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Vehicle routing inside factories is one of the hard problems that researchers try to 
solve for many years. When planning routes, we must think about how much vehicles 
can carry and how factory buildings are organized. Some factories have same type 
vehicles while others have different types with varying capacities. Researchers made 
good algorithms for this problem, but these algorithms need too much computer 
power. In our study, we made a new algorithm that uses adaptive memory to 
remember good solutions and selectively explores promising regions of the solution 
space. When we compare with old methods, our algorithm finds the same optimal 
solutions but needs about 80 percent less calculations. For testing our algorithm, we 
used real data from a car factory with both same type vehicles and different type 
vehicles. We tested five different scenarios and ran each test 30 times, performing 
comprehensive statistical analyses. All tests showed 100 percent success rate in 
finding optimal solutions with remarkable computational efficiency. Test results 
show us something important: We don't need to look at all possible solutions to find 
the best one. If we look at only promising areas, we can find best solution faster. This 
makes our method very useful for real factory problems because factory managers 
need quick solutions and don't want to use too much computer power. Our method 
is good at finding which solution areas are promising and focuses on these areas, so 
it solves problems faster with less computer resources. 

 
1. Introduction 
 
Scientists have been working on Vehicle Routing 
Problem (VRP) since 1959, when Dantzig and 
Ramser first studied this problem in literature [1]. 
CVRP is a type of VRP problem where vehicles 
have maximum carrying limits. This makes 
CVRP more similar to real factory problems. 
Many researchers studied CVRP for external 
logistics problems, but using CVRP inside 
factories is different and has both difficulties and 
advantages. 
 
When we try to optimize logistics inside 
factories, we need to make good routes by 
thinking about two things: how much vehicles 
can carry and how factory buildings are 
organized. It is already well-known that hybrid 

metaheuristic algorithms are good tools for 
solving these difficult optimization problems [2].  
However, the computational efficiency of these 
algorithms, particularly in terms of solution 
evaluation costs, remains a crucial area for 
improvement. 
 
This paper presents an Adaptive Memory 
Variable Neighborhood Search (AMVNS) 
algorithm for solving CVRP in in-plant logistics. 
Our approach builds upon the Hybrid Tabu 
Search (HTS) algorithm proposed in [3], 
introducing an adaptive memory structure and 
efficient neighborhood exploration strategy. The 
key contribution of our work lies in achieving 
optimal solutions with significantly reduced 
computational effort, demonstrated through a 
substantial reduction in the number of fitness 
evaluations required.  
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The key contributions of this study are threefold: 
(1) We propose an adaptive memory-based 
hybrid algorithm that achieves optimal solutions 
with significantly reduced computational effort 
compared to the existing approach; (2) We 
introduce an efficient neighborhood exploration 
strategy that selectively samples the solution 
space rather than exhaustively evaluating all 
possible moves, while maintaining solution 
quality; (3) We provide a comprehensive 
empirical validation through 30 independent 
runs, all consistently achieving the optimal 
solution, demonstrating the robustness of our 
approach. These contributions collectively 
advance the state-of-the-art in solving CVRP for 
in-plant logistics, offering both theoretical 
insights and practical benefits for real-world 
applications. 
 
The remainder of this paper is organized as 
follows: Section 2 presents a comprehensive 
review of related literature, including the HTS 
algorithm that forms the baseline for our 
comparison. Section 3 introduces our proposed 
AMVNS algorithm, detailing the solution 
representation, iteration process, and the key 
mechanisms that enable its efficient 
performance. Section 4 presents experimental 
studies, including a detailed comparison with the 
HTS algorithm and analysis of computational 
efficiency. Finally, Section 5 concludes the paper 
with a summary of findings and directions for 
future research. 
 
2. Literature Review 
 
The CVRP has been extensively studied in the 
literature, with various solution approaches 
proposed over the years. Early works focused on 
exact methods [4–7], but as problem sizes grew, 
metaheuristic approaches gained prominence due 
to their ability to find high-quality solutions in 
reasonable computational time. 
 
Metaheuristic approaches to CVRP can be 
broadly categorized into three groups: single-
solution based methods, population-based 
methods, and hybrid methods. Many researchers 
used methods like Simulated Annealing (SA) to 
solve CVRP problems [8–11]. SA is good 
because it can accept some bad solutions with 
probability, so it doesn't get stuck in local best 

points. Another method, Tabu Search (TS), also 
works well for CVRP problems [12–15]. TS uses 
memory to remember old solutions, so it doesn't 
check same solutions again and again. 
 
Researchers also tried population methods for 
CVRP, mostly with Genetic Algorithms (GA). 
New studies show that GA can solve big CVRP 
problems [16–19], and it works better when we 
add local search to it. Another method called Ant 
Colony Optimization (ACO) also gave good 
results in CVRP, especially for problems that 
have special shapes and structures [20–22]. 
 
In last years, researchers started to use memory 
in their algorithms more often. Many algorithms 
now use Adaptive Memory Programming (AMP) 
to work better [23–25]. When we add memory to 
algorithms, we get better solutions faster [26]. 
Memory helps algorithms remember good 
solution areas and not waste time in bad areas 
[27–29]. 
 
Some researchers took good parts from different 
methods and combined them together. For 
example, when Variable Neighborhood Search 
(VNS) is used with other methods, it solves 
routing problems very well [30–32]. Recent 
studies try to make these combined methods use 
less computer power but still find good solutions 
[33, 34]. 
 
One important problem in CVRP is how to make 
algorithms work faster. New studies say we need 
better ways to search solutions that don't use too 
much computer power [35–37]. In our study, we 
use memory in a new way that makes algorithm 
need much less solution checks to find best 
answer. 
 
An important step for solving CVRP problems 
was made in [3], where researchers combined TS 
and SA methods together. Their HTS algorithm, 
outlined in Algorithm 1, demonstrated strong 
performance in solving in-plant logistics 
problems. 
 
However, the HTS algorithm requires a 
significant number of fitness evaluations, as it 
explores 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑛𝑛 × (𝑛𝑛 − 1) possible 
moves in each iteration, where 𝑛𝑛 is the number of 
nodes. In Kulaç and Kazancı's study [3], the 
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MaxIT2 parameter was set to 300, which is a 
common setting for tabu search algorithms in 
CVRP literature. As noted by Cordeau et al. [38], 
iteration limits between 200-500 are typically 
sufficient for convergence in most vehicle 
routing problems. We adopted the same 
parameter value (300) to ensure a fair 
comparison between the algorithms. For a 
problem with 19 nodes, this results in 342 
evaluations per iteration. 
 

Algorithm 1. HTS Algorithm 
Input: MaxIt1, MaxIt2, TLs, T0, alpha1, alpha2 
Output: Best solution found 
 
01. Generate initial solution using SA 

Algorithm 1 (MaxIt1, alpha1) 
02. Create empty tabu list with size of TLs 
03. T=T0 #Set initial temperature 
04. For it = 0 to MaxIt2: 
05.   For i = 1 to nAction: 
06.     If i. Action is not in tabu list: 
07.       Create new solution using i. Action 
08.       Calculate deterioration rate (dR) 
09.       If dR <= 0: 
10.         Accept new solution 
11.         Add solution to memory pool 
12.       Else if dR ≤ random(0,50): 
13.         Calculate acceptance probability P 
            (𝑃𝑃 = 𝑒𝑒^(−𝑑𝑑𝑅𝑅/𝑇𝑇)   
14.         If random(0,1) ≤ P: 
15.           Accept new solution 
16.       Else: 
17.          Reject new solution  
18.       Update best solution if improved 
19.       For j = 1 to nAction: 
20.         If j is the best action index: 
21.           Add j. Action to tabu list 
22.         Else: 
23.           Reduce tabu counter 
24.   Reduce temperature: T = alpha2*T 
25. Return best solution found 

 
3. Proposed Method 
 
3.1. Solution representation 
 
In our algorithm, a solution to the CVRP is 
represented as a series of routes, where each 
route is a sequence of integers representing the 
nodes (assembly lines) to be visited. Each route 
starts and ends with 0 (depot). For example, a 
feasible solution for a problem with 19 assembly 
lines might look like: 
 
Route 1: [0, 9, 10, 0] # Visit assembly 
lines 9 and 10 
Route 2: [0, 7, 8, 0] # Visit assembly 
lines 7 and 8 
... 
Each integer in the range [1,19] appears exactly 
once across all routes, ensuring each assembly 
line is visited. The number 0 represents the depot 

and appears at the start and end of each route. 
This representation naturally enforces: 
 
• The depot (0) as start and end point of each 

route 
• One-time visit constraint for each assembly 

line 
• Route identification for each vehicle 

 
A solution is feasible if: 
 
1. Sum of demands in each route does not 

exceed vehicle capacity (400 units) 
2. Each assembly line (1-19) appears exactly 

once 
3. All routes start and end at depot (0) 

 
3.2. General structure of AMVNS 
 
Our proposed AMVNS algorithm improves 
efficiency of CVRP solving by using both 
adaptive memory structure and intelligent 
neighborhood search. The algorithm combines 
Variable Neighborhood Search with adaptive 
memory mechanism that learns from previous 
solutions. Here we explain the main components 
in detail: 
 
3.2.1. Adaptive memory structure 
 
The memory structure in AMVNS works as 
follows: 
 
i. Memory Pool Management: Algorithm keeps 
a memory pool with fixed size (memory_size). 
This pool stores best solutions found during 
search process. Memory pool starts empty and 
fills as algorithm finds good solutions. 
 
ii. Solution Selection and Insertion: When 
algorithm finds new solution, it decides whether 
to add it to memory: 
• If new solution is better than worst solution 

in memory pool, worst solution is removed 
and new solution is added 

• If memory pool is not full yet, new solution 
is added directly 

• Each solution in memory has quality score 
based on its objective value 

• Solutions with higher diversity are given 
preference to maintain solution variety 
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iii. Memory-guided Search Direction: The 
memory pool influences search direction in these 
ways: 
 
• When algorithm needs to select next move, 

it looks at common features of good 
solutions in memory 

• Features that appear frequently in good 
solutions get higher probability to be 
selected 

• This helps algorithm focus on promising 
regions of solution space without exhaustive 
search 

• Search intensity is automatically adjusted 
based on quality of solutions in memory 

 
3.2.2. Learning mechanism 
 
The learning mechanism adjusts parameters 
during search based on historical performance: 
 
i. Neighborhood Structure Scoring: Each 
neighborhood structure i has score 
(struct_scores[i]) that represents its 
efficiency: 
 
• When structure i produces improvement, its 

score increases:  
𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛_𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒𝑠𝑠[𝑛𝑛]  =  𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛_𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒𝑠𝑠[𝑛𝑛]  +  𝛼𝛼 

• When structure fails to improve, its score 
slowly decreases:  
𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛_𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒𝑠𝑠[𝑛𝑛]  =  𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛_𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒𝑠𝑠[𝑛𝑛]  ∗  (1 − 𝛽𝛽) 

where, 𝛼𝛼 is learning rate (default: 0.01) and 𝛽𝛽 is 
decay rate (default: 0.005) 
 
ii. Probability-based Selection: The probability 
of selecting neighborhood structure i is 
calculated as: 
 
𝑃𝑃(𝑛𝑛)  =  𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛_𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒𝑠𝑠[𝑛𝑛] �𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛_𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒𝑠𝑠[𝑗𝑗]�    

 
iii. Temperature Adjustment: The temperature 
parameter controls acceptance of non-improving 
solutions: 
 

𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛  =  𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐  ∗  𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐_𝑠𝑠𝑟𝑟𝑛𝑛𝑒𝑒 

𝑃𝑃𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛𝑎𝑎𝑐𝑐  =  𝑒𝑒𝑒𝑒𝑒𝑒 �−
(𝑛𝑛𝑒𝑒𝑛𝑛_𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛 −  𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑛𝑛𝑛𝑛_𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛)

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐
� 

 
 
 

Algorithm 2. Adaptive Memory Variable 
Neighborhood Search (AMVNS) 

Input: Problem instance, memory_size, 
max_iterations 
Output: Best solution found 
01. Initialize:  
    memory_pool = [] 
    memory_scores = [] 
    struct_scores = [1.0] * 4 # For each   
                             neighborhood type 
02. Generate initial solution (x0) using 

savings algorithm 
03. best_solution = x0 
04. best_cost = calculate_cost(x0) 
05. For iteration = 1 to max_iterations: 
06.   Select neighborhood structure based on 

struct_scores 
07.   Generate neighbor using selected 

structure 
08.   new_cost = calculate_cost(neighbor) 
09.   If new_cost < current_cost: 
10.     Accept neighbor 
11.     Update struct_scores 
12.     Update memory pool if qualified 
13.   Else if acceptance_probability(): 
14.     Accept neighbor    
15.   If new_cost < best_cost: 
16.     best_solution = neighbor 
17.     best_cost = new_cost 
18.   Update learning parameters 
19.   Update temperature 
20. Return best_solution, best_cost 

 
iv. Exploration Rate Adjustment: Exploration 
rate dynamically changes during search: 
 

𝐿𝐿𝑒𝑒𝑛𝑛 𝑣𝑣𝑟𝑟𝑐𝑐 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑐𝑐_𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑛𝑛𝑠𝑠𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑠𝑠𝑟𝑟𝑛𝑛𝑒𝑒 ∗  (1 −
𝑛𝑛𝑛𝑛𝑒𝑒𝑠𝑠𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠

max _𝑛𝑛𝑛𝑛𝑒𝑒𝑠𝑠𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠
) 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑛𝑛𝑠𝑠𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑠𝑠𝑟𝑟𝑛𝑛𝑒𝑒 =  𝑚𝑚𝑟𝑟𝑒𝑒(0.05, 𝑣𝑣𝑟𝑟𝑐𝑐) 
 
This adaptive parameter adjustment allows 
algorithm to balance between exploration and 
exploitation based on search history. 
 
3.2.4. Integration with AMVNS algorithm 
 
The described adaptive memory structure and 
learning mechanism are integrated within our 
AMVNS algorithm as presented in Algorithm 2. 
The memory pool initialization (step 01), 
solution quality assessment (steps 05 and 12), 
neighborhood structure selection based on 
performance history (steps 13-17), and dynamic 
parameter adjustments (steps 25 and 29) work 
together to create an efficient exploration 
strategy. This integration enables the algorithm 
to focus computational effort on promising 
regions of the solution space rather than 
exhaustively evaluating all possible moves. 
Algorithm 2 shows how these components 
interact within the overall AMVNS framework, 
creating a balance between diversification and 
intensification throughout the search process. 
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3.3. One iteration example 
 
Let's demonstrate how AMVNS performs a 
single iteration using a concrete example.  
 
Consider the current solution: 
 
Route 1: [0, 9, 10, 0] #Total demand: 352 units 
Route 2: [0, 7, 8, 0] #Total demand: 244 units 
Route 3: [0, 2, 4, 5, 0] #Total demand: 373 units 
Route 4: [0, 6, 3, 0] #Total demand: 237 units 
Route 5: [0, 1, 16, 15, 0] #Total demand: 171 units 
Route 6: [0, 11, 12, 13, 14, 17, 18, 19, 0] #Total 
demand: 362 units 
 
Step 1: Select Neighborhood Structure 
• Based on struct_scores = [1.2, 0.8, 1.0, 0.9] 
• Swap operator (first structure) is selected 

due to highest score 
 
Step 2: Generate Neighbor 
• Random selection: nodes 10 (Route 1) and 

15 (Route 5) 
• Swap these nodes to create new solution: 
 
Neighbor Solution: 
Route 1: [0, 9, 15, 0]     # New demand: 311 units 
Route 2: [0, 7, 8, 0]      # Unchanged 
Route 3: [0, 2, 4, 5, 0]   # Unchanged 
Route 4: [0, 6, 3, 0]      # Unchanged 
Route 5: [0, 1, 16, 10, 0] # New demand: 212 units 
Route 6: [0, 11, 12, 13, 14, 17, 18, 19, 0] # 
Unchanged 
 
Step 3: Evaluate Changes 
• Check capacity constraints (all ≤ 400 units)  
• Calculate new total distance 
• Current solution cost: 623 
• New solution cost: 631 
 
Step 4: Accept/Reject Decision 
• Cost increased by 8 units 
• Current temperature = 0.85 
• Acceptance probability = exp(-8/0.85) ≈ 

0.0001 
• Random number = 0.002 
• Decision: Reject this neighbor 
Step 5: Update Parameters 
• Struct_scores[0] decreased slightly due to 

rejection 
• Temperature reduced: 0.85 * 0.98 = 0.833 
• Memory pool unchanged (no improvement) 
 
This example illustrates how AMVNS: 
 

1. Maintains feasibility while exploring 
neighbors 

2. Uses memory to guide operator selection 
3. Allows controlled uphill moves through 

temperature mechanism 
4. Adaptively adjusts its parameters based on 

success/failure 
 
4. Experimental Studies 
 
To validate the effectiveness of our proposed 
AMVNS algorithm, we conducted experiments 
using the same in-plant logistics case study 
presented in [3]. The problem instance consists 
of 19 assembly lines and one depot, with vehicle 
capacity constraints and real-world distances 
based on the factory layout. Our experiments 
include five different test cases to evaluate 
algorithm performance. First test case uses 
homogeneous fleet with 6 vehicles (same 
capacity of 400 for each vehicle).  
 
Other test cases use 5 vehicles with different 
capacities. Test case 2 and 4 use quite different 
vehicle capacities like [380, 380, 400, 400, 440], 
while test case 3 uses same capacity vehicles like 
test case 1. Test case 5 is balanced between these 
two, using some same and some different 
capacities [400, 400, 420, 420, 440]. These 
different test cases help us understand how our 
algorithm works with both homogeneous and 
heterogeneous vehicle fleets. 
 
4.1. Experimental setup 
 
The algorithms were implemented in Python 3.9 
and experiments were conducted on a computer 
with Intel Xeon E5-1650 processor and 40GB 
RAM.  
 
To compare our method with HTS, we used the 
results originally reported by Kulaç & Kazancı in 
[3]. The results are presented under the 'HTS 
Solution' column in the relevant table for direct 
comparison with our approach. This allows 
readers to easily see how our proposed AMVNS  
algorithm compares with the original HTS 
algorithm on the same benchmark instances. 
Also, we used the same distances between 
assembly lines as provided by them in the 
aforementioned paper.  
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Table 1. The distances between the assembly lines [3]
  L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 
L1 0 47 53 64 74 84 94 102 122 132 98 90 84 63 53 38 111 58 66 
L2 47 0 83 17 27 37 46 53 72 83 129 121 115 94 84 98 143 10 22 
L3 53 83 0 67 57 47 39 47 67 77 44 36 30 9 2 15 58 73 105 
L4 64 17 67 0 10 20 30 38 58 68 111 103 97 76 66 82 125 8 39 
L5 74 27 57 10 0 10 20 27 46 58 101 93 87 66 56 71 115 16 47 
L6 84 37 47 20 10 0 10 18 37 48 91 83 77 56 46 61 105 26 57 
L7 94 46 39 30 20 10 0 8 28 38 81 73 67 46 40 55 95 35 66 
L8 102 53 47 38 27 18 8 0 20 30 89 81 75 54 48 63 103 43 74 
L9 122 72 67 58 46 37 28 20 0 10 58 66 72 74 64 82 72 60 93 
L10 132 83 77 68 58 48 38 30 10 0 47 56 62 83 76 91 61 70 103 
L11 98 129 44 111 101 91 81 89 58 47 0 8 14 35 45 60 14 117 150 
L12 90 121 36 103 93 83 73 81 66 56 8 0 6 27 37 52 22 109 142 
L13 84 115 30 97 87 77 67 75 72 62 14 6 0 21 31 46 28 103 136 
L14 63 94 9 76 66 56 46 54 74 83 35 27 21 0 10 25 49 83 114 
L15 53 84 2 66 56 46 40 48 64 76 45 37 31 10 0 15 59 73 104 
L16 38 98 15 82 71 61 55 63 82 91 60 52 46 25 15 0 74 88 119 
L17 111 143 58 125 115 105 95 103 72 61 14 22 28 49 59 74 0 131 162 
L18 58 10 73 8 16 26 35 43 60 70 117 109 103 83 73 88 131 0 31 
L19 66 22 105 39 47 57 66 74 93 103 150 142 136 114 104 119 162 31 0 

 
For reader convenience, we have included this 
distance matrix in our paper as Table 1, 
eliminating the need to reference the original 
paper for these critical input data. This ensures 
that our work is self-contained while maintaining 
consistency with the benchmark data used in the 
literature. This way, we could make fair 
comparison between AMVNS and HTS using 
same real factory data.  
 
To verify the optimality of solutions, we 
additionally implemented an exact solution 
method using the PuLP library [39] which 
formulates the CVRP as a mixed-integer linear 
programming (MILP) problem. Our 
implementation uses the branch-and-cut 
algorithm with the following key parameters: a 
maximum time limit of 3600 seconds, a Mixed-
Integer Programming (MIP) gap tolerance of 
0.001, and strong branching variable selection 
strategy. The MILP formulation includes flow 
conservation constraints, subtour elimination 
constraints, and capacity constraints.  
 
The objective function minimizes the total 
distance traveled. For solving the model, we 
utilized the CBC (Coin-or Branch and Cut) 
solver, which is an open-source MIP solver that 
implements various cutting plane techniques, 
branching strategies, and heuristics to find 
optimal integer solutions. While this exact 

approach guarantees optimality for small to 
medium-sized instances, it becomes 
computationally prohibitive for larger problems, 
which further emphasizes the value of our 
proposed AMVNS approach. 
 
Parameters for AMVNS were set as follows: 
• Maximum iterations: 1000 
• Memory pool size: 100 
• Initial temperature: 1.0 
• Cooling rate: 0.98 

 
The experiments were conducted with 30 
independent runs for both algorithms to ensure 
statistical validity. For AMVNS, all 30 runs 
consistently achieved the optimal solution value 
of 623, with an average of 20,041.33 fitness 
evaluations (std. dev. = 4.39). This consistency 
demonstrates the robustness of our approach in 
addition to its efficiency. 
 
4.2. Results and discussion 
 
We present our results in two parts: first for 
homogeneous fleet (test case 1) and then for 
heterogeneous fleet cases (test cases 2-5). This 
way, we can see how our algorithm performs 
with different fleet types. 
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4.2.1. Homogeneous fleet results 
 
Table 2 presents the comparative results between 
HTS and our proposed AMVNS algorithm. Both 
algorithms achieve the optimal solution value of 
623, which was verified by our exact solution 
method. However, the key difference lies in the 
computational efficiency: 

 
Table 2. Comparative results 

Algorithm Best 
Solution 

Total 
Distance 

Computational 
Effort (Fitness 
Evaluations) 

Number 
of 

Vehicles 
HTS Feasible 623 102,600 6 
AMVNS Feasible 623 20,100 6 
Exact 
(PuLP) Optimal 623 N/A 6 

 
1. Solution Quality:  

 
• Both algorithms reach the optimal value of 

623 
• Both maintain feasibility in terms of 

capacity constraints 
• Vehicle utilization rates are comparable 

 
2. Computational Efficiency:  

 
• HTS requires 102,600 fitness evaluations 

(300 iterations × 342 moves) 
• AMVNS requires only ~20,100 fitness 

evaluations 
• Represents an 80.4% reduction in 

computational effort 
 

Table 3 provides a detailed comparison of the 
routes generated by both AMVNS and HTS 
algorithms. Interestingly, both algorithms 
converged to identical routes, despite their 
different search strategies. This confirms the 
robustness of the optimal solution for this 
problem instance. The capacity utilization values 
indicate efficient use of vehicle capacities, with 
Routes 3 and 5 approaching maximum utilization 
(99.2% and 98.0% respectively). 
 
Route 3 combines 9 nodes into a single route with 
near-perfect capacity utilization, demonstrating 
the algorithms' ability to efficiently pack nodes 
while respecting capacity constraints. In contrast, 
Routes 2 and 4 show relatively lower utilization 
(61.0% and 53.2%), suggesting potential for 

further optimization with heterogeneous vehicle 
fleets, as explored in subsequent test cases. 

 
Table 3. Route comparison 

Route AMVNS 
Solution 

Capacity 
Utilization 

HTS 
Solution 

Capacity 
Utilization 

1 [0,9,10,0] 88.0% [0,9,10,0] 88.0% 
2 [0,7,8,0] 61.0% [0,7,8,0] 61.0% 

3 
[0,16,15,13,
12,11,17,14,
3,0] 

99.2% 

[0,16,15,
13,12,11,
17,14,3,0
] 

99.2% 

4 [0,6,0] 53.2% [0,6,0] 53.2% 

5 [0,18,19,1,2,
0] 98.0% [0,18,19,

1,2,0] 98.0% 

6 [0,4,5,0] 84.0% [0,4,5,0] 84.0% 
Total 
Distance 623 - 623 - 

 
4.2.2. Heterogeneous fleet results 
 
For test cases with heterogeneous fleet (2-5), our 
algorithm also shows very good performance. 
Table 4 shows comparison between HTS and 
AMVNS for these cases. 
 
These results show something very important: 
Our AMVNS algorithm keeps its efficiency 
advantage even when vehicle capacities are 
different. All test cases reach same best solutions 
as HTS, but AMVNS needs about 80% less 
calculations. This is very useful for factory 
managers because they can get same quality 
solutions much faster, whether they use same 
vehicles or different ones. 
 

Table 4. Results for heterogeneous fleet cases 
 Test 

Case 2 
Test 

Case 3 
Test 

Case 4 
Test 

Case 5 
Fleet Type Hetero. Homog. Hetero. Hetero. 
HTS Cost 626 658 607 607 
AMVNS Cost 626 658 607 607 
HTS Evals 102,600 102,600 102,600 102,600 
AMVNS 
Evals 20,183 20,042 20,156 20,124 

Reduction(%) 80.3 80.4 80.3 80.4 
 
4.3. Comprehensive statistical analysis 
 
To provide more robust evidence of our AMVNS 
algorithm's performance, we conducted 
extensive statistical analysis across all test cases. 
Each scenario was run 30 independent times with 



Sakarya University Journal of Science, 29(3) 2025, 293-306 

300 
 

different random seeds to ensure statistical 
validity. 
 
4.3.1. Solution quality and consistency 
 
Table 5 presents the detailed statistics on solution 
quality for all test cases. For AMVNS, all 30 runs 
consistently achieved the optimal solution values 
across all test scenarios, demonstrating the 
robustness of our approach. 
 

Table 5. Statistical analysis of solution quality 

Test  
Case 

Fleet  
Type 

Min  
Cost 

Max  
Cost 

Mean  
Cost 

Median  
Cost 

Std.  
Dev. 

Success  
Rate 
(%) 

1 Homog. 623 623 623.00 623 0.00 100.0 
2 Hetero. 626 626 626.00 626 0.00 100.0 
3 Homog. 658 658 658.00 658 0.00 100.0 
4 Hetero. 607 607 607.00 607 0.00 100.0 
5 Hetero. 607 607 607.00 607 0.00 100.0 
 
The standard deviation of 0.00 across all test 
cases demonstrates the exceptional stability of 
our algorithm. The success rate of 100% 
indicates that AMVNS consistently finds the 
optimal solution in every run, regardless of the 
initial random seed. 
 
4.3.2. Computational efficiency 
 
Table 6 shows the computational efficiency 
metrics of AMVNS across all test cases. These 
metrics highlight the significant reduction in 
computational effort compared to the HTS 
algorithm. 
 

Table 6. Computational efficiency statistics 
Test  
Case 

Fleet  
Type 

Min  
Evals 

Max  
Evals 

Mean  
Evals 

Median  
Evals 

Std.  
Dev. 

1 Homog. 20,036 20,048 20,041.33 20,040 4.39 
2 Hetero. 20,176 20,192 20,183.47 20,183 5.27 
3 Homog. 20,035 20,049 20,042.23 20,042 4.73 
4 Hetero. 20,152 20,162 20,156.40 20,156 3.81 
5 Hetero. 20,118 20,129 20,124.13 20,125 3.56 
 
For comparison, the HTS algorithm requires 
102,600 fitness evaluations for all test cases, 
regardless of the fleet type. This represents 
approximately an 80% reduction in 
computational effort by AMVNS while 
maintaining the same solution quality. 
 

4.3.3. Convergence analysis 
 
Table 7 provides statistics on convergence speed, 
showing how quickly AMVNS reaches the 
optimal solution. 
 

Table 7. Convergence speed statistics 

Test  
Case 

Mean  
Iterations  
to Best 

Mean  
Time  
to Best (sec) 

Mean  
Neighborhood  
Efficiency (%) 

1 285.7 0.87 78.4 
2 312.3 0.95 75.2 
3 293.5 0.89 76.8 
4 267.8 0.82 80.1 
5 274.2 0.84 79.3 

 
The mean iterations to best solution shows that 
AMVNS typically finds the optimal solution 
within the first 30% of iterations, indicating 
efficient exploration of the solution space. The 
neighborhood efficiency metric represents the 
percentage of applied neighborhood moves that 
result in solution improvements. 
 
4.3.4. Convergence profiles 
 
Figure 1 illustrates the convergence profiles of 
AMVNS for all five test cases, showing the 
average objective function value over iterations. 
These convergence curves demonstrate that 
AMVNS consistently achieves rapid initial 
improvement and then fine-tunes the solution 
until reaching optimality. The convergence 
behavior is similar across all test cases, with 
heterogeneous fleet scenarios (cases 2, 4, and 5) 
showing slightly faster convergence rates. 

 
Figure 1. Convergence profiles of AMVNS 

 
4.3.5. Neighborhood structure analysis 
 
The effectiveness of each neighborhood structure 
varies across different test cases. Table 8 
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summarizes the usage frequency and success rate 
of each neighborhood operator. 
 

Table 8. Neighborhood structure analysis 

Neighborhood Usage (%) Success  
Rate (%) 

Contribution  
to Best 

Swap Nodes 32.4 15.3 36.2 
Two-Opt Move 22.7 18.7 25.8 
Relocate Sequence 24.5 21.2 22.4 
Cross Exchange 20.4 12.5 15.6 

 
This analysis reveals that while Swap Nodes is 
the most frequently used operator, the Relocate 
Sequence has the highest success rate. The 
"Contribution to Best" column shows the 
percentage of times each operator was 
responsible for finding the overall best solution 
during the search process. 
 
4.3.6. Vehicle utilization analysis 
 
For heterogeneous fleet scenarios, the 
distribution of demand across vehicles is 
particularly important. Table 9 shows the vehicle 
utilization statistics for test case 4, which 
achieved the best overall performance. 
 

Table 9. Vehicle utilization for test case 4 
(heterogeneous fleet) 

Vehicle Capacity Load Utilization (%) Route Length 
1 380 352 92.6 80 
2 400 394 98.5 112 
3 420 406 96.7 144 
4 420 398 94.8 169 
5 440 389 88.4 102 
Average 412 387.8 94.2 121.4 
 
The high utilization rates across all vehicles 
(average 94.2%) demonstrate the algorithm's 
ability to efficiently distribute demand according 
to vehicle capacities, which explains the superior 
performance of heterogeneous fleets in test cases 
4 and 5. 
 
These comprehensive statistical analyses 
validate the robustness, efficiency, and 
consistency of our proposed AMVNS algorithm 
across different fleet configurations and problem 
scenarios. The data clearly supports our claim 
that AMVNS achieves significant computational 
efficiency gains without sacrificing solution 
quality. 

4.3.7. Scaling analysis for large-scale 
problems 
 
To address the scalability of our AMVNS 
algorithm for large-scale industrial applications, 
we conducted a theoretical analysis and verified 
it with a limited test on a 200-node CVRP 
instance (cvrp-S-G-200-1)[40]. The computa- 
tional complexity of both algorithms can be 
analyzed in terms of the number of fitness 
evaluations required as the problem size (n) 
increases. 
 
For the HTS algorithm, the number of fitness 
evaluations per iteration is directly proportional 
to 𝑛𝑛², specifically 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑛𝑛 ×  (𝑛𝑛 −  1). 
This quadratic growth means that for a 200-node 
problem, each iteration would require 
approximately 39,800 evaluations. Assuming 
300 iterations are needed (as in our original test 
cases), this would result in nearly 12 million 
fitness evaluations. 
 
In contrast, AMVNS's selective neighborhood 
exploration strategy maintains a relatively 
constant number of evaluations per iteration 
(approximately 20), largely independent of 
problem size. For a 200-node problem with 1000 
iterations, this results in only about 20,000 fitness 
evaluations. This represents a theoretical 
efficiency ratio of 600:1 for problems of this 
scale. 
 
Table 10 presents a comparison of the theoretical 
scaling behavior of both algorithms across 
different problem sizes. As shown in the table, 
the computational advantage of AMVNS 
becomes increasingly significant as the problem 
size grows. 
 
Table 10. Theoretical scaling analysis for different 

problem sizes 
Problem size 

(Nodes) 
HTS 

Evaluations 
AMVNS 

Evaluations 
Efficiency 

Ratio 
19 (original) 102,600 20,100 5.1 

50 735,000 20,100 36.6 
100 2,970,000 20,100 147.8 
200 11,940,000 20,100 594.0 

 
Our experimental verification on the 200-node 
instance confirmed that while HTS becomes 
computationally prohibitive at this scale, 
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AMVNS was able to find high-quality solutions 
in reasonable time. This demonstrates that the 
computational advantage of AMVNS becomes 
even more significant as problem size increases, 
making it particularly valuable for large-scale 
industrial applications where quick decision-
making is essential. 
 
The primary reason for this exceptional scaling 
characteristic is that AMVNS focuses 
computational effort on promising regions of the 
solution space rather than exhaustively 
evaluating all possible moves. This advantage 
becomes increasingly important as problem size 
grows, as the solution space expands 
exponentially while the proportion of high-
quality solutions remains small. 
 
4.4. Concluding analysis 
 
The experimental results demonstrate that while 
both algorithms achieve the optimal solution, 
AMVNS does so with significantly less 
computational effort. Our results from 
heterogeneous fleet cases (test cases 2-5) further 
support this finding. Even with different vehicle 
capacities, AMVNS maintains its computational 
advantage. It achieves same solution quality as 
HTS using only about 20,000 fitness evaluations, 
compared to HTS's 102,600 evaluations. This 
shows our algorithm's efficiency is robust across 
different fleet configurations. The reduction in 
fitness evaluations can be attributed to our 
algorithm's intelligent search strategy and 
adaptive memory mechanism. 
 
To put this efficiency gain in perspective, we can 
examine the convergence rates. While HTS 
performs 342 evaluations in each iteration to 
achieve convergence in 300 iterations, AMVNS 
performs approximately 20 evaluations per 
iteration (calculated as the total fitness 
evaluations divided by the number of iterations: 
20,100/1000) and achieves the same result in 
1000 iterations This translates to: 
 
𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛𝐸𝐸 𝑅𝑅𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛   =  # 𝑜𝑜𝑜𝑜 𝐻𝐻𝐻𝐻𝐻𝐻 𝑛𝑛𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒

#𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐻𝐻 𝑛𝑛𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒
                   (3) 

                =  102,600 / 20,100 
                ≈  5.1 

 
This means AMVNS requires only about one-
fifth of the computational effort compared to 

HTS, while maintaining solution quality. The 
exact solution method using PuLP confirmed that 
both algorithms reach the optimal value of 623, 
validating the effectiveness of our approach. 
 
Additionally, our results suggest that exhaustive 
neighborhood exploration, as employed in HTS, 
may not be necessary for achieving optimal 
solutions in CVRP. The adaptive memory 
structure and selective neighborhood sampling in 
AMVNS provide a more efficient path to 
optimality. 
 
5. Conclusion and Future Work 
 
This study presents an efficient hybrid 
metaheuristic algorithm for solving CVRP in in-
plant logistics. The proposed AMVNS algorithm 
achieves the same optimal solution as the 
existing HTS algorithm while requiring 80.4% 
fewer fitness evaluations. This significant 
reduction in computational effort is achieved 
through: 
 
1. Intelligent neighborhood exploration 
2. Adaptive memory-based learning 
3. Selective solution evaluation strategy 

 
The results demonstrate that optimal solutions 
can be obtained more efficiently by focusing on 
promising regions of the solution space rather 
than exhaustive exploration. This finding has 
important implications for solving larger 
instances of CVRP and other combinatorial 
optimization problems. 
 
Our comprehensive statistical analysis further 
validates these findings, demonstrating the 
robustness and consistency of the AMVNS 
approach. With a 100% success rate across all 30 
independent runs for each test case and negligible 
standard deviation in solution quality, the 
algorithm exhibits exceptional reliability. The 
detailed analysis of neighborhood structure 
effectiveness revealed that while the Swap Nodes 
operator was most frequently used, the Relocate 
Sequence achieved the highest success rate, 
highlighting the importance of maintaining 
diverse neighborhood structures within the 
algorithm. 
The theoretical scaling analysis demonstrates 
that AMVNS's computational advantage 



Emrullah Gazioğlu 

303 
 

becomes increasingly significant as problem size 
grows. While traditional approaches like HTS 
experience quadratic growth in computational 
requirements with increasing problem 
dimensions, AMVNS maintains relatively 
constant evaluation needs per iteration. This 
makes it particularly well-suited for large-scale 
CVRP instances where exhaustive neighborhood 
exploration becomes prohibitively expensive, 
with efficiency ratios potentially reaching 600:1 
for problems with 200 nodes. 
 
The proposed AMVNS algorithm shows 
significant potential for application in large-scale 
industrial systems. By reducing computational 
effort by approximately 80% while maintaining 
solution quality, our approach addresses a critical 
challenge in real-world manufacturing 
environments where quick decisions are 
essential. For large manufacturing facilities with 
hundreds of assembly lines and dozens of 
vehicles, the selective neighborhood exploration 
strategy would provide even greater benefits as 
the problem size increases. The memory-based 
learning mechanism adapts to the specific 
characteristics of the factory layout and demand 
patterns, making the algorithm suitable for 
diverse industrial settings including automotive, 
electronics, and heavy machinery manufacturing.  
 
Furthermore, the algorithm's ability to handle 
heterogeneous vehicle fleets makes it particularly 
valuable for facilities that have gradually 
expanded their operations with different types of 
material handling equipment. The reduced 
computational requirements also make it feasible 
to implement this solution on standard 
computing infrastructure available in most 
factories, without requiring specialized high-
performance computing resources. 
 
The proposed AMVNS algorithm shows 
significant potential for practical application in 
real-world manufacturing environments where 
rapid decision-making is critical. By 
dramatically reducing computational 
requirements without sacrificing solution 
quality, it enables factory managers to quickly 
respond to changing production schedules and 
logistical needs.  
The algorithm's ability to handle heterogeneous 
fleets makes it particularly valuable for facilities 

that have gradually expanded their material 
handling capabilities with different types of 
vehicles. Furthermore, its modest computational 
requirements mean it can be implemented on 
standard computing infrastructure available in 
most factories, eliminating the need for 
specialized high-performance computing 
resources. 
 
Future research directions could include: 
• Extending the algorithm to handle dynamic 

in-plant logistics scenarios 
• Incorporating real-time constraints and 

uncertainties 
• Applying the efficient evaluation strategy to 

other variants of VRP 
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