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Abstract
In this paper, we propose a restricted r − d class estimator in generalized linear models by
combining Liu and Principal component regression estimators, when exact linear restric-
tions are available as prior information along with the sample data. In addition, Particle
Swarm Optimization is introduced and utilized to estimate the biasing parameter d of
the newly constructed restricted estimator. In the presence of multicollinearity problem,
the new estimator is compared with the current estimators that are maximum likelihood,
principal components regression and r −d class estimators, respectively. The performance
of the proposed estimators is examined through simulation studies and a numerical exam-
ple, considering response variables that follow Poisson, Binomial, and Negative binomial
distributions. The evaluation is based on the scalar mean square error and the estimated
mean square error criteria. The results indicate that the proposed estimator consistently
outperforms all competing estimators considered in this study, both in simulation experi-
ments and the numerical example, for suitably chosen values of the biasing parameter d.
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1. Introduction
The maximum likelihood (ML) technique is often used to estimate the parameters in

generalized linear models (GLMs) and it is a known fact that multicollinearity, which
happens when explanatory variables are correlated, is a typical issue in GLMs. Multi-
collinearity has a substantial impact on ML estimates; for example, it raises its variance
and causes some coefficients to become unstable. Various studies have been carried out
in the literature to tackle the issue of multicollinearity, some of which make use of prior
information in the form of exact or stochastic linear restrictions in addition to the sample
data. Some of these studies are listed as [4, 11,12,19,22,23].
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The principal component regression (PCR) estimator has been combined with other
estimators to handle the multicollinearity problem in a few studies. These include Özkale
[21] proposed an estimator of the r–d class by combining the Liu and PCR estimators in
GLM. Abbasi and Özkale [3] developed an r − k class estimator by combining the ridge
and PCR estimators in GLM, respectively. Özkale and Arıcan [20] introduced a first-
order r − d class estimator for logistic regression by combining the PCR and Liu logistic
estimators. The PCR estimator has also been used in conjunction with other estimators
in situations where additional information is available, such as in the form of stochastic
linear restrictions; Abbasi and Özkale [1] have proposed a stochastic restricted r–d class
estimator by combining the PCR and Liu estimators under stochastic linear restrictions
in GLM. Abbasi and Ozkale [2] have developed an iterative stochastic restricted r–k class
estimator by combining the ridge and PCR estimators under stochastic linear restrictions
in GLMs.

Although several studies in the literature utilize the PCR estimator in combination
with other estimators, relatively few incorporate prior information. To the best of our
knowledge, no existing work has investigated the integration of the PCR estimator with
another estimator under the simultaneous availability of sample information in GLMs and
exact linear restrictions. The key contributions of this study are as follows:

• Propose a new estimator within the framework of generalized linear models (GLMs)
that integrates the PCR estimator with the Liu estimator, incorporating additional
information in the form of exact linear restrictions along with the sample data.
This estimator is known as the restricted r–d class estimator.

• Using the particle swarm optimization (PSO) technique to estimate the optimal
value of the biasing parameter d.

The PSO algorithm is inspired by social behavior, where a group of individuals (called
particles) adjust their movements by moving toward areas that have worked well be-
fore [27]. The PSO is better than other heuristic algorithms in many ways, including
its straightforward implementation, minimal parameter requirements, short computation
times, steady convergence feature, less dependence on initial points than other approaches,
and it is resilient. Moreover, the PSO has been effectively used in regression [26] and is
useful to prevent ill-conditioning, which results from near linear relationships between ex-
planatory variables. Compared with traditional approaches, this novel approach offers a
number of advantages, including being simple to implement, having no function deriva-
tives, require few parameters, quickly compute the results and exhibits stable convergence
[29]. Therefore, the main advantages of this study are the introduction of a new iterative
restricted r–d class estimator under exact linear restriction by combining PCR and Liu
estimators, as well as the implementation of a new optimization technique for estimating
the biasing parameter d of the proposed estimator.

The remaining sections of this study are arranged as follows: Some mathematical no-
tations are shown in Section 2. An iterative restricted r − d class estimator is derived in
Section 3, along with the first-order approximated (FOA) form. The sampling distribution
of the proposed estimator is given in Section 4. The new estimator’s mean square error
(MSE) is explained in Section 5. The overview of PSO and how it is used to estimate
the biasing parameter of the proposed estimator are provided in Section 6. The numerical
example is given in Section 7. Simulation studies are presented in Section 8. Finally, the
study is concluded in Section 9.

2. The preliminary GLMs
Considering the sample data (y, X), where y = (y1, ..., yn)> is a n × 1 vector of ob-

servations of the response variable Y and x>
i = (xi1, ..., xip), i = 1, ..., n denotes the i−th

observations of the n × p matrix of explanatory variable X = [X1, ..., Xp]. Assume the
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response variable Y has a probability distribution that belongs to an exponential family
of the type:

fYi (yi, θi, φ) = exp
[

θiyi − b (θi)
a (φ) + c(yi, φ)

]
, i = 1, 2, ..., n,

where θi is a canonical parameter, φ is a nuisance or dispersion parameter and a (.),
b (.) and c (.) are the known functions corresponding to the type of probability density
function under consideration. The mean and variance of Yi are represented by E(Yi) =
µi = ∂

∂θi
b (θi) and var(Yi) = a(φ) ∂2

∂θ2
i
b (θi). Where, µi is related to the set of explanatory

variables X1, ..., Xp through the link function g(µi) = ηi, and ηi = x>
i β is the systematic

component or linear predictor and g(.) is a monotonic and differentiable function.
The ML approach is commonly used to estimate parameters in GLMs by maximizing

the log-likelihood function:

l (yi, θi, φ) =
n∑

i=1

[
θiyi − b (θi)

a (φ) + c(yi, φ)
]

, i = 1, 2, ..., n. (2.1)

To estimate the parameters, partial derivatives of the log-likelihood function given in (2.1)
are set equal to zero, which are also referred to as the score functions. The score equations
in general are solved by the iterative process of Fisher’s scoring technique. Then, the ML
estimate of β is obtained as

β̂(t+1) = (X>Ŵ (t)X)−1X>Ŵ (t)z(t),

where W = diag(1/wii) is an n × n diagonal matrix having weights wii = var(Yi)[g′(µi)]2,
g′(µi) = ∂ηi

∂µi
denotes the first-order derivative of the link function, z(t) is a working response

of order n×1 consists of the elements z
(t)
i =

∑p
j=1 xij β̂

(t)
j +(yi−µ̂

(t)
i ) ∂η

(t)
i

∂µ
(t)
i

, i = 1, ..., n, where

t denotes the iteration step and z
(t)
i , µ̂

(t)
i and ∂η

(t)
i

∂µ
(t)
i

are evaluated at β̂(t). The asymptotic
form of the ML estimator is obtained as t approaches infinity:

β̂ML =
(
X>ŴMLX

)−1
X>ŴMLẑ.

Generally, for a large sample, β̂ML ∼ N
(
β, (X>ŴMLX)−1

)
.

3. Iterative restricted r–d class estimator in GLMs
A singular value decomposition (SVD) approach is applied to obtain a new estimator

because the SVD provides a basis that allows reconstructing the model matrix in a low-
rank matrix so that it factorizes the matrix into a rotation. With this rotation, the
components that are not important for the model are separated and discarded from the
model.

The linear predictor η = Xβ is expressed as η = XUU>β = V α where U = [U1, · · · ,Up]
is a p × p orthogonal matrix and Uj are the eigenvectors while V = XU and α =
U>β. Therefore, by virtue of the SVD, the information matrix X>ŴMLX has the form
U>X>ŴMLXU = V >ŴMLV = Λ = diag(λj) is a p × p diagonal matrix consisting of the
eigenvalues (λ1 = λmax > λ2 > · · · > λp = λmin). For the i-th observation of the matrix
V the linear predictor ηi is given as ηi = x>

i UU>β = V >
i α and V >

i = x>
i U denotes the

row vector of the matrix V and is called the principal components (PCs).
The PCs can be split into two parts, one of which consists of maximum information

having larger eigenvalues and it retains in the model, while the other part is removed from
the model that contains minimum information having small eigenvalues. This means that
the V matrix and α vector can be partitioned as V =

[
Vr Vp−r

]
and α =

[
α>

r α>
p−r

]
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while the component Vr = XUr(r 6 p) consists of PCs having large eigenvalues and
assumed to be stand in the model. Likewise, the matrices U and Λ are also decomposed

as U =
[

Ur Up−r
]

and Λ =
[

Λr 0
0 Λp−r

]
, where Λr = V >

r ŴMLVr = U>
r X>ŴMLXUr

and Λp−r = V >
p−rŴMLVp−r = U>

p−rX>ŴMLXUp−r. Therefore, we take into account the
component consisting of maximum information such as ηr,i = V >

ri αr where V >
r,i is the row

vector of the matrix Vr and αr = U>
r β.

By using the reduced set of PCs the PCR, r − d and r − k class estimators have been
developed by [3, 21,25] as

β̂(t+1)
r = Ur(U>

r X>Ŵ
(t)
MLXUr)−1U>

r X>Ŵ
(t)
MLẑ(t)

r , (3.1)

β̂
(t+1)
rd = Ur(U>

r X>Ŵ
(t)
MLXUr + Ir)−1(U>

r X>Ŵ
(t)
MLXUrz

(t)
rd + dU>

r β̂ML), (3.2)

β̂
(t+1)
rk = Ur

(
U>

r X>Ŵ
(t)
MLXUr + kIr

)−1
U>

r X>Ŵ
(t)
MLẑ

(t)
rk (3.3)

where

ẑ(t)
r = XUrU>

r β̂(t)
r + D̂−1

r (y − µ̂(t)
r ),

ẑ
(t)
rk = XUrU>

r β̂
(t)
rk + D̂−1

rk (y − µ̂
(t)
rk ),

ẑ
(t)
rd = U>

r β̂
(t)
rd + (U>

r X>ŴMLXUr)U>
r X>ŴMLD̂−1

rd (y − µ̂
(t)
rd ).

and D̂r, µ̂r, D̂rd, µ̂rd, D̂rk, µ̂rk are evaluated at the corresponding estimator.
Now in order to develop the restricted r − d class estimator in GLMs, we impose exact

linear restrictions on the parameter β such as h = Hβ where h is a known q × 1 vector
and H is a known q × p known matrix with rank(H) = q. By imposing a set of q

linearly independent restrictions on the parameters, we have H =


H1
H2
...

Hq

 where Hi =

[Hi1, Hi2, · · · , Hip]. This constraint must be successfully handled for that subspace in the
reduced form model if we are working in a parameter subspace that is: h = Hrαr, where
αr = U>

r β and Hr = HUr denote a matrix q × p that has rank(Hr) = q. To construct
the restricted r − d class estimator by combining the sample and prior information, we
consider the following objective function:

F (αr; y, h, d) =
n∑

i=1

{
θiyi − b (θi)

a (φ) + c(yi, φ)
}

− 1
2

p∑
i=1

(αr,j − dα̂r,j)2

−1
2

q∑
i=1

ζi(hi − Hr,ijαr,j)2, (3.4)

where ζ1, ..., ζq are the lagrange multipliers, d is a biasing parameter in the interval (0, 1)
and α̂r = U>

r β̂ML is the ML estimator of the reduced model.
Using Eq. (3.4), we estimate αr with elements αr,j , j = 1, 2 · · · , r, by calculating the

derivatives of F (αr; y, h, d) with respect to αr,j . Applying the chain rule, we have

∂F (αr; y, h, d)
∂αr,j

=
n∑

i=1

yi − µi

wii
g′(µi)vr,ij −

p∑
j=1

(αr,j − dα̂r,j)

+
q∑

i=1
ζiHr,ij(hi − Hr,ijαr,j) (3.5)



Tee r–d class estimator under exact linear restrictions in GLMs 1191

where vr,ij is the ij-th element of the Vr matrix. In matrix notation, Eq. (3.5) can be
written as

S(αr, d) = [V >
r WD−1(y − µ) − αr + dα̂r + H>

r Lr(h − Hrαr)],
where D = diag( ∂ηi

∂µi
) = diag(g′(µi)) and Lr = Diag(ζ1, ..., ζq). Now taking the derivative

of Eq. (3.5) with respect to αr,k we get
∂2F (αr; y, h, d)

∂αr,j∂αr,k
=

n∑
i=1

(yi − µi)
∂

∂αrk

1
wii

g′(µi)vr,ij −
n∑

i=1

vr,ijvr,ik

wii

−δjk −
q∑

i=1
ζiHr,ijHr,ik

since δjk = 1 if j = k and 0 otherwise. Minus times the expected value of the second-order
derivative gives

Qjk(αrj , d) = −E

[
∂2

∂αr,j∂αr,k
F (αr; y, h, d)

]
=

n∑
i=1

vr,ijvr,ik

wii
+ δjk +

q∑
i=1

ζiHr,ijHr,ik

which can be expressed in matrix form as:
Q(αr, d) = (V >

r WVr + Ir) + H>
r LrHr

where Ir is the identity matrix of order r. Following [3, 21, 25], we set the weights in the
ML estimates and using the technique of Fisher’s scoring algorithm, we get

α̂
(t+1)
R−rd = α̂

(t)
R−rd +

{
[Q(αr, d)]−1

}
W =ŴML

{[S(αr, d)]}
αr=α̂

(t)
R−rd

.

Premultiplying both sides by [Q(αr, d)]W =ŴML
, replacing the values of the Q and S ma-

trices and then simplifying some notations, we get

α̂
(t+1)
R−rd = [(V >

r ŴMLVr + Ir) + H>
r LrHr]−1[V >

r ŴMLVrα̂
(t)
R−rd

+V >
r ŴML(D(t)

R−rd)−1(y − µ̂
(t)
R−rd) + dα̂r + H>

r Lrh].

By applying the inverse formula† on [(V >
r ŴMLVr + Ir) + H>

r LrHr]−1 and solving
[(V >

r ŴMLVr + Ir) + H>
r LrHr]−1H>

r Lrh = (V >
r ŴMLVr + Ir)−1H>

r

×{I − [L−1
r + Hr(V >

r ŴMLVr + Ir)−1H>
r ]−1Hr(V >

r ŴMLVr + Ir)H>
r }L−1

r h

= (V >
r ŴMLVr + Ir)−1H>

r [L−1
r + Hr(V >

r ŴMLVr + Ir)−1H>
r ]−1h, (3.6)

we get
α̂

(t+1)
R−rd = (V >

r ŴMLVr + Ir)−1
[
V >

r ŴMLVrα̂
(t)
R−rd + V >

r ŴML(D(t)
R−rd)−1(y − µ̂

(t)
R−rd) + dα̂r

]
−(V >

r ŴMLVr + Ir)−1H>
r [L−1

r + Hr(V >
r ŴMLVr + Ir)−1H>

r ]−1

×{Hr(V >
r ŴMLVr + Ir)−1[V >

r ŴMLVrα̂
(t)
R−rd + V >

r ŴML(D(t)
R−rd)−1(y − µ̂

(t)
R−rd) + dα̂r] − h}.

Transforming back to the original parameters and as ζ1, . . . , ζq → ∞, we obtain an
iterative restricted r − d class estimator in GLMs as:

β̂
(t+1)
R−rd = Ur(U>

r X>ŴMLXUr + Ir)−1(U>
r X>ŴMLz

(t)
R−rd + dU>

r β̂ML) − Ur

×(U>
r X>ŴMLXUr + Ir)−1H>

r [Hr(U>
r X>ŴMLXUr + Ir)−1H>

r ]−1

×[Hr(U>
r X>ŴMLXUr + Ir)−1(U>

r X>ŴMLz
(t)
R−rd + dU>

r β̂ML) − h], (3.7)

where z
(t)
R−rd = XUrU>

r β̂
(t)
R−rd +(D(t)

R−rd)−1(y− µ̂
(t)
R−rd) and µ̂

(t)
R−rd and D

(t)
R−rd are evaluated

at β̂
(t)
R−rd.

†Following [24], the inverse formula is as: If Apxp, Bpxn, Cnxn and Dnxp then (A + BCD)−1 = A−1 −
A−1B(C−1 + DA−1B)−1DA−1



1192 A. Abbasi, M.R. Özkale

Since the term Ur(U>
r X>ŴMLXUr +Ir)−1(U>

r X>ŴMLXUrz
(t)
R−rd +dU>

r β̂ML) is in the
form of the iterative r − d class estimator in GLMs given by Eq. (3.2). Eq. (3.7) is a
restricted form estimator of the r − d class estimator ‡

3.1. The first-order approximated form
From Eq. (3.7), the first-order approximated (FOA) form of the iterative restricted

r − d class estimator is given as

β̂
(1)
R−rd = Ur(U>

r X>W (0)XUr + Ir)−1(U>
r X>W (0)z(0) + dU>

r β̂(1)) − Ur

×(U>
r X>W (0)XUr + Ir)−1H>

r [Hr(U>
r X>W (0)XUr + Ir)−1H>

r ]−1

×[Hr(U>
r X>W (0)XUr + Ir)−1(U>

r X>W (0)z(0) + dU>
r β̂(1)) − h] (3.8)

where β̂(1) = (X>W (0)X)−1X>W (0)z(0) is the FOA ML estimator, z(0) = Xβ(0) +
(D(0))−1(y − µ(0)) is the initial working response and D(0) and µ(0) are evaluated at the
initial value β(0).

The β̂
(1)
R−rd is a general estimator that contains different estimators under particular

conditions;
• If d = 0, r = p and H = 0, we get the FOA ML estimator.
• If d = 0 and H = 0, we get the FOA PCR estimator proposed by [25] as β̂

(1)
r =

Ur(U>
r X>W (0)XUr)−1U>

r X>W (0)z(0).
• If H = 0; that is no prior information, we obtain the FOA r − d class estimator

given by [21] as β̂
(1)
rd = Ur(U>

r X>W (0)XUr + Ir)−1(U>
r X>W (0)z(0) + dU>

r β̂(1)).
Since the initial working responses for all FOA estimators are the same, we can also write
Eq. (3.8) as

β̂
(1)
R−rd = β̂

(1)
rd − Ur(U>

r X>W (0)XUr + Ir)−1U>
r H>

×[HUr(U>
r X>W (0)XUr + Ir)−1U>

r H>]−1(Hβ̂
(1)
rd − h), (3.9)

where β̂
(1)
rd is the FOA r − d class estimator that can also be denoted as

β̂
(1)
rd = Ur(U>

r X>W (0)XUr + Ir)−1(U>
r X>W (0)XUr + dIr)U>

r β̂(1)
r

(3.10)
with the FOA principal components regression (PCR) estimator obtained from Eq. (3.1).

4. Sampling distribution of the r − d class estimator under exact restric-
tion

Özkale [21] obtained the asymptotic sampling distribution of the r − d class estimator
in GLMs. In this section, inspired by the studies of [6, 21, 22] we will investigate the
asymptotic properties of the r − d class estimator under the exact restrictions. A Taylor
series approximation of S(αr, d) around the true parameter value αr, divided by the square
root of the number of observations gives

n−1/2S(αr, d) = n−1/2S(α̂R−rd, d) + n−1 ∂

∂αr
S(αr, d)

∣∣∣∣
αr=α̂R−rd

n1/2(αr − α̂R−rd) + rem

where ∂
∂αr

S(αr, d) is the p×p matrix of derivatives of S evaluated at αr, rem is a reminder
term that tends to zero as n tends to infinity and α̂R−rd is the restricted r−d class estimator

‡We mean that Eq. (3.7) has a form similar to β̂
(t+1)
R−rd = β̂

(t)
rd − Ur(U>

r X>ŴMLXUr +
Ir)−1U>

r H>[HUr(U>
r X>ŴMLXUr + Ir)−1U>

r H>]−1(HUrβ̂
(t)
rd − h), but the computation of β̂

(t)
rd is dif-

ferent from Eq.(3.2) because of the working response.
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at convergence. By definition, the first term on the right hand side equals zero; that is,
S(α̂R−rd, d) = 0.

By the law of large numbers n−1 ∂
∂αr

S(αr, d)
∣∣∣
αr=α̂R−rd

converges to its expectation,
which is minus times Q(αr, d)|αr=α̂R−rd

= Q(α̂R−rd, d).
By the central limit theorem n−1/2S(αr, d) converges to a p−variate normally dis-

tributed vector with expectation [(d − 1)αr + H>
r Lr(h − Hrαr)] and variance

(V >
r ŴMLVr + dIr)(V >

r ŴMLVr)−1(V >
r ŴMLVr + dIr). This implied that n1/2(α̂R−rd − αr)

has asymptotically a normal distribution with expectation [Q(α̂R−rd, d)]−1 [(d − 1)αr +
H>

r Lr(h − Hrαr)] and variance
[Q(α̂R−rd, d)]−1 (V >

r ŴMLVr + dIr)(V >
r ŴMLVr)−1(V >

r ŴMLVr + dIr) [Q(α̂R−rd, d)]−1.
When the transformation is made to the original parameter space, we get

n1/2(β̂R−rd − β) ≈ AN(Ur [Q(α̂R−rd, d)]−1 [(d − 1)U>
r β + U>

r H>Lr(h − HUrU>
r β)]

×Ur [Q(α̂R−rd, d)]−1 (V >
r ŴMLVr + dIr)(V >

r ŴMLVr)−1

×(V >
r ŴMLVr + dIr) [Q(α̂R−rd, d)]−1 U>

r )
where "AN" refers to asymptotic normality. Furthermore, application of the inverse for-
mula on [Q(α̂R−rd, d)]−1 given by Eq. (3.6) and as ζ1, . . . , ζq → ∞, we get

[Q(α̂R−rd, d)]−1 = Mr(1) = Sr(1)−1 − Sr(1)−1U>
r H>P −1

r HUrSr(1)−1

where Sr(1) = (V >
r ŴMLVr + Ir), Sr(d) = (V >

r ŴMLVr + dIr) and Pr = HrSr(1)−1H>
r . By

Eq. (3.6), we have

[Q(α̂R−rd, d)]−1 U>
r H> = Sr(1)−1U>

r H>(L−1
r + Pr)−1L−1

r

which is [Q(α̂R−rd, d)]−1 U>
r H>Lr = Sr(1)−1U>

r H>P −1
r as ζ1, . . . , ζq → ∞. At the end of

these calculations, we get

n1/2(β̂R−rd − β) ≈ AN
(

(d − 1) UrMr(1)U>
r β + UrSr(1)−1U>

r H>P −1
r (h − HUrU>

r β),

UrMr(1)(V >
r ŴMLVr + dIr)(V >

r ŴMLVr)−1(V >
r ŴMLVr + dIr)Mr(1)U>

r

)
This result reduces to the sampling distribution of the r − d class estimator given by [21]

when there is no exact restriction.

5. The MSE of the FOA restricted r − d class estimator
This section shows the MSE of the FOA restricted r − d class estimator along with the

bias and variance of the restricted r −d class estimator. In view of Eq. (3.9), we can write
the bias

Bias(β̂(1)
R−rd) = E(β̂(1)

R−rd) − β = [(d − 1)UrM (0)
r (1)U>

r − Up−rU>
p−r]β, (5.1)

and the variance
var(β̂(1)

R−rd) = [Ip − UrS(0)
r (1)−1U>

r H>(P (0)
r )−1H]var(β̂(1)

rd )[Ip − UrS(0)
r (1)−1U>

r H>(P (0)
r )−1H]>

= UrM (0)
r (1)S(0)

r (d)Λ−1
r S(0)

r (d)M (0)
r (1)U>

r , (5.2)

where M
(0)
r (1) = S

(0)
r (1)−1 − S

(0)
r (1)−1U>

r H>(P (0)
r )−1HUrS

(0)
r (1)−1. With the help of

[19], which gives the expectation of β̂
(1)
rd , we obtain

E(β̂(1)
R−rd) = UrS(0)

r (1)−1S(0)
r (d)U>

r β − UrS(0)
r (1)−1U>

r H>(P (0)
r )−1

×[HUrS(0)
r (1)−1S(0)

r (d)U>
r β − HUrU>

r β],

where S
(0)
r (1) = (U>

r X>W (0)XUr + Ir), S
(0)
r (d) = (U>

r X>W (0)XUr + dIr) and P
(0)
r =

HrS
(0)
r (1)−1H>

r .
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Thus, the MSE of the β̂
(1)
R−rd is obtained by writing Eqs. (5.1) and (5.2) in

MSE(β̂(1)
R−rd) = var(β̂(1)

R−rd) + [Bias(β̂(1)
R−rd)][Bias(β̂(1)

R−rd)]>.

Remark. Since the PCR estimator and its variants are obtained under the condition
U>

p−rβ = 0, if this condition is also taken into account, it will be easily seen that the
variance and expected value found in Section 5 are the same as those found in the sampling
distribution of β̂

(1)
R−rd in Section 4.

6. Estimating the biasing parameter of the restricted r−d class estimator
via particle swarm optimization

The PSO was introduced by [13] as an evolutionary computing technique based on
swarm intelligence. This algorithm is developed by emulating the social interactions ob-
served in flocks of birds and schools of fish. In PSO, every potential solution is referred
to as a particle. A particle in the PSO resembles a fish or bird that glides over the search
field. Potential solutions to the problems are given by the positions of the particles. Be-
cause each particle has a velocity vector, it may explore the space and look for the optimal
position. The best particle in the swarm, known as the global best (Gbest) at each genera-
tion, and each particle’s best position (Pbest) determine the route each particle will follow.
The stochastic structure of the particle is expanded throughout this process, which also
quickly converges to the optimum solution. The PSO technique has been used in many
studies like;

Sancar and Inan [26] used PSO to estimate the biasing parameter of an estimator that
depends on two biasing parameters. Kareem and Algamal [5] used the PSO to estimate
the biasing parameter of the generalized ridge estimator, using the MSE as the objective
function. Wiktorowicz et al. [30] proposed a method for TakagiSugeno fuzzy systems using
Sparse regressions and particle swarm optimization. Uslu et al. [28] acquired an optimal
value for the shrinkage parameter in ridge regression by optimizing particle swarm. İnan
et al. [9] used the PSO technique to estimate the shrinkage and bias parameters of the
Liu-type estimator.

6.1. How PSO works?
The PSO algorithm can be described as follows, based on the approaches described in

[29] and [9]. The stages involved in the optimization process can be described as follows:

Step 1: The position vectors of each particle in D-dimensional space are randomly ini-
tialized and store in vector Xi that is; Xi = (xi1, xi2, · · · , xid, · · · , xiD).

Step 2: The velocities are randomly initialized and stored in a velocity vector that is
Vi = (vi1, vi2, · · · , vid, · · · , viD).

Step 3: Based on the objective function, the personal best Pbest and global best Gbest
are calculated using the following equations:

Pi = (pi1, pi2, · · · , pid, · · · , piD)

Pg = (pg1, pg2, · · · , pgd, · pgD).

Step 4: The values of the PSO parameters that include the inertia weight w, the
cognitive and social coefficients c1 and c2 are considered to be w = 0.90, c1 = c2 = 2, the
number of particles equal to 30 and the number of iterations is 200. The parameter values
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are selected on the basis of the literature [7].
Step 5: The following formulas are used to update the velocity and position, respectively

vd
i,t+1 = w ∗ vd

i,t + c1 ∗ rand ∗ (pd
i,t − xd

i,t) + c2 ∗ rand ∗ (pd
g,t − xd

i,t)

xd
i,t+1 = xd

i,t + vd
i,t+1

where rand are random numbers in (0, 1) which are uniformly and independently dis-
tributed.
Step 6: Until a predefined maxit iteration number maxit is achieved, steps 3 to 5 are
repeated.

In our study, the convergence of the PSO algorithm is evaluated by running the al-
gorithm for a fixed number of iterations, specifically 200 (maxit = 200). The solution
obtained in the final iteration is considered the convergent estimate of the optimal value
of the biasing parameter d. Stochastic optimization commonly uses this fixed iteration
method, which gives the particles enough time to explore and settle in the search space.
This strategy ensures consistent termination and is well supported in the foundational
literature of the PSO ([7, 9, 26,27]).

6.2. Implementation of PSO to estimate the biasing parameter of the
restricted r − d class estimator

We developed an objective function for our PSO-based algorithm that minimizes mul-
ticollinearity, lowers model bias, and improves predictive performance in accordance with
the goals of the study. Our PSO-based algorithm’s objective function consists of three
components:

Min{PMSE + Φ(d)},

where PMSE is the prediction mean square error (PMSE) defined as:

PMSE =
n∑

i=1

1
n

(yi − µ̃i)2

with yi is the ith component of y and µ̃i = g−1(x>
i β̃) (See[14]) and Φ(d) is the the condition

number (CN)

Φ(d) =
{

0 if CN > 30
CN otherwise.

The CN of the restricted r − d class estimator is defined as for the particular case when
H = 0:

CN =
√

λmax(UrΛrSr(d)−1Sr(1)U>
r )

λmin(UrΛrSr(d)−1Sr(1)U>
r )

where λmax(.) and λmin(.) show the maximum and minimum eigenvalues of the matrix
X>W (0)X.

The motivation for applying the PSO technique in this study lies in its straight for-
ward implementation, independence from function derivatives, minimal parameter require-
ments, as well as fast and stable convergence.

7. Numerical example
This section examines the performance of the restricted r − d class, ML, r − d, and

PCR estimators using a real-world data set. Myers [17] first reported on the data set,
which included 44 observations about mines in the Appalachian region of western Virginia.
Marx [15] also used this data set, which includes the number of fractures or injuries as
the dependent variable y and four explanatory variables; (x1) denotes the thickness of
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the inner burden in feet; (x2), the lower seam height; (x3), the percentage of extraction
from the lower previously mined seam; and (x4), the number of years the mine has been
in operation. Myers [17] and Marx [15] used a generalized linear regression model to
examine how these explanatory factors affected the dependent variable y, assuming that
the observations yi belonged to the Poisson distribution with a logarithmic link function,
also Kurtoğlu and Özkale [12] used this data set with a log link function. The regression
model is

log(µi) = β0 + β1x1i + β2x2i + β3x3i + β4x4i,

where µi is the approximate total number of fractures or upper seam injuries at the i-th
coal mining site. Our goal is to determine whether these factors have an effect on the
number of fractures or injuries (y) that occur at the top seams of the mines.

To acquire our results, we employ the MATLAB programming language. Before com-
puting the findings, the intercept term is included in the model once the explanatory
variables have been normalized using unit length scaling. The findings are obtained using
an iterative re-weighted least square (IRLS) approach, and the convergence criterion is
||β̂(t+1) − β̂(t)|| ≤ 1 × 10−6. An ordinary least-squares (OLS) estimator is considered as
an initial estimate. For X>ŴMLX, the eigenvalues are computed as λ1 = 98.6908, λ2 =
2.2452, λ3 = 1.6254, λ4 = 1.2299, λ5 = 0.9730. The existence of multicollinearity is indi-
cated using condition number (CN) defined as; CNML =

√
λmax(X>ŴMLX)
λmin(X>ŴMLX) = 101.4284.

A serious multicollinearity problem in the data is indicated by the CN value, which is
significantly greater than 30.

The performance of the estimators in the presence of multicollinearity is evaluated by
imposing exact linear constraints on the parameters. Since we do not have prior knowledge
of the data, we must establish a constraint on the parameter, taking into account the ML
estimator given in Table 1. The restriction is established using the ML estimator in the
final iteration as β0 + β1 + β2 + β3 + β4 = 1.8373, which is approximately true for β̂ML.
This restriction gives; H = [11111], h = 1.8373. The percentage of total variation (PTV)

approach, PTV =

r∑
j=1

λj

q∑
j=1

λj

× 100, is used to determine the number of PCs to retain where

r is the number of PCs that the model will retain. Although there is no exact threshold
value for selecting the PTV, it is randomly selected to be 0.95, resulting in r = 2.

To choose the optimal value of the biasing parameter d, we used the PSO technique
explained in Section 6, which gives d = 0.4528.

Table 1 presents the results of iteratively obtained coefficients of the estimators along
with their scalar mean square error (SMSE)§ values. It is evident that the proposed
restricted r − d class estimator has a lower SMSE value than its counterparts, suggesting
that it outperforms other estimators when multicollinearity is present. Thereafter, the
ML estimator has smaller SMSE value followed by the r − d class estimator. In addition,
Figure 1 is provided to evaluate the performance for all d values in the interval (0, 1).
Figure 1 illustrates that the proposed restricted r − d class estimator performs best and
achieves the least SMSE values when the biasing parameter d has a value between 0 and
0.78 for this data set.

§Scalar mse is the trace of the matrix mse where the parameter β is replaced with the ML estimator
obtained at the end of the convergence to achieve unbiasedness
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Table 1. Iteratively estimated coefficients and the SMSE values of the FOA es-
timators when d = 0.4528 for the mine data

Coefficients ML PCR r − d Rest. − rd
β0 0.5646 2.0298 0.9759 0.9834
β1 -1.5241 -0.4849 -0.2188 0.1653
β2 4.6499 -0.0941 -0.0371 0.1816
β3 -0.3114 -0.7174 -0.3222 0.2850
β4 -1.5417 -0.5658 -0.2550 0.2010
SMSE 2.9115 25.9473 12.7531 2.0846
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Figure 1. Graph of the SMSE values of the r − d and Rest. − rd class estimators
for mine data

This numerical example demonstrates that the optimal performance of the proposed
estimator is achieved for appropriately selected values of the biasing parameter d.

8. Simulation Studies
In this section, simulation studies are conducted for the Poisson, Binomial, and Negative

binomial response variables to evaluate the performance of the estimators; ML, PCR, r−d
class, and restricted r−d class estimators. The performance of these estimators is assessed
using the estimated mean squared error (EMSE) criterion, calculated as follows:

EMSE(β̃) = 1
MCN

MCN∑
m=1

(
β̃(m) − β

)> (
β̃(m) − β

)
where β̃(m) is the estimate of β, and MCN is the number of replications in the Monte Carlo
simulation experiment, which is repeated up to 500 times. The subscript m indicates the
m-th replication of the simulation experiment. The MATLAB programming language is
used to analyze our results. The subsequent steps required to perform the Monte Carlo
simulation experiments for Poisson, Binomial, and Negative binomial response variables
are outlined in Subsections 8.1, 8.2 and 8.3.

8.1. Experiment 1: Poisson response
This experiment is designed for the Poisson response. The necessary steps are detailed

as follows:
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1. The number of explanatory variables utilized is p = 4, 8 and the sample size is n =
25, 50, 100, 200, 300, and 500.

2. By following [18], the explanatory variables are created as:

xij = (1 − γ2)1/2υij + γυi,p+1, i = 1, · · · , n, j = 1, · · · , p,

where υij are independent standard normal pseudo-random numbers and γ2 indicates the
degree of multicollinearity between any two explanatory variables. Prior to computing the
findings, the explanatory variables are standardized using the unit length standardization
technique.

3. γ2 = 0.90, 0.95, and 0.99 are the values of multicollinearity degree that are taken
into consideration.

4. To ensure that β>β = 1, the parameter vector β is computed as a normalized
eigenvector that corresponds to the largest eigenvalue of the X>X matrix (see [10]).

5. By following [16] the exact linear restrictions for p = 4 and p = 8 are considered as
H =

[
1 0 −2 1

]
, h = [0], H =

[
1 0 −2 1 −3 1 1

]
, h = [0].

6. The PSO approach described in Section 6 is used to find the values of the biasing
parameter d.

7. We used the percentage of total variation (PTV) method to calculate the number of
PCs.

8. The Poisson distribution yields the response variable yi ∼ P (µi) with the log-link
function µi = exp (β1xi1 + β2xi2 + ... + βpxip).

9. Initially OLS estimator β̂ols = β(0) =
(
X>X

)−1
X>y is taken as an estimate of β.

The findings are given in Tables 2 and 3, and described as follows:

i) The findings indicate that the EMSE values of the restricted r − d class estimator are
less than those of its counterparts for every parameter taken into account in the simulation
research. Thus, the performance of the restricted r − d class estimator is better compared
to its counterparts for all factors included in the simulation analysis.

ii) For p = 4, the restricted r − d class estimator has smaller EMSE values than those
for p = 8.

iii) The r − d class estimator outperforms both the ML and PCR estimators, while the
PCR estimator outperforms the ML estimator.

iv) The EMSE values of the restricted r − d class estimator increase with the degree of
multicollinearity, with the exception of p = 4 and γ2 = 0.99. In contrast, when the degree
of multicollinearity γ2 increases, the EMSE values of all other estimators increase.

8.2. Experiment 2: Binomial response
In this section, a simulation experiment is carried out for a binomially distributed

response variable to assess the applicability and performance of the estimators. The
response variable for the logistic regression model is generated as yi ∼ Bern (µi), where
µi = exp(β1xi1+···+βpxip)

1+exp(β1xi1+···+βpxip) , i = 1,. . .,n and βj , j = 1, . . . , p as defined in Step 4. The initial

weight matrix for the i−th observation is defined as W (0) = diag(µ(0)
i (1 − µ

(0)
i )). The

remaining steps follow the same procedure used for the Poisson response case.
The simulation results are presented in Tables 4 and 5 and discussed below.
i) The restricted r − d class estimator consistently outperforms its counterparts in all

the parameters considered, as it yields the smallest EMSE values.
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ii) When p = 4 EMSE values of the proposed restricted r −d class estimator increase as
the degree of multicollinearity increases from 0.90 to 0.95, but then decreases as it reaches
0.99. A similar trend is observed for p = 8 and sample sizes n = 25 and n = 50, where
EMSE values increase from a multicollinearity level of 0.90 to 0.95, and then decrease as
it approaches 0.99. However, for the remaining sample sizes, it is observed that as the
degree of multicollinearity increases from 0.90 to 0.99, the EMSE values of the proposed
estimator increase consistently.

iii) On the other hand, when p = 4, the EMSE values of the other estimators increase
as the degree of multicollinearity rises. This pattern also holds for p = 8 in the case of
the ML and PCR estimators across all sample sizes, while for the r − d class estimator, it
holds for all sample sizes except n = 25 and n = 50.
iv) It is observed that the EMSE values of the estimators are small for p = 4 compared to
p = 8.
v) As the sample size changes, the EMSE values of the estimators are found to follow an
increasing or decreasing trend.

8.3. Experiment 3: Negative binomial response
In this experiment response variable follows a Negative binomial distribution and is

generated as yi ∼ NB
(
µi, µi + αµ2

i

)
where µi = exp (β1xi1 + · · · + βpxip), i = 1,. . ., n, we

choose α = 1 by following [8]¶. The weight matrix for the i−th observation is computed
as Ŵ = diag(µi + αµ2

i ). The remaining steps are consistent with those employed for the
Poisson and binomial responses.

The corresponding results are presented in Tables 6 and 7 and discussed as follows.
i) The findings reveal that the restricted r − d class estimator demonstrates superior

performance, achieving the lowest EMSE values across all scenarios considered in the
simulation experiment.
ii) As multicollinearity increases from 0.90 to 0.95, the EMSE values of the restricted
r − d class estimator generally decrease, except for the case when n = 25 and p = 4. At
a higher multicollinearity level of 0.99, the EMSE values display a mixed behavior, with
both increases and decreases observed. For p = 8, however, the EMSE values consistently
decrease as multicollinearity rises from 0.90 to 0.99, except when n = 300 and n = 500.
iii) For the PCR and r−d class estimators, it is observed that their EMSE values generally
decrease with increasing multicollinearity when p = 4, except in the case of n = 25; a
similar pattern is noted for p = 8. In contrast, the EMSE values of the ML estimator
consistently increase as the degree of multicollinearity increases for both p = 4 and p = 8.
iv) With an increase in the number of variables, the EMSE values of all estimators generally
increase, except for the proposed restricted r − d class estimator, which shows a varying
trend decreasing or increasing.
v) The sample size does not exhibit a consistent pattern, as the EMSE values fluctuate,
showing either an increasing or decreasing trend.

¶Alternatively, we can also choose α = 2 however, the results for α = 2 follow the same pattern as those
for α = 1



1200 A. Abbasi, M.R. Özkale

Table 2. The EMSE values of the estimators when response is Poisson and p = 4

n ρ2 ML PCR r − d Rest. − rd
25 0.90 16.5459 16.5245 5.9896 3.8747

0.95 31.6022 28.6427 10.4592 6.7716
0.99 150.4122 31.9371 13.4802 2.5389

50 0.90 19.3317 19.3053 7.7935 5.0963
0.95 38.3345 38.3340 14.4728 9.5887
0.99 178.6639 55.8333 21.5054 0.2163

100 0.90 17.7548 17.7544 6.5862 4.6129
0.95 34.4845 34.4841 12.4235 7.9209
0.99 159.7253 51.5610 17.8851 0.2628

200 0.90 18.7464 18.7460 7.1991 4.9793
0.95 34.3699 34.3609 11.4953 7.5452
0.99 179.8283 50.7470 17.3068 0.2137

300 0.90 17.1506 17.1503 6.8819 4.5848
0.95 32.6015 32.6010 11.9064 7.6334
0.99 168.2958 50.0797 16.1720 0.2158

500 0.90 17.2189 17.2180 6.6679 4.5034
0.95 34.9920 34.7900 12.4191 8.1064
0.99 165.8687 47.1490 16.0628 0.2212

Table 3. The EMSE values of the estimators when response is Poisson and p = 8

n ρ2 ML PCR r − d Rest. − rd
25 0.90 68.9429 30.2201 11.5976 9.8546

0.95 138.6119 36.3581 13.1340 10.6035
0.99 677.4506 25.7664 2.1115 1.0228

50 0.90 51.5821 36.9222 14.0309 12.0081
0.95 94.0140 57.4648 23.1516 19.2515
0.99 490.4639 109.8739 24.5933 8.8887

100 0.90 33.2936 33.2869 12.6595 11.4244
0.95 64.4132 49.3777 18.3520 15.6584
0.99 315.1606 110.0131 37.9837 27.6827

200 0.90 31.2520 31.2510 12.2906 10.3662
0.95 59.6384 53.2279 19.7053 16.4349
0.99 295.5698 124.6166 41.8809 27.7601

300 0.90 40.1266 40.1266 15.2064 13.2830
0.95 83.1414 68.4822 24.2125 20.1188
0.99 381.1883 127.1909 41.9745 26.0196

500 0.90 36.6968 36.3280 14.5676 12.6982
0.95 71.0364 67.6588 24.8313 21.0111
0.99 326.7051 132.0536 46.2041 32.1742
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Table 4. The EMSE values of the estimators when response is Binomial and
p = 4

n ρ2 ML PCR r − d Rest. − rd
25 0.90 188.4481 188.5039 60.3603 39.4919

0.95 369.3163 369.9402 118.1156 75.9407
0.99 1819.6149 216.3051 105.2365 1.3695

50 0.90 118.8548 118.8549 44.5335 30.1796
0.95 228.9720 228.9721 84.2046 56.2669
0.99 1109.5102 208.7408 84.8605 0.7557

100 0.90 85.6377 85.6379 29.9775 18.8872
0.95 166.2209 166.2211 56.9087 36.2202
0.99 810.0375 188.5690 62.7268 0.7147

200 0.90 79.5157 79.5158 26.8746 17.4624
0.95 152.2272 152.2273 49.9723 32.1026
0.99 737.0525 190.1574 59.6078 0.6996

300 0.90 71.8987 71.8988 26.1721 16.8905
0.95 141.4898 141.4899 50.6768 32.0691
0.99 698.1147 200.8021 68.4204 0.6629

500 0.90 73.3194 73.3195 29.1282 21.2918
0.95 141.6855 141.6856 54.9378 39.8005
0.99 684.5109 192.0477 72.9669 0.7393

Table 5. The EMSE values of the estimators when response is Binomial and
p = 8

n ρ2 ML PCR r − d Rest. − rd
25 0.90 3832.5605 22.3145 54.9806 5.4799

0.95 8053.4831 45.5218 127.6206 6.0366
0.99 38566.1217 224.7185 84.7523 1.6138

50 0.90 380.0216 241.0176 92.6872 79.5904
0.95 757.1590 477.4244 180.9736 155.5399
0.99 4191.5981 512.8195 124.0465 63.1969

100 0.90 178.3174 178.3175 62.9701 55.9302
0.95 341.5112 258.3903 92.5900 79.5015
0.99 1644.7933 450.1622 170.4996 115.8137

200 0.90 140.9834 140.9835 49.3190 41.9409
0.95 273.3667 218.7013 75.1796 61.6703
0.99 1325.5761 447.2790 150.7823 104.8773

300 0.90 189.7297 189.7298 64.9465 56.9265
0.95 369.0343 295.8827 100.2390 84.8610
0.99 1803.6438 599.0036 201.7927 130.6163

500 0.90 157.1340 157.1340 56.0308 47.4147
0.95 303.7187 303.7188 106.0373 89.6855
0.99 1486.7207 541.0760 183.8575 127.9551



1202 A. Abbasi, M.R. Özkale

Table 6. The EMSE values of the estimators when response is Negative binomial,
p = 4 and α = 1

n ρ2 ML PCR r − d Rest. − rd
25 0.90 69.4873 43.1531 8.6476 7.6212

0.95 162.9744 52.6549 16.7881 15.9914
0.99 708.0939 34.1665 15.0108 5.4217

50 0.90 83.0232 41.1175 11.3281 2.6799
0.95 158.6553 14.4143 4.2874 0.5912
0.99 647.6859 10.7762 2.7652 0.3999

100 0.90 81.0309 35.7251 11.9641 2.4192
0.95 155.6804 6.5941 2.7355 0.5863
0.99 722.3650 6.2276 2.7586 0.5860

200 0.90 99.7542 32.5093 12.3103 1.6208
0.95 189.4241 6.5331 3.2064 0.5966
0.99 900.5217 6.4502 3.1421 0.6015

300 0.90 88.6472 37.3344 14.4888 3.9345
0.95 170.2598 6.2827 3.5228 0.6259
0.99 822.4616 6.1366 3.4863 0.6330

500 0.90 92.3056 41.2066 16.4297 5.4871
0.95 173.3877 5.9433 4.0116 0.6602
0.99 816.7623 5.8526 3.9852 0.6652

Table 7. The EMSE values of the estimators when response is Negative binomial,
p = 8 and α = 1

n ρ2 ML PCR r − d Rest. − rd
25 0.90 572.8496 59.4823 24.0669 10.7441

0.95 1169.2343 50.7189 26.7411 7.5421
0.99 1719.6149 116.3051 55.2365 3.3695

50 0.90 221.0540 82.8581 16.3831 10.9310
0.95 411.6614 19.7837 4.7562 1.8126
0.99 2060.8819 9.7820 3.1759 0.7557

100 0.90 149.7130 85.3499 21.3825 21.1825
0.95 279.1197 21.6654 5.6251 1.0958
0.99 1363.4064 8.6090 2.0891 0.4463

200 0.90 148.7087 112.2574 36.5111 35.8360
0.95 280.2627 19.0209 6.9569 0.8321
0.99 1348.8521 7.1567 2.9124 0.5359

300 0.90 193.7352 92.1232 29.0334 21.6329
0.95 373.2256 5.9993 3.3852 0.5618
0.99 1897.2516 5.8532 3.2694 0.5638

500 0.90 189.1891 96.1145 36.2378 25.5231
0.95 361.7255 5.3087 3.0706 0.6607
0.99 1750.7123 5.2572 3.0301 0.6667



Tee r–d class estimator under exact linear restrictions in GLMs 1203

9. Conclusion
This study develops a novel estimator that is subject to exact linear restrictions and

is called the restricted r − d class estimator. Furthermore, to estimate the biasing pa-
rameter d, a PSO algorithm is used. Through real-life data with Poisson response and
simulation studies from Poisson, binomial, and negative binomial distributions, the novel
estimator is compared to other estimators that currently exist that are ML, PCR and r−d
class estimators, respectively. The performance evaluation criteria are SMSE and EMSE,
respectively, for the numerical example and the simulation study.

By comparing the proposed estimator with others considered in this study, it shows
that in the numerical illustration, the proposed restricted r − d class estimator acquires
smaller SMSE values and outperforms its counterparts, particularly when the value of d
lies in the range from 0 to 0.78. When simulation experiments are taken into account
to compare the proposed estimator with other estimators, it is seen that the proposed
restricted r − d class estimator has the best performance compared to its counterparts, as
it obtains smaller EMSE values in all aspects considered in the simulation experiments.

The findings obtained in this study highlight that imposing exact restriction on the
parameters, i.e. incorporating prior knowledge along with the sample data, significantly
improves the performance of the estimators over those available in the literature to combat
the multicollinearity problem, thereby improving the model performance.
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