

ResNet50 attained the highest accuracy of 87.8%, thereby 

demonstrating the potential utility of transfer learning for 

gastrointestinal (GI) endoscopic image classification. Poudel et 

al. [5] employed ResNet50 with scaled-dilation convolutions to 

classify 4,000 endoscopic images into eight categories, 

achieving an accuracy of 88%. Their methodology incorporated 

a batch size of 16, a learning rate of 0.001, and stochastic 

gradient descent, illustrating the importance of meticulous 

hyperparameter selection to mitigate overfitting in 

convolutional neural networks (CNNs). Lonseko et al. [6] 

adopted an attention-guided CNN incorporating spatial 

attention and encoder-decoder layers on the Kvasir dataset, 

achieving 93.19% accuracy and an F1 score of 92.8%. They 

addressed data imbalance via augmentation strategies, 

underscoring the relevance of data diversity in model training. 

Musha et al. [7] investigated 16 pre-trained models, including 

MobileNetV2, on 2,000 Kvasir v2 images focused on dyed 

lifted polyps and resection margins. MobileNetV2 performed 

best, reaching an accuracy of 82.25% under a learning rate of 

0.001 with Adam. Auzine et al. [8] explored InceptionV3, 

InceptionResNetV2, and VGG16 on 9,852 images from the 

Endoscopic Artifact Detection and Kvasir v2 datasets, reporting 

77.65% accuracy with InceptionV3. In a similar vein, Gupta et 

al. [9] proposed a hybrid architecture combining 

EfficientNetB7 and ResNet50 to classify 8,000 Kvasir v2 

images, achieving 88.19% accuracy. These studies collectively 

highlighted the continued success of transfer learning in GI 

endoscopic tasks and the inherent challenges of avoiding 

overfitting.  

Mukhtorov et al. [10] examined DenseNet201, 

MobileNetV2, ResNet18, ResNet152, and VGG16 on 8,000 

wireless endoscopic images, identifying overfitting in 

ResNet152, with a training accuracy of 98.28% versus a 

validation accuracy of 93.46%. Gunasekaran et al. [2] reported 

analogous issues using an ensemble of DenseNet201, 

InceptionV3, and ResNet50 obtaining 95% accuracy but with 

diminished generalization on validation data. Demirbaş et al. 

[11] developed a Spatial-Attention ConvMixer (SAC) 

architecture, surpassing Vanilla ViT, Swin Transformer, and 

the baseline ConvMixer on the Kvasir dataset, with a final 

accuracy of 93.37%. This study demonstrated the efficacy of 

spatial attention mechanisms in enhancing classification 

performance. In parallel, Ayan [12] investigated the 

classification of gastrointestinal diseases using thirteen 

different CNN models and two different ViT architectures. The 

authors observed that while ViT models reached accuracies of 

91.25% and 90.50%, a well-optimized DenseNet201 variant, 

leveraging optimized transfer learning parameters, recorded an 

accuracy of 93.13%, a recall of 93.17%, a precision of 93.13%, 

and an F1 score of 93.11%, thereby outperforming both ViT 

models. Similarly, Huo et al. [13] proposed Self-Peripheral-

Attention (SPA), inspired by human peripheral vision, to 

improve classification and segmentation on Kvasir and Kvasir-

SEG datasets, attaining an accuracy of 92.7%.  

If the literature is examined, it can be seen that despite the 

demonstrated success of transfer learning and deep CNNs in 

classifying GI endoscopic images, several notable gaps remain 

unaddressed. First, most existing studies rely on either a single 

deep network or straightforward ensemble averaging, without 

systematically exploiting more advanced multi-level ensemble 

frameworks. As a result, valuable complementary features 

learned by different architectures may not be fully leveraged, 

especially for visually subtle classes such as early-stage 

esophagitis and the Z-line. Second, while overfitting and 

limited annotated data are frequently acknowledged challenges 

in GI image analysis, there is comparatively little research into 

robust strategies—beyond basic augmentation—for mitigating 

these issues across diverse endoscopic conditions. Finally, few 

works provide a detailed examination of how stacking 

ensembles with classical machine-learning meta-classifiers can 

improve diagnostic consistency and reduce the variance 

inherent in individual CNNs. Addressing these gaps could lead 

to more precise classification performance, particularly in 

clinically challenging contexts where subtle tissue changes are 

critical for early diagnosis.  

This study contributes to the gastrointestinal (GI) endoscopy 

classification literature in several key ways. First, it proposes a 

two-level stacking ensemble approach, systematically 

combining multiple state-of-the-art CNN architectures 

(ResNet50, DenseNet201, MobileNetV3Large) with classical 

meta-classifiers (Logistic Regression, Random Forest, SVM, 

KNN). By moving beyond single-network solutions and basic 

ensemble averaging, the method fully exploits complementary 

learned features, which is particularly important for handling 

the subtle visual distinctions in GI images such as early-stage 

esophagitis and normal Z-line. Second, the detailed comparison 

of base CNNs against multiple stacking ensembles offers new 

insights into how meta-classifiers can improve diagnostic 

consistency, bridging an existing gap in the literature on 

advanced ensemble frameworks for GI endoscopic image 

analysis. By presenting robust evidence that such multi-level 

ensembles outperform individual CNNs, the study sets a 

foundation for future research aimed at achieving more accurate 

and clinically relevant GI disease detection systems. 

II. MATERIALS AND METHODS 

A. Dataset 

This study employs the Kvasir-V2 dataset [14], a collection 

of gastroenterological endoscopic images gathered by a 

Norwegian healthcare organization, designed to facilitate 

research in medical image analysis. The Kvasir-v2 dataset is a 

comprehensive collection of 8,000 gastrointestinal tract 

endoscopic images, released in 2017 through the MediaEval 

Medical Multimedia Challenge. The dataset contains eight 

balanced classes with 1,000 images each, all annotated and 

verified by certified endoscopists. These classes are divided 

into three main categories: anatomical landmarks (pylorus, z-

line, and cecum), pathological findings (esophagitis, ulcerative 

colitis, and polyps), and medical procedures (dyed lifted polyps 

and dyed resection margins). The classes and image examples 

used for the application are presented in Fig. 1. The images vary 

in resolution from 720×576 pixels to 1920×1072 pixels, with 
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some containing annotations in the leftmost quarter and green 

boxes indicating endoscope location. Each image varies in 

capture angle, brightness, zoom level, resolution, and 

centerpoint, making it a challenging dataset for deep learning 

applications. Despite its relatively small size compared to 

standard deep learning datasets, Kvasir-v2 has become a crucial 

benchmark dataset for evaluating machine learning approaches 

in gastrointestinal image analysis, particularly for testing 

classification accuracy, developing computer-aided diagnosis 

tools, and assessing model generalization capabilities. The 

dataset's standardized format and public availability through 

Kaggle [15] make it particularly valuable for research in 

automated gastrointestinal disease detection and medical image 

classification systems. By applying a random sampling 

strategy, each category was partitioned into training and test 

sets at a 70:30 ratio, yielding 5,600 images for training and 

2,400 images for testing.  

To enhance the robustness and generalization capability of the 

model, a data augmentation pipeline was implemented, 

applying a series of random transformations to the input images 

during training. Each image undergoes random rotations within 

the range [−15∘, 15∘] and discrete 90-degree increments, along 

with adjustments to brightness, contrast, saturation, and hue to 

introduce variability in illumination and color. Small 

translations are simulated by padding the image by 20 pixels 

and cropping it back to its original dimensions, while additive 

Gaussian noise with a mean of 0.0 and a standard deviation of 

0.1 is introduced to mimic real-world imperfections. These 

augmentations are applied dynamically during training, 

ensuring that the model is exposed to a diverse range of 

variations, thereby improving its ability to generalize and 

reducing the risk of overfitting. Originally, there were 5,600 

training instances; after applying these augmentations at a rate 

of 5×, the total number of augmented samples increases to 

28,000. The test dataset remains unchanged at 2,400 samples. 

All images were resized at 224×224x3 pixels.. 

B. Transfer Learning 

Transfer learning is highly beneficial in medical imaging 

tasks primarily because acquiring large, well-annotated datasets 

in clinical settings can be challenging due to patient privacy 

concerns, labeling costs, and the specialized expertise needed 

for annotation [16]. By leveraging models pre-trained on 

extensive and diverse non-medical image datasets—such as 

ImageNet—researchers can repurpose learned features (e.g., 

edges, textures) and adapt them to medical contexts. This 

process not only saves significant computation time and 

resources but also mitigates the risk of overfitting when 

working with relatively small medical datasets [17]. According 

to Litjens et al. [18], transfer learning facilitates faster 

convergence and can enhance classification or detection 

accuracy in a wide range of medical imaging applications, from 

lesion identification to organ segmentation. Numerous CNN 

architectures have been introduced in the literature. In this 

work, three pre-trained CNN models ( ResNet50, DenseNet201 

and MobileNetV3Large) are employed to categorize 

endoscopic images into eight distinct classes.

 

 

 
 

Fig.1. KvasirV2 classes 
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1. ResNet50 

ResNet50 is a 50-layer convolutional neural network 

introduced by He et al. [19] as part of the ResNet (Residual 

Network) family, which was primarily designed to overcome 

the vanishing gradient problem in deeper neural networks. By 

incorporating residual blocks with identity connections (or skip 

connections), the architecture allows gradients to flow more 

effectively, facilitating the training of much deeper networks 

than earlier CNN models like VGGNet or AlexNet. Owing to 

its balance between depth and computational efficiency, 

ResNet50 has become a widely adopted backbone for various 

computer vision tasks, including image classification, object 

detection, and segmentation [20]. In medical image analysis, 

the model’s pre-trained weights on large-scale datasets (e.g., 

ImageNet) have proven highly beneficial when performing 

transfer learning with limited labeled data, enhancing accuracy 

and accelerating convergence [18]. 

2. DenseNet201 

DenseNet201 is a 201-layer convolutional neural network that 

is part of the Densely Connected Convolutional Network 

(DenseNet) family introduced by Huang et al. [20]. Unlike 

traditional CNNs, DenseNet layers are directly connected to 

every other layer in a feed-forward manner, allowing each layer 

to access the gradients from all preceding layers. This dense 

connectivity pattern mitigates the vanishing gradient problem 

and promotes feature reuse, enabling the construction of deeper 

and more efficient networks without a substantial increase in 

computational complexity [20]. DenseNet201 has 

demonstrated strong performance on large-scale image 

classification tasks such as ImageNet. In medical imaging, 

transferring pre-trained  

DenseNet201 weights to specialized domains has shown to 

accelerate model convergence and enhance diagnostic 

accuracy, especially when the available datasets are relatively 

small [18]. Its depth and ability to capture complex hierarchical 

features make DenseNet201 particularly suitable for tasks like 

disease classification, segmentation, and detection, where 

subtle variations in medical images are critical for accurate 

predictions. 

3. MobileNetV3Large 

MobileNetV3Large is a lightweight convolutional neural 

network introduced as part of the MobileNetV3 family by 

Howard et al. [21]. It was designed through a combination of 

neural architecture search (NAS) and platform-aware model 

optimization (NetAdapt), balancing high accuracy with reduced 

computational complexity. Key features include the use of 

squeeze-and-excitation (SE) modules, novel activation 

functions such as the h-swish, and inverted residual blocks that 

improve both efficiency and representational power [21]. While 

originally optimized for resource-constrained devices (e.g., 

smartphones), MobileNetV3Large has also shown promise in 

medical imaging contexts, particularly when transferring pre-

trained weights to smaller medical datasets for tasks like 

classification and segmentation [18]. Its efficient design 

enables faster inference and lower resource usage, which are 

critical factors for real-time, point-of-care diagnostics. 

C. Proposed Stacking Ensemble Model 

The proposed framework leverages transfer learning to 

construct a robust and scalable deep learning model for multi-

class classification. Transfer learning is employed to utilize the 

feature extraction capabilities of pre-trained convolutional 

neural networks (CNNs), which have been trained on the large-

scale ImageNet dataset. This approach not only reduces the 

computational cost of training from scratch but also enhances 

the model's ability to generalize to new datasets, particularly 

when labeled data is limited.  

Three state-of-the-art CNN architectures are explored as 

backbone models: ResNet50, DenseNet201, and 

MobileNetV3Large. These architectures are chosen for their 

proven performance in various computer vision tasks, with each 

offering unique advantages:  

1. ResNet50: Known for its residual learning framework, 

which mitigates the vanishing gradient problem and 

enables the training of very deep networks.  

2. DenseNet201: Utilizes dense connections between layers, 

promoting feature reuse and improving parameter 

efficiency.  

3. MobileNetV3Large: Designed for efficiency, this 

architecture is optimized for mobile and edge devices, 

offering a balance between accuracy and computational 

cost.  

Each backbone model is initialized with pre-trained weights 

from ImageNet and configured to exclude the fully connected 

classification head. This allows the model to retain only the 

feature extraction layers, which are then adapted to the specific 

task at hand. Global average pooling is applied to the output 

feature maps to reduce spatial dimensions and produce a fixed-

size feature vector. This is followed by a Flatten layer to convert 

the pooled features into a one-dimensional vector, which is then 

passed to a Dense layer with eight output units and a softmax 

activation function. This final layer enables multi-class 

classification into eight distinct categories.  

All layers of the base models are set to be trainable, allowing 

for fine-tuning of the pre-trained weights during training. This 

ensures that the model can adapt to the specific characteristics 

of the target dataset while retaining the generalizable features 

learned from ImageNet. The models are optimized using 

Stochastic Gradient Descent (SGD) with a learning rate of 0.01, 

momentum of 0.9, and Nesterov acceleration. The loss function 

is defined as categorical cross-entropy, which is well-suited for 

multi-class classification tasks. Model performance is 

evaluated using accuracy as the primary metric.  

To further enhance classification performance and 

robustness, a stacking ensemble approach is employed. 

Stacking combines the predictions of multiple base models (in 

this case, the three deep learning models) using a meta-

classifier, which learns to optimally weigh and combine the 

predictions. This approach leverages the strengths of diverse 

models, reducing the risk of overfitting and improving 

generalization.  

The predictions from the three deep learning models are 

concatenated to form a combined feature representation, which 

serves as input to the meta-classifier. Four distinct meta-
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classifiers are implemented and evaluated, each chosen for its 

unique characteristics and suitability for the task:  

1 Logistic Regression (LR): A linear classifier with L2 

regularization (C=10) and the newton-cg solver, 

configured for one-vs-rest multi-class classification. 

Logistic regression is chosen for its interpretability and 

efficiency in handling linearly separable data.  

2 Random Forest (RF): An ensemble of 300 decision trees 

with Gini impurity as the splitting criterion, a maximum 

depth of 20, and balanced class weights to handle class 

imbalance. Random forests are robust to overfitting and 

capable of capturing complex, non-linear relationships in 

the data.  

3 Support Vector Machine (SVM): A linear SVM with a 

regularization parameter (C=0.1) and a maximum of 100 

iterations, configured to output probability estimates. 

SVMs are known for their ability to find optimal decision 

boundaries in high-dimensional spaces.  

4 k-Nearest Neighbors (k-NN): A non-parametric classifier 

with three neighbors, Manhattan distance as the metric, and 

uniform weighting. k-NN is simple yet effective, 

particularly for datasets with well-defined clusters.  

Each meta-classifier is preceded by a StandardScaler to 

normalize the input features, ensuring consistent scaling across 

the concatenated predictions. This preprocessing step is critical 

for algorithms like SVM and k-NN, which are sensitive to the 

scale of input features.  

 
TABLE I 

HYPERPARAMETERS FOR DEEP LEARNING MODELS 

Hyperparameter Value/Configuration 

Backbone Architectures ResNet50, DenseNet201, 
MobileNetV3Large 

Pre-trained Weights ImageNet 

Include Top False (exclude fully connected 

layers) 

Pooling Global Average Pooling 

Classifier Activation Softmax 

Trainable Layers All layers trainable 

Optimizer Stochastic Gradient Descent (SGD) 

Learning Rate 0.01 

Momentum 0.9 

Nesterov Acceleration Enabled 

Loss Function Categorical Crossentropy 

Metrics Accuracy 

Epochs 30 

Batch Size 32 

Early Stopping Patience = 10 (monitor validation 
loss) 

Learning Rate Scheduler ReduceLROnPlateau (factor = 0.2, 

patience = 5, min_lr = 1e-5) 

Model Checkpoint Save best weights based on 
validation accuracy 

 

The meta-classifiers are trained on the combined predictions 

from the deep learning models and evaluated using standard 

classification metrics, including accuracy, precision, recall and 

F1 score. These metrics provide a comprehensive assessment of 

model performance. The hyperparameters for the deep learning 

models are provided in Table 1, while those for the meta-

classifiers are detailed in Table 2. 
 

TABLE II 

HYPERPARAMETERS FOR META-CLASSIFIERS 

 

Meta-Classifiers Hyperparameter Value/Configuration 

Logistic Regression Regularization (C) 10 

 Solver newton-cg 

 Max Iterations 100 

 Multi-Class Strategy One-vs-Rest (OvR) 

Random Forest Number of Estimators 300 

 Criterion Gini Impurity 

 Max Depth 20 

 Max Features sqrt 

 Min Samples Split 2 

 Min Samples Leaf 1 

 Bootstrap True 

 Class Weight Balanced 

Support Vector 

Machine (SVM) 

Regularization (C) 0.1 

 Kernel Linear 

 Max Iterations 100 

 Probability Estimates Enabled 

k-Nearest Neighbors 

(k-NN) 

Number of Neighbors 

(k) 

3 

 Distance Metric Manhattan (p=1) 

 Weights Uniform 

 

III. RESULTS 

A. Evaluation Metrics 

The proposed ensemble model is evaluated using key 

performance metrics, including accuracy, precision, recall, and 

F1 score. In multiclass classification, where the number of 

classes exceeds two, the predictions generated by the model can 

be either correct or incorrect for each class. To evaluate the 

model’s performance, the predictions are analyzed based on the 

following classification states for each class: 

 True Positive (TP): The model correctly predicts the 

class of interest. 

 True Negative (TN): The model correctly identifies 

instances that do not belong to the class of interest. 

 False Positive (FP): The model incorrectly predicts an 

instance as belonging to the class of interest. 

 False Negative (FN): The model fails to identify an 

instance that belongs to the class of interest. 

For multiclass classification, these metrics are typically 

computed using a one-vs-rest approach, where each class is 

evaluated against the rest of the classes. The formulas for the 

evaluation metrics are defined as follows: 

Accuracy =
∑ (TP𝑖 + TN𝑖)

𝐶
𝑖=1

∑ (TP𝑖 + TN𝑖 + FP𝑖 + FN𝑖)
𝐶
𝑖=1

 (1) 
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Precision =
∑ TP𝑖

𝐶
𝑖=1

∑ (TP𝑖 + FP𝑖)
𝐶
𝑖=1

 (2) 

Recall =
∑ TP𝑖

𝐶
𝑖=1

∑ (TP𝑖 + FN𝑖)
𝐶
𝑖=1

 (3) 

F1 Score =
2 × Precision × Recall

Precision + Recall
  

(4) 

 

Here, 𝐶 represents the total number of classes, and the 

metrics are aggregated across all classes. Accuracy (1) is a 

metric that measures the overall correctness of the model's 

predictions across all classes. It is calculated as the ratio of the 

sum of true positives (TP) and true negatives (TN) for all 

classes to the total number of instances, including true positives, 

true negatives, false positives (FP), and false negatives (FN). 

Precision (2) quantifies the proportion of predicted instances 

for a class that are actually correct. Recall (3) measures the 

proportion of actual instances of a class that the model correctly 

identifies. The F1 score (4) provides a balanced measure by 

computing the harmonic mean of precision and recall, ensuring 

that both metrics are equally weighted in the evaluation. 

B. Experimental Setup 

The experiment was conducted in Google Colab Pro with 

Python 3 Google Compute Engine backend (GPU-A100) with 

40 GB GPU RAM. The deep learning models are trained on 

the KvasirV2 dataset for a maximum of 30 epochs, with early 

stopping implemented to prevent overfitting. Training is 

monitored using validation loss, and the learning rate is 

dynamically adjusted using the ReduceLROnPlateau callback, 

which reduces the learning rate by a factor of 0.2 if the 

validation loss does not improve for five consecutive epochs. 

The best model weights are saved based on validation accuracy 

using the ModelCheckpoint callback. 

The meta-classifiers are trained on the concatenated 

predictions from the deep learning models, ensuring that they 

learn to effectively combine the strengths of each base model. 

The performance of the meta-classifiers is evaluated on a held-

out test set derived from the KvasirV2 dataset, with results 

visualized using confusion matrices and summarized using 

classification metrics. 

C. Test Results 

Fig. 2, 3, 4, 5, 6 and 7 present the accuracy and loss curves 

of the base models. The curves demonstrate that each 

architecture (ResNet, DenseNet, MobileNet) learns the dataset 

effectively, reaching high overall performance. The differences 

among models primarily manifest in how smoothly the 

validation accuracy evolves and how tightly the validation loss 

tracks the training loss. While the current results already 

achieve strong classification performance, the remaining gap 

between training and validation highlights a potential avenue 

for fine-tuning regularization or data augmentation strategies to 

bolster robustness further. 

 

 

 

 

 
 

Fig.2. ResNet50 accuracy curve. 

 

  
 

Fig.3. ResNet50 loss curve. 

 

 
 

Fig.4 DenseNet201 accuracy curve. 
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Fig.5 DenseNet201 loss curve. 

 

 
Fig.6 MobileNetV3Large accuracy curve. 

 

 
 

Fig.7 MobileNetV3Large loss curve. 

 

Table III provides a comparison of the models' performances. 

Among the three base CNNs, MobileNetV3Large achieves the 

highest accuracy (93.00%), slightly outperforming ResNet50 

(92.17%) and DenseNet201 (92.54%). This finding suggests 

that MobileNetV3Large, which balances depth and efficiency 

through its inverted residual blocks and attention mechanisms, 

adapts effectively to the Kvasir dataset. Logistic Regression, 

Random Forest, and SVM ensembles each hover around 94.3% 

accuracy, while KNN trails only slightly at 94.17%. Precision, 

recall, and F1 scores follow a similarly tight range. These 

minimal differences may reflect the relatively uniform 

effectiveness of combining three high-performing CNN 

backbones; once robust feature representations are available, 

multiple classical classifiers can exploit them effectively. 

All stacking ensembles outperform their single CNN 

counterparts, with the best results reaching 94.33% accuracy 

(Stacking Ensemble with Logistic Regression or Random 

Forest). In other words, ensembling the probability outputs 

from ResNet50, DenseNet201, and MobileNetV3Large 

typically yields a 1–2% improvement in accuracy, precision, 

recall, and F1 score. From a healthcare perspective, slight 

performance gains can be critical, as more reliable diagnoses 

translate to fewer missed pathologies and better patient 

outcomes. This is particularly true in endoscopic procedures, 

where subtle changes can be indicative of early disease 

progression. 
TABLE III 

PERFORMANCE EVALUATION OF DEEP LEARNING MODELS ON 
KVASIR-V2 DATASET. 

Models ACC(%

) 

Precision(%

) 

Recall(%

) 
𝐹1 𝑆𝑐𝑜𝑟𝑒(%
) 

ResNet50 92.17 92.06 92.07 92.03 

DenseNet201 92.54 92.46 92.46 92.44 

MobileNetV3Larg

e 
 

93.00 92.99 92.94 92.95 

Stacking 

Ensemble with 
SVM 

94.29 94.29 94.23 94.22 

Stacking 

Ensemble with LR 
94.33 94.33 94.27 94.25 

Stacking 
Ensemble with RF 

94.33 94.36 94.27 94.27 

Stacking 

Ensemble with 

KNN 

94.17 94.17 94.10 94.10 

 

Fig. 8, 9, 10 and 11 show the confusion matrices of the stacking 

ensemble models. These matrices reveal that the stacking 

ensemble models can identify all classes with high 

performance, except for the Z-line and esophagitis classes. In 

many endoscopic images, the visual distinctions between a 

normal Z-line and mild esophagitis are very subtle, often 

manifesting as slight color changes or faint lesions. As a result, 

even advanced CNNs may struggle to reliably differentiate 

these two classes. The similarity between a normal Z-line and 

early-stage esophagitis—characterized by minor discoloration 

or subtle shifts in tissue texture—makes these distinctions less 

prominent compared to other classes (e.g., polyps or ulcers). 

Occasional misclassifications persist, indicating the presence of 

a few particularly challenging cases. Nevertheless, nearly all 

classes achieve high recall and precision, underscoring the 

overall robustness of the ensemble approach.  
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Fig.8 Confusion matrix of LR meta-classifier. 

 
Fig.9 Confusion matrix of RF meta-classifier. 

 
Fig.10 Confusion matrix of SVM meta-classifier. 

 

 

 
Fig.11 Confusion matrix of KNN meta-classifier. 

 

Table IV compares performance metrics (Accuracy, 

Precision, Recall, F1-Score) across studies using the Kvasir 

dataset. Yogapriya et al. [22] achieved the highest accuracy 

(96.33%) and F1-score (96.50%), setting a strong 

benchmark. This study ranks second with competitive metrics 

(Accuracy: 94.33%, F1-Score: 94.27%), showing balanced 

performance across precision and recall. Other studies 

like Losenko et al. [6], Demirbaş et al. [11], and Huo et al. 

[13] also report strong results, while Gupta et al. [9] lags with 

metrics below 90%. Some studies, such as Mukhtorov et al. 

[10] and Gunasekaran et al. [2], only report accuracy, limiting 

comprehensive comparison. Overall, this study demonstrates 

robust performance, though Yogapriya et al. [22] remains the 

top performer. The findings highlight the promise of ensemble-

based deep learning strategies and underscore the field-wide 

progress toward robust, clinically relevant models for 

gastrointestinal disease detection and classification. 

 
TABLE IV 

COMPARISON OF PROPOSED MODEL WITH OTHER RECENT 

MODELS 

Study  Accuracy  Precision  Recall  F1-Score  

Yogapriya et al 
[22] 

 

96.33  96.50  96.37  96.50  

Losenko et al. 

[6] 
 

93.19  92.8  92.7  92.8  

Gupta et al. [9] 89.3  89  89.3  88.6  

Mukhtorov et 
al. [10] 

 

93.46  
 

- - - 

Gunasekaran et 

al. [2] 

95.00 - - - 

Huo et al. [13]  92.87  93.01  92.87  92.88  

Demirbaş et al. 

[11]  

93.37  93.66  93.37  93.42  

Ayan [12]  93.13  93.17  93.13  93.11  

This study 94.33 94.36 94.27 94.27 
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IV. DISCUSSIONS 

The findings of this study reinforce the value of leveraging 

transfer learning and ensemble techniques for robust 

endoscopic image classification. As evidenced by the strong 

performance of individual CNN backbones (ResNet50, 

DenseNet201, MobileNetV3Large), pre-trained models offer a 

reliable starting point when working with relatively small yet 

challenging medical datasets such as Kvasir v2. The slight 

variations in baseline performance among these networks likely 

stem from differences in architecture design—ranging from 

ResNet’s residual connections to DenseNet’s dense 

connectivity and MobileNetV3’s efficient inverted residual 

blocks—each of which provides unique advantages for feature 

extraction in endoscopic images. 

Despite these variations, the proposed stacking framework 

demonstrates consistent improvements across accuracy, 

precision, recall, and F1 score. Such gains underscore the 

ensemble’s ability to reconcile the complementary strengths of 

different CNNs. By uniting multiple feature representations at 

the meta-classifier level, the method mitigates the variance 

inherent in individual models and achieves a more robust 

overall performance. From a clinical perspective, even 

marginally higher metrics (1–2% above single-model 

baselines) can be particularly valuable in reducing missed 

pathologies, given the high-stakes nature of GI disease 

diagnosis. 

The confusion matrices, however, highlight a recurrent 

challenge in distinguishing subtle classes like early-stage 

esophagitis versus a normal Z-line. This difficulty points to the 

inherent complexity of GI endoscopy images, where slight 

color shifts or minor morphological differences can be easily 

overlooked. Addressing this gap may require additional 

strategies, such as more targeted data augmentation, higher-

resolution inputs, or region-of-interest (ROI) detection methods 

that emphasize the gastroesophageal junction. Likewise, 

incorporating advanced attention mechanisms or domain 

adaptation techniques may further refine the model’s ability to 

capture faint textural changes indicative of mild esophagitis. 

In a broader sense, the results align with existing literature 

that showcases the benefits of transfer learning in medical 

imaging, particularly when annotated data are scarce [16], [18]. 

Pre-trained weights allow the network to capitalize on 

foundational visual features, reducing the risk of overfitting and 

expediting convergence. Ensemble approaches, in turn, harness 

these strengths in a synergistic manner, as documented by 

related research that reports similar performance boosts when 

combining models [2]. 

Overall, this study’s findings emphasize two key takeaways: 

first, that combining multiple CNN architectures through a 

stacking ensemble is effective in boosting classification metrics 

on the Kvasir dataset; and second, that additional focus on 

nuanced, easily confounded classes remains a priority for future 

work. By refining the proposed framework with enhanced data 

handling, attention modules, and specialized augmentation, 

researchers and clinicians can continue to push the boundaries 

of AI-driven GI diagnostics, ultimately contributing to earlier 

and more accurate detection of critical gastrointestinal 

conditions. 

V. CONCLUSION 

This work demonstrates that ensemble-based transfer 

learning can significantly improve the classification of 

gastrointestinal endoscopic images, addressing both the 

scarcity of annotated data and the inherent complexity of subtle 

GI conditions. By combining ResNet50, DenseNet201, and 

MobileNetV3Large as base architectures and employing a 

second-level meta-classifier, we achieved higher accuracy, 

precision, recall, and F1 scores compared to single-network 

models. These findings underscore the synergy that arises when 

leveraging diverse CNN features in a stacking framework. 

Moreover, the results highlight the practical benefits of 

enhanced diagnostic accuracy for conditions such as 

esophagitis and normal Z-line, where visual differences are 

often minimal. Although occasional misclassifications occur in 

these subtle classes, the overall performance points to the 

promise of refined augmentations, region-of-interest 

approaches, and advanced attention mechanisms in bridging the 

remaining performance gap. 

From a clinical standpoint, the observed improvements in 

detection rates and classification reliability translate into 

potentially earlier interventions and reduced workload for 

gastroenterologists. Future research directions may focus on 

integrating larger, multi-center datasets, exploring novel 

attention modules, and automating the identification of key 

anatomical landmarks. By continuing to refine ensemble 

strategies and transfer learning pipelines, the field can move 

closer to real-time, AI-driven diagnostic support that is both 

efficient and clinically robust. 
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