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A numerical technique based on Lucas polynomials together with standard and 
Chebyshev-Lobatto collocation points for solving functional integro-differential 

equations involving variable delays 

Sevin Gümgüm*1, Nurcan Baykuş Savaşaneril2, Ömür Kıvanç Kürkçü1, Mehmet Sezer3 

Abstract 

In this paper, a new numerical matrix-collocation technique is considered to solve functional integro-
differential equations involving variable delays under the initial conditions. This technique is based 
essentially on Lucas polynomials together with standard and Chebyshev-Lobatto collocation points. Some 
descriptive examples are performed to observe the practicability of the technique and the residual error 
analysis is employed to improve the obtained solutions. Also, the numerical results obtained by using these 
collocation points are compared in tables and figures. 
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1. INTRODUCTION 

In this paper, we employ a new numerical 
technique based on Lucas polynomials to solve the 
following functional integro-differential equation 
with variable delays  
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where ( )kP t , ( )rQ t , ( )r t , ( )g t , ( , )jK t s , ( )ju t  and 

( )jv t  ( 1m m , ( ) ( )j ju t v t ) are analytic functions 

defined on , ; a t s b  r ,  j ,  j ,  j , ika  and i  

are suitable constants. 

Functional differential and integro-differential 
equations with variable delays in the form (1) are 
usually used in modelling of physical phenomena 
and play an important role in mathematics, 
viscoelasticity, oscillating magnetic field, heat 
conduction, electromagnetics, biology and etc. [1-
22,28-31]. It is generally hard to find the analytic 
solution of them. So, the numerical techniques are 
required to obtain their approximate solution. For 
example, some integro-differential equations and 
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their other classes have been solved by using the 
numerical techniques such as homotopy 
perturbation [2], variational iteration [3]; Legendre 
[5], Taylor [6-9], Laguerre [10,11], Taylor-Lucas 
[12], Dickson [13-15], Chelyshkov [16], Lucas 
[17], Bessel [18], Bernoulli [19,20], Chebyshev 
[28,29] polynomial techniques and also, B-Splines 
[21], backward substitution [22], Sinc techniques 
[30]. 

In this paper, by considering the matrix technique 
based on collocation points, which have been used 
by Sezer and coworkers [5,6,8-19], we purpose a 
new numerical technique to find an approximate 
solution of the problem (1)-(2). The solution is of 
the form 



  
0

( ) ( ) ( )
N

N n n
n

y t y t a L t ,                                      (3)                                   

where ( )nL t  is the Lucas polynomials and na , 

0,1,2,...,n N  are unknown coefficients [12].  

2. SOME BASICS OF LUCAS 
POLYNOMIALS 

The Lucas polynomials are defined as follows [23-
26]: 

  1 1( ) ( ) ( )n n nL t t L t L t , 1n   

with 0( ) 2L t  and 1( )L t t  or their explicit form is                                                    
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where 1n  and   x  is the largest integer smaller 

than or equal to x . 

The Lucas polynomials have the generating 
function [26] 
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The derivative of  nL t  is of the form [26] 

      12
2

4
n n n

n
L t tL t L t

t
  


. 

The relation between Lucas and Fibonacci 
polynomials is [25] 

       2
1 14 n n nt F t L t L t    , 

where  nF t  is the Fibonacci polynomials. For 

more properties of the Lucas polynomials, one 
can refer to [23-26]. 

3.  FUNDAMENTAL MATRIX RELATIONS 

In this section, we constitute the matrix forms of 
the unknown function ( )y t  defined by the form (3), 

the derivative ( )( )ky t , the functional term 
( )( ( )) r

r ry t t , the kernel function ( , )jK t s  and the 

functional term  ( )j jy s  in Eq. (1). These matrix 

forms will enable us to solve the functional 
integro-differential equation (1) under the initial 
conditions (2). We can first write the truncated 
Lucas series (3) in the matrix form, for 

0,1,2,...,n N ,  

 ( ) ( ) ( )Ny t y t tL A ,                                              (5)                                   

where 

 L 1( ) ( ) ( ) ( ) o Nt L t L t L t , 

 A 1 
T

o Na a a . 

Then, by using the Lucas polynomials ( )nL t  given 

by (4), we write the matrix form ( )tL  as follows; 
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if N  is even, 
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For example, we obtain TM  with N=4 as follows:  
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By the matrix relations (5) and (6), it follows that                                                           
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Ny t tT M A                                                   (7)    

Besides, it is well known from [9] that the relation 

between ( )tT  and its derivative ( )( )k tT  is of the 
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 and B0 is a unit matrix. 

By using (7) and (8), we have the matrix relation 
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Putting ( )  r rt t t  into (9), we obtain the 
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Note that the matrix  ( ( ))r rt tT  can be 

constituted as     ( ( )) ( ) ( , ( ))T
r r r rt t t tT T S . On 

the other hand, the matrix forms of  ( )j jy s  and 

( , )jK t s  can be written as    

    ( ) ( ) ( , )T T
j j j jy s sT S M A                           (11)                                        

and by using the Taylor series expansion of ( , )jK t s  

[8], we have 
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By means of the relations (11) and (12), we obtain 
the matrix form of the integral part of Eq. (1) as 
follows;  
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4. LUCAS MATRIX-COLLOCATION 
TECHNIQUE 

In this section, we first constitute the following 
matrix equation corresponding to the functional 
integro-differential equation (1), by substituting 
the matrix relations (9), (10) and (13) into Eq. (1): 
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On the other hand, the standard (SCP) and 
Chebyshev-Lobatto (CLCP) collocation points we 
will use in the matrix equation (14) are defined 
respectively by 
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Besides, the fundamental matrix equation (14) can 
be expressed in the form 

WA G  or  W  G; ,                                                      (15) 

where 

  mnwW , m n N, 0,1,..., . 

Now, by the relation (9), we can obtain the 
condition matrix form for the initial conditions (2) 
as  

i iU A  or  ;i iU  ,  i m0,1,..., 1                  (16)                               
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Eventually, in order to find the Lucas polynomial 
solution of the problem (1)-(2), by replacing m row 
matrices (16) into any m rows of the form (15). 
Thus, we have the augmented matrix 

W G* *;   
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 or W A G* * ,                                       (17) 
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In Eq. (17), if rank W* =rank W G* *;  1N   
 

, then 

the coefficient matrix A  is uniquelly determined 
and so the solution of the problem (1)-(2) is 
obtained as 

L A( ) ( )Ny t t  or T M A( ) ( ) T
Ny t t . 

5. RESIDUAL ERROR ANALYSIS 

In this section, an error analysis dependent on 
residual function is implemented to improve the 
Lucas polynomial solutions. By using Eq. (1), we 

can obtain the residual function on  ,t a b  as                  
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In recent years, the residual error analysis has been 
applied by some authors [5,11,13,14,16,17,19,22]. 
Furthermore, the reader can refer to [15,27,28] for 
converge analysis based on residual function; 
residual correction and its theory. Let us now 
construct the residual error analysis for the Lucas 
polynomials. The error function ( )Ne x  is defined 

by 

( ) ( ) ( ) N Ne t y t y t ,                                                    (19) 

By Eqs. (18) and (19), the error equation is of the 
form        

     ( ) ( ) ( ) ( )   N N NL e t L y t L y t R t ,          (20)                               

subject to the initial conditions 






1

( )

0

( ) 0
m

k
ik N

k

a e a ,  i m0,1,..., 1 . 

By Eqs. (19) and (20), we constitute the error 
problem. We solve this problem by following the 
procedure given in Sections 3 and 4. Thus, we 
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obtain the estimated error function , ( )N Me t  (or 

called the solution of the error problem (19)-(20)), 
so  

 *
,

0

( )


 
M

N M n n
n

e t y L t ,  M N . 

Here, the corrected Lucas polynomial solution is 

obtained as , ,( ) ( ) ( ) N M N N My t y t e t  and the 

corrected error function is obtained as 

, ,( ) ( ) ( ) N M N ME t y t y t .  

6. NUMERICAL EXAMPLES 

In this section, the practicability of the present 
technique are illustrated with the numerical results 
of some descriptive examples. Also, these results 
are discussed in tables and figures, by considering 
SCP and CLCP. A computer code written on 
Mathematica (on Pc with 2GB RAM and 2.80 
GHz CPU) has been performed to obtain the 
precise results. In order to compare the numerical 
results, we also perform L  error defined as 

follows [29]:  

   max
 

 i N i
a i b

L y t y t ,  

where  y t  is the exact solution. 

6.1. Example 1: 

Let us consider the second-order functional 
integro-differential equation with variable delays 

 
1

2 2( ) ( ) 2 sin 2 ( ) 3 ( )
2

te

t

t
y t y t y t ty t g t t s y s ds



         
 

  

subject to the initial conditions (0) 0y  and 

(0) 0 y . Here, 0 2t  ,  0( ) 2P t t ,  1( ) 1P t , 

2( ) 1P t , 1( ) 2Q t , 1 1 / 2  ,   1( ) sint t , 0 1  , 
2 2

0( , ) 3K t s t s , 0( )u t t , 1
0( ) tv t e  , 0 1  , 0 0  , 

   
5 5 5

2 3 3
2 2 4sin

5 5

te t
g t t t t

 
     

 
 

. 

We approximate the exact solution ( )y t , by taking 

the Lucas polynomial solution form: 



  
2

2
0

( ) ( ) ( )n n
n

y t y t a L t ,  0 2t  

and the standard collocation points for   0, 2a b  

and 2N   are computed as  0 1 20, 1, 2x x x   . 

The fundamental matrix equation of this problem 
becomes  

          


 
   

 
 
P TB Q T S B T K C S M A G
2

1
1 1 1 0 0 0

0

, ( ) 1,0k T T
k

k

t  

where 

 
 

  
 
 

T

1 0 0

1 1 1

1 2 4

, 

 
 

  
 
 

B

0 1 0

0 0 2

0 0 0

, 

 
 

  
  

P0

0 0 0

0 2 0

0 0 4

, 

 
 

  
  

P1

1 0 0

0 1 0

0 0 1

, 

 
 

  
 
 

P2

1 0 0

0 1 0

0 0 1

, 

 
   
  

T

1 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 2 4

, 

Q1

2 0 0

0 2 0

0 0 2

 
 

  
 
 

, 

 
   
  

M

2 0 0

0 1 0

2 0 1

, 

 
 

  
 
 



 

G

6

2

13218.6

7.85 10

, 

C0

2.71828 3.69453 6.69518

3.69453 6.69518 13.6495

6.69518 13.6495 29.6826

6.389056 26.799

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0

1 134.143

26.7991 134.143 744.989

134.143 744.989 4405.09

18.0855 199.714 2698.

0 0 0 0

0 0 0 0 0 0

0

36

0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

99.714 2698.36 40684.7

2698.36 40684.7 6537970 0 0 0 0 0

 

 

 

 

 
 
 
 
  

  
      
  
  
 
 

 
  

S

S S

S

2
1 1

1 1 1

1 1
2

1 0 0

0 1 0

0 0 1

( , (0) 1 sin1 sin (1)

( , (1) 0 1 sin1

0 0 1( , (2)

1 sin2 sin (2)

0 1 sin2

0 0 1

T

T

T

, 

 
 
 
 
  
  
   
  
  

   
 
 
 
 

S

S S

S

1 0 0

0 1 0

0 0 1
(1,0) 1 0 0

(1,0) (1,0) 0 1 0

0 0 1(1,0)
1 0 0

0 1 0

0 0 1

T

T

T

  

and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

K0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 3

. 
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Then, the augmented matrix is  

W  G* *

0 1 2 ; 2

[ ; ] 2 0 2 ; 0

0 1 0 ; 0

 
   
  

. 

Solving this system, A  is obtained as 

 A 1 0 1 
T

. By the relation (7), ( )y t  is 

obtained as  

   
          
      

T M A 2

2 0 2 1

( ) ( ) 1 0 1 0 0

0 0 1 1

Ty t t t t , 

thus, the solution of the problem becomes 

2( )y t t , 

which is the exact solution.  

6.2. Example 2:  

Consider the second-order integro-differential 
equation with variable delays 

 
                 


2

2

2

( ) 2 ( 1) 1
2 2 2

t

t

t t s
t y t y t ty g t tsy ds  

subject to   0 ,1t , and the initial conditions 

(0) 1y  and  (0) 0y . The exact solution of this 

problem is  ( ) cosy t t . Here, ( )g t  can be easily 

found. By using SCP, we obtain the following 
solutions for N=4 and 7: 

  16 2
4

3 4           

1 2.77556 10 0.520263

0.0317765 0.0259313t

ty t t

t

   

 
 and 

  16 2 3
7

4 5 6 7

1 1.36176 10 0.499905 0.000443857

           0.0422884 0.000285 0.00146 0.000 03 .1

y t t t

t t t

t

t

    

   
 

As seen from Figure 1, a fast approximation is 
provided, so the Lucas polynomial solutions 
coincide with the exact solution. Notice that the 
Lucas polynomial solutions obtained by using SCP 
are plotted in Figures 1-4. Also, in Table 1, the 
numerical results are obtained by using SCP and 
CLCP in our technique.  

 

Figure 1. Comparison of the exact and Lucas polynomial 

solutions for Example 6.2. 

Figure 2 and Table 1 show that the absolute errors 
decay, when N is increased and the residual error 
analysis is employed. In addition, when the 
interval of this problem is taken as the large 
interval [0,8], it is observed in Figure 3 that our 

solution  20y t  is in harmony with the exact 

solution. This consistency reflects on the phase 

plane of the solution  20y t  as seen in Figure 4. 

 

Figure 2. Behaviors of the absolute errors with respect to 
time t for Example 6.2. 

Table 1. Comparison of the absolute errors and CPU 
time(s) (sec.) in terms of different collocation points for 

Example 6.2. 

 

it  
 4 ie t ; 

SCP 

 4 ie t ; 

CLCP 

 7 ie t ; 

SCP 

 7 ie t ; 

CLCP 

0.0

0.2

0.4

0.6

0.8

1.0

 

2.22 16

5.81 04

1.61 03

2.41 03

2.78 03

2.86 03

e

e

e

e

e

e













 

2.22 16

5.28 04

1.44 03

2.13 03

2.43 03

2.48 03

e

e

e

e

e

e













 

0

1.16 06

3.03 07

4.12 06

6.95 06

7.63 06

e

e

e

e

e











 

0

1.04 06

1.43 05

3.10 05

4.02 05

4.18 05

e

e

e

e

e











 

Time(s) 1.404 (N=4) 1.404 (N=4) 3.120 (N=7) 3.073 (N=7) 
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Figure 3. Oscillation of the exact and Lucas polynomial 
solution on large time interval [0,8] for Example 6.2. 

 

Figure 4. Consistency of the Lucas polynomial solution 

 20y t  in the phase plane for Example 6.2. 

6.3. Example 3:  

Consider the first-order pantograph Volterra 
delay-integro-differential equation [30] 

     
/2

0 0

3
1

2 2

t t
t t

y t y y s ds y s ds
 

      
 

 

0 1t  , 

subject to the initial condition  0 0y  . Here, the 

exact solution of the problem is   1 ty t e  . 

After solving this problem by employing N=2-10, 
M=11, 12; SCP and CLCP, we obtain the Lucas 
polynomial solutions. It is seen from Figure 5 that 
we approach speedily to the exact solution, when 
N=2 and 3. It is also worth specifying in Figure 6 
that our solutions obtained on [0,1] are consistent 
with the exact solution, even if these are on [0,5]. 
Notice that the Lucas polynomial solutions 
obtained by using CLCP are plotted in Figures 5 
and 6.  

 

Figure 5. Comparison of the exact and Lucas polynomial 
solutions for Example 6.3. 

 

Figure 6. Comparison of the exact and Lucas polynomial 
solutions on large time interval [0,5] for Example 6.3. 

By considering different collocation points, L  

errors are compared with the errors  E h


 of 

Sinc technique [30] in Table 2. As seen from Table 
2, our error results are far better than those in the 
mentioned technique and CPU processes our 
computer program in a short time. 

 
Table 2. Comparison of L  errors and CPU time(s) (sec.) 

in terms of different N and collocation points for Example 
6.3. 

N,M 

L  error; 

SCP 

L  error; 

CLCP 

 E h


 

[30] 

CPU 
time 
SCP 

CPU 
time 

CLCP 

2

3

4

5

7

8

10

10,11

 
1.44 05

3.48

1.81 02

3.4

0

7 03

1.61

8

1.18 09

1.55 12

5.5

04

7 14

e

e

e

e

e

e

e

e

















 
1.61 06

2.19

1.81 02

1.1

0

0 03

6.27

9

6.14 11

3.25 14

6.6

05

1 16

e

e

e

e

e

e

e

e

















 

     

     

     

     

     

2.10 0

1.26 04

  

3

   

e

e

















 

0.3120

0.4524

0.5772

0.7644

1.4040

1.7472

2.9796

  n.a.

 

0.4056

0.4836

0.6084

0.8268

1.2636

1.5600

2.2152

  n.a.
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6.4. Example 4:  

Consider the first-order delay differential equation 
[31] 

   
23 /4 0

2
t t

y t ty t te y t
        

  
, 0 2t   

subject to the initial condition  0 1y  . Here, the 

exact solution of the problem is  
2ty t e .  

Dix [31] investigated the asymptotic behavior of 
solutions of the first-order differential equation 
with variable delays, using Lyapunov functionals. 
We solve this problem, implementing our 
technique with SCP and CLCP for N=5-20 and 50. 
CPU time is obtained (sec.) as 0.0312 (N=5) and 
0.796 (N=50) for CLCP. Also, we obtain L  error 

as 8.53 014e   for CLCP and N=50. The Lucas 
polynomial solutions are plotted along with the 
exact solution in Figure 7. 

 

Figure 7. Comparison of the exact and Lucas polynomial 
solutions for Example 6.4. 

Figure 8 shows that L  errors decrease for 

different collocation points, as N is increased from 
10 to 20. In addition, the numerical values of the 
exact, approximate solutions and L  errors are 

compared in Table 3. It is clearly seen from Figure 
8 and Table 3 that CLCP are more useful than SCP. 

 
 
 
 
 
 
 
 
 
 

Table 3. Comparison of the exact, the approximate and the 
corrected approximate solutions and L  errors in terms of 

different collocation points for Example 6.4. 
 

it  

 

Exact 
sol. 

 10 iy t  

SCP 

 10 iy t  

CLCP 

 10,13 iy t  

SCP 

 10,13 iy t  

CLCP 

0.0

0.5

1.0

1.5

2.0

 

1

1.284

2.718

9.488

54.60

 

1

1.285

2.721

9.498

54.52

 

1

1.284

2.719

9.488

54.60

 

1

1.284

2.718

9.487

54.59

 

1

1.284

2.718

9.488

54.60

 

L  - 7.4 02e   9.1 04e   7.8 03e   4.3 05e   

 

 

Figure 8. Logarithmic plot of L  errors with SCP and 

CLCP with respect to N for Example 6.4. 

7. CONSCLUSION 

A practical Lucas matrix-collocation technique 
has been employed to solve functional integro-
differential equations with variable delays. In 
Figures 1-8 and Tables 1-3, the comparisons of the 
present results shows that the proposed technique 
is very applicable, consistent and fast (according 
to CPU time(s)). The accuracy increases, as N is 
increased. Our solutions have been improved via 
the efficient residual error analysis as seen in 
Figures 2, 6 and Tables 2, 3.  

 
On the other hand, by investigating the obtained 
results, we can deduce that the use of CLCP in the 
present technique is more advantageous than the 
use of SCP. It would be suitable to apply the 
present technique to other tough problems. In 
addition, it is readily seen that the present 
technique has a simple procedure and is very easy 
for computer programming.  
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