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Abstract: Mathematicians find it valuable to extend the concept of ideals within algebraic 

structures. The bi-quasi (ƁԚ) ideal was introduced as a broader version of quasi-ideal, bi-ideal, 

and left (right) ideals in semigroups. This paper applies this concept to soft set theory and 

semigroups, introducing the "Soft intersection (S-int) ƁԚ ideal." The goal is to explore the 

relationships between S-int ƁԚ ideals and other types of S-int ideals in semigroups. It is shown 

that every S-int bi-ideal, S-int ideal, S-int quasi-ideal, and S-int interior ideal of an idempotent soft 

set are S-int ƁԚ ideals. Counterexamples demonstrate that the reverse is not always true unless 

the semigroup is simple* or regular. For soft simple* semigroups, the S-int ƁԚ ideal coincides 

with the S-int bi-ideal, S-int left (right) ideal, and S-int quasi-ideal. The main theorem shows that 

if a subsemigroup of a semigroup is a ƁԚ ideal, its soft characteristic function is an S-int ƁԚ 

ideal, and vice versa. This connects semigroup theory with soft set theory. The paper also discusses 

how this concept integrates into classical semigroup structures, providing characterizations and 

analysis using soft set operations, soft image, and soft inverse image, supported by examples. 
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Öz: Matematikçiler, cebirsel yapılardaki ideal kavramını genişletmeyi değerli bulmaktadır. Bi-

quasi (ƁԚ) ideal, yarıgruplarda quasi-ideal, bi-ideal ve sol (sağ) idealin daha geniş bir versiyonu 

olarak tanıtılmıştır. Bu makale, bu kavramı esnek küme teorisi ve yarıgruplara uygulayarak "Esnek 

kesişimsel (EK) ƁԚ ideali" tanıtmaktadır. Amaç, EK ƁԚ idealleri ile diğer EK ideal türleri 

arasındaki ilişkileri incelemektir. Bir idempotent esnek küme için her EK-bi-ideal, EK-ideal, EK-

quasi-ideal ve EK-iç idealin aynı zamanda bir EK*ƁԚ ideal olduğu gösterilmiştir. Ancak, tersinin 

her zaman geçerli olmadığı, yalnızca yarıgrubun basit* veya regüler olduğunda sağlandığı aksine 

örneklerle gösterilmiştir. Esnek basit* yarıgruplarda, EK-ƁԚ idealin EK-bi-ideal, EK-sol (sağ) 

ideal ve EK-wuazi-ideal ile çakıştığı kanıtlanmıştır.Ana teorem, bir yarıgrubun alt yarıgrubu bir 

ƁԚ ideal ise, onun esnek karakteristik fonksiyonunun bir EK-ƁԚ ideal olduğunu ve bunun tersinin 

de geçerli olduğunu göstermektedir. Bu sonuç, yarıgrup teorisi ile esnek küme teorisi arasındaki 

bağlantıyı kurmaktadır. Ayrıca, bu kavramın klasik yarıgrup yapılarıyla nasıl bütünleştiği 

tartışılmakta ve esnek küme işlemleri, esnek görüntü ve esnek ters görüntü kullanılarak çeşitli 

karakterizasyonlar ve analizler yapılmıştır.  Bulgular örneklerle desteklenmiştir. 

 

1. INTRODUCTION 

 

Semigroups are crucial in various areas of mathematics as 

they provide the abstract algebraic foundation for 

"memoryless" systems, which reset after every iteration. 

Initially studied in the early 1900s, semigroups serve as 

key models for linear time-invariant systems in applied 

mathematics. Their connection to finite automata makes 

the study of finite semigroups particularly important in 

theoretical computer science. The concept of ideals is 

vital for understanding the structure and applications of 

mathematical systems, and thus, many mathematicians 

have focused on extending the theory of ideals in 

algebraic structures. By utilizing the concept and 
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properties of generalized ideals, mathematicians have 

made significant contributions by characterizing algebraic 

of algebraic structures. Dedekind introduced ideals in the 

context of algebraic number theory and Noether expanded 

this concept to include associative rings. 

 

In 1952, Good and Hughes [1] introduced the concept of 

bi-ideals for semigroups. Steinfeld [2] was the first to 

present the idea of quasi-ideals for semigroups, later 

extending it to rings. Quasi-ideals generalize right and left 

ideals, while bi-ideals are a further generalization of 

quasi-ideals. The concept of interior ideals was initially 

introduced by Lajos [3] and later explored by Szasz [4,5]. 

Interior ideals represent a generalization of the traditional 

ideal concept. Rao [6-9] developed several novel types of 

semigroup ideals that generalize existing ones, such as bi-

interior ideals, bi-quasi ideals, quasi-ideal, interior ideals, 

weak-interior ideals, and bi-quasi-interior ideals. 

Baupradist et al. [10] proposed the concept of essential 

ideals in semigroups. As a more generalized form of 

various types of ideals, the notion of "almost" ideals was 

introduced, with a thorough examination of their 

characteristics and the relationships between them. The 

idea of almost ideals for semigroups was first introduced 

in [11], and a subsequent paper [12] expanded the concept 

to include almost bi-ideals. The concept of almost quasi-

ideals was first presented in [13], and the study of almost 

interior ideals and weakly almost interior ideals followed 

in [14]. The authors proposed various types of soft 

intersection (S-int) almost ideals of semigroups in [15–

18]. Additionally, in [13, 15–20], several fuzzy almost 

ideal types for semigroups were explored. 

 

In 1999, Molodtsov [21] introduced "Soft Set Theory" to 

address problems involving uncertainty and to develop 

effective solutions for them. Since its inception, 

significant research has been conducted on various 

aspects of soft sets, particularly in relation to soft set 

operations. Maji et al. [22] provided definitions for soft 

sets and introduced several operations on them. Pei and 

Mia [23], along with Ali et al. [24], expanded on the 

operations of soft sets. For a more comprehensive 

overview of the growing body of research on soft set 

operations, we refer to [25-37]. 

 

The concept and operations of soft sets were further 

refined by Çağman and Enginoğlu [38]. Building on this 

work, Çağman et al. [39] introduced the concept of S-int 

groups, which spurred the investigation of various soft 

algebraic systems. In the context of semigroup theory, 

Sezer et al. [40,41] applied soft sets to define and explore 

soft intersection (S-int) semigroups, as well as left, right, 

and two-sided ideals, interior ideals, quasi-ideals, and 

generalized bi-ideals of semigroups, thoroughly analyzing 

their key properties. Sezgin and Orbay [42] further 

studied the soft intersection (S-int) substructures of 

semigroups, classifying various types, including 

semisimple semigroups, duo semigroups, and different 

categories of zero and simple semigroups, along with the 

semi-lattices of left and right simple semigroups, left and 

right groups, and groups. S-int almost ideals were 

introduced and examined as a generalization of various 

types of S-int ideals in [43-54]. Additionally, the soft 

versions of different algebraic structures were explored in 

[55-67]. 

 

As a result of the reviews conducted in the literature, some 

important studies on bi-quasi ideals are identified. The 

first of these is the study by Rao [69] on the bi-quasi ideals 

of Γ-semigroups and the fuzzy bi-quasi ideals of these 

semigroups. Rao [70,71] provided an extensive study on 

the bi-quasi ideals of semirings. Additionally, the bi-quasi 

ideals of Γ-semirings were examined by Rao, 

Venkateswarlu and Rafi [72]. Similarly, Rao [8] made 

significant contributions to the study of bi-quasi ideals of 

semigroups. In this paper, we extend the concept to soft 

set theory and semigroups by introducing "Soft 

intersection (S-int) bi-quasi (ƁԚ) ideals of semigroups." 

We explore the relationships between S-int ƁԚ ideals and 

other types of S-int ideals within a semigroup. Under 

certain necessary conditions, it is demonstrated that an S-

int ideal (bi-ideal, quasi-ideal, or interior ideal) is indeed 

an S-int ƁԚ ideal of a semigroup. Counterexamples are 

provided to show that the reverse of these statements does 

not always hold. It is also proven that for the converse to 

be true, the semigroup must be a soft simple* (see 

Definition 2.19) or regular semigroup. Our key theorem 

reveals that if a nonempty subset of a semigroup is a ƁԚ 

ideal, its soft characteristic function is an S-int ƁԚ ideal, 

and vice versa. This result facilitates the integration of 

semigroup theory with soft set theory. We illustrate how 

this concept connects to established algebraic structures 

in classical semigroup theory by utilizing this theorem. 

Moreover, we offer conceptual characterizations and 

analyses of the new idea in the context of soft set 

operations, soft image, and soft inverse image, supporting 

our findings with detailed and insightful examples.  

 

The paper is organized into four sections. Section 1 

presents an introduction to the subject, whereas Section 2 

delves into the basic concepts of semigroups and soft set 

ideals, detailing their essential definitions and 

significance. In Section 3, we define S-int ƁԚ ideals, 

examine their properties, and discuss their relationships 

with other forms of S-int ideals, supported by practical 

examples. Finally, Section 4 offers a summary of our 

findings and suggests potential avenues for future 

research. 

 

2. MATERIAL AND METHOD 

 

In this study, 𝑆  is used to represent a semigroup. A 

nonempty subset Ҡ of 𝑆 is called a subsemigroup of 𝑆 if 

ҠҠ ⊆ Ҡ, is called a bi-ideal of 𝑆 if ҠҠ ⊆ Ҡ and Ҡ𝑆Ҡ ⊆
Ҡ , is called an interior ideal of 𝑆  if 𝑆Ҡ𝑆 ⊆ Ҡ , and is 

called a quasi-ideal of 𝑆 if Ҡ𝑆 ∩ 𝑆Ҡ ⊆ Ҡ.  

 

A subsemigroup Ҡ of 𝑆 is called a left (ʟ-) ƁԚ ideal of 𝑆 

if 𝑆Ҡ ∩ Ҡ𝑆Ҡ ⊆ Ҡ, is called a right (ʀ-) ƁԚ ideal of 𝑆 if 

Ҡ𝑆 ∩ Ҡ𝑆Ҡ ⊆ Ҡ, and is called a ƁԚ ideal of 𝑆 if it is both 

ʟ-ƁԚ ideal of 𝑆 and ʀ-ƁԚ ideal [8]. 

 

Definition 2.1. [21] Let 𝐸 be the parameter set, 𝑈 be the 

universal set, 𝑃(𝑈)  be the power set of 𝑈 , and Ɗ ⊆ 𝐸 . 

The soft set (𝚂𝚂) ƍƊ  over 𝑈  is a function such that 

ƍƊ: 𝐸 → 𝑃(𝑈), where for all ⱴ ∉ Ɗ, ƍƊ(ⱴ) = ∅. That is, 
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ƍƊ = {(ⱴ, ƍƊ(ⱴ)): ⱴ ∈ 𝐸, ƍƊ(ⱴ) ∈ 𝑃(𝑈)} 

 

The set of all 𝚂𝚂s over 𝑈  is designated by 𝑆𝐸(𝑈) 

throughout this paper. 

 

Definition 2.2. [38] Let ƍƊ ∈ 𝑆𝐸(𝑈). If ƍƊ(𝑡) = ∅ for all 

𝑡 ∈ 𝐸, then ƍƊ is called a null 𝚂𝚂 and indicated by ∅𝐸 . 

 

Definition 2.3. [38] Let ƍℳ , ƍN ∈ 𝑆𝐸(𝑈) . If ƍℳ(ҩ) ⊆
ƍN(ҩ), for all ҩ ∈ 𝐸, then ƍℳ is a soft subset of ƍN and 

indicated by ƍℳ ⊆̃ ƍN . If ƍℳ(𝜍) = ƍN(𝜍),  for all 𝜍 ∈ 𝐸 , 

then ƍℳ is called soft equal to ƍN and denoted by ƍℳ =
ƍN. 

 

Definition 2.4. [38] Let ƣℳ , ƣͶ ∈ 𝑆𝐸(𝑈) . The union 

(intersection) of ƣℳ  and ƣͶ  is the 𝚂𝚂 

ƣℳ ∪̃ ƣͶ (ƣℳ ∩̃ ƣͶ) , where (ƣℳ ∪̃ ƣͶ)(ʋ) =

ƣℳ(ʋ) ∪ ƣͶ(ʋ) ((ƣℳ ∩̃ ƣͶ)(ʋ) = ƣℳ(ʋ) ∩ ƣͶ(ʋ)) , 

for all ʋ ∈ 𝐸, respectively. 

 

Definition 2.5. [39] Let ƒӃ, ƒԊ ∈ 𝑆𝐸(𝑈) , and 𝜙  be a 

function from Ӄ to Ԋ. Then, the soft image of ƒӃ under 𝜙, 

and the soft pre-image (or soft inverse image) of ƒԊ under 

𝜙 are the 𝚂𝚂s 𝜙(ƒӃ) and 𝜙−𝟏(ƒԊ) such that  

 

(𝜙(ƒӃ)) (𝓇)

= {
⋃{ƒӃ(𝑡)|𝑡 ∈ Ӄ 𝑎𝑛𝑑 𝜙(𝑡) = 𝓇},        𝑖𝑓 𝜙−1(𝓇) ≠ ∅

∅,                                                                   otherwise      
 

 

for all 𝓇 ∈ Ԋ and (𝜙−𝟏(ƒԊ))(𝑡) = ƒԊ(𝜙(𝑡)) for all 𝑡 ∈

ℋ. 

 

Definition 2.6. [39] Let ƒӃ ∈ 𝑆𝐸(𝑈)  and 𝛼 ⊆ 𝑈 . Then, 

upper 𝛼-inclusion of ƒӃ, denoted by 𝒰(ƒӃ; 𝛼), is defined 

as 𝒰(ƒӃ; 𝛼) = {𝑥 ∈ Ӄ | ƒӃ(𝑥) ⊇ 𝛼} . 

 

Definition 2.7. [40] Let ɲ𝑆, 𝑔𝑆 ∈ 𝑆𝑆(𝑈) . S-int product 

ɲ𝑆 ∘ 𝑔𝑆 is defined by 

 
(ɲ𝑆 ∘ 𝑔𝑆)(ⱴ)

= {
⋃ {ɲ𝑆(𝑦) ∩ 𝑔𝑆(𝑧)},   𝑖𝑓 ∃𝑦, 𝑧 ∈ 𝑆 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ⱴ = 𝑦𝑧 

ⱴ=𝑦𝑧

∅,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   

 

 

Theorem 2.8. [40] Let ի𝑆, թ𝑆, ռ𝑆 ∈ 𝑆𝑆(𝑈). Then,  

 

i. (ի𝑆 ° թ𝑆) ° ռ𝑆 = ի𝑆 ° (թ𝑆 ° 
ռ𝑆) 

ii. ի𝑆 ° թ𝑆 ≠ թ𝑆 ° ի𝑆 

iii. ի𝑆 ° (թ𝑆 ∪̃ ռ𝑆) = (ի𝑆 ° թ𝑆) ∪̃ (ի𝑆 ° ռ𝑆)  

(ի𝑆 ∪̃ թ𝑆) ° ռ𝑆 = (ի𝑆 ° ռ𝑆) ∪̃ (թ𝑆 ° ռ𝑆) 

iv. ի𝑆 ° (թ𝑆 ∩̃ ռ𝑆) = (ի𝑆 ° 
թ𝑆) ∩̃ (ի𝑆 ° ռ𝑆)  

(ի𝑆 ∩̃ թ𝑆) ° ռ𝑆 = (ի𝑆 ° 
ռ𝑆) ∩̃ (թ𝑆 °

 ռ𝑆) 

v. If ի𝑆 ⊆̃ թ𝑆, then ի𝑆 ° ռ𝑆 ⊆̃ թ𝑆 ° ռ𝑆 

and  ռ𝑆 ° ի𝑆 ⊆̃ ռ𝑆 ° թ𝑆 

vi. If ɉ𝑆, ն𝑆 ∈ 𝑆𝑆(𝑈) such that ɉ𝑆 ⊆̃ ի𝑆 and ն𝑆 ⊆̃ թ𝑆, 

then ɉ𝑆 ° ն𝑆 ⊆̃ ի𝑆 ° թ𝑆. 

Definition 2.9. [40] Let ∅ ≠ 𝒯 ⊆ 𝑆 . The soft 

characteristic function (𝚂𝙲𝙵) of 𝒯 , denoted by 𝑆𝒯 , is 

defined as 

 

𝑆𝒯(𝑣) = {
𝑈,   𝑖𝑓 𝑣 ∈ 𝒯       

∅,   𝑖𝑓 𝑣 ∈ 𝑆\𝒯     
 

 

Theorem 2.10. [40, 49] Let Ӻ, Ԏ ⊆ 𝑆 . Then, 

 

i. Ӻ ⊆ Ԏ if and only if (𝔦𝔣𝔣) 𝑆Ӻ ⊆̃ 𝑆Ԏ 

ii. 𝑆Ӻ ∩̃ 𝑆Ԏ = 𝑆Ӻ∩Ԏ and 𝑆Ӻ ∪̃ 𝑆Ԋ = 𝑆Ӻ∪Ԏ 

iii. 𝑆Ӻ ∘ 𝑆Ԏ = 𝑆ӺԎ  

 

Definition 2.11. [40] An 𝚂𝚂 ђ𝑆 over 𝑈 is called an S-int 

subsemigroup of 𝑆  if  ђ𝑆(𝜍ⱱ) ⊇ ђ𝑆(𝜍) ∩ ђ𝑆(ⱱ)  for all 

𝜍, ⱱ ∈ 𝑆. 

 

Note that in [40], the definition of “S-int subsemigroup of 

𝑆” is given as “S-int semigroup of 𝑆”; however in this 

paper, without loss of generality, we prefer to use “S-int 

subsemigroup of 𝑆”. 

 

Definition 2.12. [40] An 𝚂𝚂 ի𝑆 over 𝑈 is called an S-int 

ʟ-(ʀ-) ideal of 𝑆 if ի𝑆(ᵶⱱ) ⊇ ի𝑆(ⱱ) (ի𝑆(ᵶⱱ) ⊇ ի𝑆(ᵶ)) for 

all ᵶ, 𝑦 ∈ 𝑆, and is called an S-int two-sided ideal (S-int 

ideal) of 𝑆 if it is both S-int ʟ-ideal of 𝑆 over 𝑈 and S-int 

ʀ-ideal of 𝑆 over 𝑈. An S-int subsemigroup ի𝑆 is called 

an S-int bi-ideal of 𝑆 if  ի𝑆(𝑟𝑦ⱱ) ⊇ ի𝑆(𝑟) ∩ ի𝑆(ⱱ) for all 

𝑟, 𝑦, ⱱ ∈ 𝑆 . An 𝚂𝚂 ի𝑆  over 𝑈  is called an S-int interior 

ideal of 𝑆 if  ի𝑆(𝑟𝑦ⱱ) ⊇ ի𝑆(𝑦) for all 𝑟, 𝑦, ⱱ ∈ 𝑆. 

 

It is easy to see that if  ի𝑆(ⱱ) = 𝑈 for all ⱱ ∈ 𝑆, then ի𝑆 is 

an S-int subsemigroup (ʟ-ideal, ʀ-ideal, ideal, bi-ideal, 

interior ideal). We denote such a kind of S-int 

subsemigroup (ʟ-ideal, ʀ-ideal, ideal, bi-ideal, interior 

ideal) by ꗟ̃. It is obvious that ꗟ̃ = 𝑆𝑆, that is, ꗟ̃(ⱱ) = 𝑈 

for all ⱱ ∈ 𝑆 [40].  

 

Definition 2.13. [41] An 𝚂𝚂 ի𝑆 over 𝑈 is called an S-int 

quasi-ideal of 𝑆 over 𝑈 if (ꗟ̃ ∘ ի𝑆) ∩̃ (ի𝑆 ∘ ꗟ̃) ⊆̃ ի𝑆. 

 

Theorem 2.14. [40] Let ի𝑆 ∈ 𝑆𝑆(𝑈). Then, 

 

i. ꗟ̃ ∘ ꗟ̃ ⊆̃ ꗟ̃ 

ii. ꗟ̃ ∘ ի𝑆 ⊆̃ ꗟ̃ and ի𝑆 ∘ ꗟ̃ ⊆̃ ꗟ̃ 

iii. ի𝑆 ∪̃ ꗟ̃ = ꗟ̃ and ի𝑆 ∩̃ ꗟ̃ = ի𝑆 

 

Theorem 2.15. [40, 41] Let Ɗ be a nonempty subset of a 

semigroup 𝑆. Then, Ɗ is a subsemigroup (ʟ-ideal, ʀ-ideal, 

two-sided ideal, bi-ideal, interior ideal, quasi-ideal) of 𝑆 

𝔦𝔣𝔣 𝑆Ɗ  is an S-int subsemigroup (ʟ-ideal, ʀ-ideal, two-

sided ideal, bi-ideal, interior ideal, quasi-ideal). 

 

Theorem 2.16. [40, 41] Let ի𝑆 ∈ 𝑆𝑆(𝑈). Then, 

 

i. ի𝑆 is an S-int subsemigroup ⟺ (ի𝑆 ∘ ի𝑆) ⊆̃ ի𝑆, 

ii. ի𝑆 is an S-int ʟ-(ʀ-) ideal ⟺ (ꗟ̃ ∘ ի𝑆) ⊆̃ ի𝑆 and 

(ի𝑆 ∘ ꗟ̃) ⊆̃ ի𝑆,  
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iii. ի𝑆  is an S-int bi-ideal ⟺ (ի𝑆 ∘

ի𝑆) ⊆̃ ի𝑆  and (ի𝑆 ∘ ꗟ̃ ∘ ի𝑆) ⊆̃ ի𝑆, 

iv. ի𝑆  is an S-int interior ideal ⟺ (ꗟ̃ ∘ ի𝑆 ∘

ꗟ̃) ⊆̃ ի𝑆. 

 

Theorem 2.17. [40, 41] The following assertions hold: 

 

i. Every S-int ʟ-(ʀ-/two-sided) ideal is an S-int 

subsemigroup (S-int bi-ideal/S-int quasi-ideal), 

ii. Every S-int ideal is an S-int bi-ideal. 

 

Proposition 2.18. [40] Let ի𝑆 ∈ 𝑆𝑆(𝑈), 𝛼 be a subset of 

𝑈 , 𝐼𝑚(ի𝑆)  be the image of ի𝑆  such that 𝛼 ∈ 𝐼𝑚(ի𝑆) . If 

ի𝑆  is an S-int subsemigroup of 𝑆 , then 𝒰(ի𝑆; 𝛼)  is a 

subsemigroup of 𝑆. 

 

Definition 2.19. [68] Let ի𝑆 ∈ 𝑆𝑆(𝑈).  Then, 𝑆 is called a 

soft left simple* semigroup (with respect to ի𝑆) if  ꗟ̃ =

ꗟ̃ ° ի𝑆,  is called a soft right simple* semigroup (with 

respect to ի𝑆)  if ꗟ̃ = ի𝑆  ° ꗟ̃ , is called a soft simple* 

semigroup (with respect to ի𝑆) if ꗟ̃ = ꗟ̃ ° ի𝑆 = ի𝑆 ° ꗟ̃. If 

𝑆 is a soft (left/right) simple* semigroup with respect to 

all soft sets over 𝑈,  then it is called a soft (left/right) 

simple* semigroup . 

 

For the sake of brevity, soft (left/right) simple* semigroup 

is abbreviated by soft (ʟ-/ ʀ-) simple*. 

 

Corollary 2.20. [40] For a semigroup 𝑆, the following 

conditions are equivalent:  

 

i. 𝑆 is regular. 

ii. ի𝑆 ∘ թ𝑆 = ի𝑆 ∩̃ թ𝑆 for every S-int ideals ի𝑆 and 

թ𝑆 of 𝑆 over 𝑈. 

 

3. RESULTS  

 

Definition 3.1. A soft set 𝜂𝑆  over 𝑈  is called a soft 

intersection left (right)  (ʟ-(ʀ-) bi-quasi ideal of 𝑆 over 𝑈 

if  

 

(ꗟ̃ ° 𝜂𝑆) ∩̃ (𝜂𝑆 ° 
ꗟ̃ ° 

𝜂𝑆) ⊆̃ 𝜂𝑆 

 

((𝜂𝑆 ° ꗟ̃ ) ∩̃ (𝜂𝑆 ° ꗟ̃ ° 
𝜂𝑆) ⊆̃ 𝜂𝑆) 

 

A soft set over 𝑈 is called a soft intersection bi-quasi ideal 

of 𝑆 if it is both a soft intersection left bi-quasi ideal and 

a soft intersection right bi-quasi ideal of 𝑆 over 𝑈. For the 

sake of brevity, soft intersection bi-quasi ideal of 𝑆 over 

𝑈 is abbreviated by S-int ƁԚ ideal. 

 

Example 3.2. Consider the semigroup 𝑆 = {𝔣, ℎ, ᵲ} 

defined by the following table: 

 

 

 

 

 

Table 1. Cayley table of ‘♦’ binary operation. 

♦ 𝔣 ℎ ᵲ 

𝔣 𝔣 ᵲ ᵲ 

ℎ ᵲ ℎ ᵲ 

ᵲ ᵲ ᵲ ᵲ 

 

Let 𝜂𝑆  and ₰𝑆  be 𝚂𝚂s over 𝑈 = 𝐷3 = {< 𝑥, 𝑦 > : 𝑥3 =
𝑦2 = 𝑒, 𝑥𝑦 = 𝑦𝑥2} = {𝑒, 𝑥, 𝑥2, 𝑦, 𝑦𝑥, 𝑦𝑥2} as follows: 

 

𝜂𝑆 = {(𝔣, {𝑒, 𝑥, 𝑥2}), (ℎ, {𝑒, 𝑥}), (ᵲ, {𝑒, 𝑥, 𝑥2, 𝑦})} 

 

₰𝑆 = {(𝔣, {𝑒, 𝑥, 𝑦}), (ℎ, {𝑒, 𝑥}), (ᵲ, {𝑒, 𝑥2, 𝑦, 𝑦𝑥2})}   
 

It can be readily proven that 𝜂𝑆 is an S-int ƁԚ ideal of 𝑆. 

Here, we find it appropriate to give a few concrete 

examples of elements for ease of illustration in order to be 

more understandable. In fact, 

 

[(ꗟ̃ ° 
𝜂𝑆) ∩̃ (𝑓𝑆 °

 ꗟ̃ ° 
𝜂𝑆)] (𝔣) = 𝜂𝑆(𝔣) ⊆ 𝜂𝑆(𝔣) 

 

[(ꗟ̃ ° 𝜂𝑆) ∩̃ (𝜂𝑆 ° ꗟ̃ ° 𝜂𝑆)] (ℎ) = 𝜂𝑆(ℎ) ⊆  𝜂𝑆(ℎ) 

   

 [(ꗟ̃
 ° 𝜂𝑆) ∩̃ (𝜂𝑆 ° ꗟ̃ ° 

𝜂𝑆)] (ᵲ) = 𝜂𝑆(ℎ) ∪ 𝜂𝑆(ᵲ) ∪ 𝜂𝑆(𝔣)

⊆ 𝜂𝑆(ᵲ) 

It can be easily shown that the 𝚂𝚂 𝜂𝑆 satisfies the S-int ʟ-

ƁԚ ideal condition for all other element combinations of 

the set 𝑆. Similarly, 

 

[(𝜂𝑆 °
 ꗟ̃) ∩̃ (𝜂𝑆 °

 ꗟ̃ ° 
𝜂𝑆)] (𝔣) ⊆ 𝜂𝑆(𝔣) 

 

[(𝜂𝑆 °
 ꗟ̃) ∩̃ (𝜂𝑆 °

 ꗟ̃ ° 
𝜂𝑆)] (ℎ) ⊆ 𝜂𝑆(ℎ) 

 

[(𝜂𝑆 °
 ꗟ̃) ∩̃ (𝜂𝑆 °

 ꗟ̃ ° 
𝜂𝑆)] (ᵲ) ⊆ 𝜂𝑆(ᵲ) 

 

It can be easily shown that the 𝚂𝚂 𝜂𝑆 satisfies the S-int ʀ-

ƁԚ ideal condition for all other element combinations of 

the set 𝑆, thus 𝜂𝑆 is an S-int ƁԚ ideal. However, since 

 

[(ꗟ̃ ° ₰𝑆) ∩̃ (₰𝑆 ° ꗟ̃ ° ₰𝑆)] (ᵲ)

= [₰𝑆(ℎ) ∪ ₰𝑆(ᵲ) ∪ ₰𝑆(𝔣)] ⊈ ₰𝑆(ᵲ) 

 

₰𝑆 is not an S-int ƁԚ ideal. 

 

Corollary 3.3. ꗟ̃ and ∅𝑆 are S-int ƁԚ ideals. 

 

Theorem 3.4. Let Ԣ be a subsemigroup of 𝑆. Then, Ԣ is 

a ƁԚ ideal of 𝑆 𝔦𝔣𝔣 𝑆Ԣ, the 𝚂𝙲𝙵 of Ԣ, is an S-int ƁԚ ideal.  

Proof: Let Ԣ  be a ƁԚ ideal of 𝑆 . Then, 𝑆Ԣ ∩
Ԣ𝑆Ԣ ⊆̃ Ԣ and Ԣ𝑆 ∩ Ԣ𝑆Ԣ ⊆̃ Ԣ. By Theorem 2.10, 

 

(ꗟ̃ ° 
𝑆Ԣ) ∩̃ (𝑆Ԣ ° ꗟ̃ ° 𝑆Ԣ) = (𝑆𝑆 ° 𝑆Ԣ) ∩̃ (𝑆Ԣ ° 𝑆𝑆 ° 𝑆Ԣ)

=  𝑆𝑆Ԣ ∩̃ 𝑆Ԣ𝑆Ԣ = 𝑆𝑆Ԣ∩Ԣ𝑆Ԣ ⊆̃ 𝑆Ԣ 

 

and  
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(𝑆Ԣ ° ꗟ̃ ) ∩̃ (𝑆Ԣ ° ꗟ̃ ° 𝑆Ԣ) = (𝑆Ԣ ° 𝑆𝑆) ∩̃ (𝑆Ԣ ° 𝑆𝑆 ° 𝑆Ԣ)

= 𝑆Ԣ𝑆 ∩̃ 𝑆Ԣ𝑆Ԣ = 𝑆Ԣ𝑆∩Ԣ𝑆Ԣ ⊆̃ 𝑆Ԣ 

 

Hence, 𝑆Ԣ is an S-int ƁԚ ideal.  

 

Conversely, let 𝑆Ԣ  be an S-int ƁԚ ideal and Ԣ  be a 

subsemigroup of 𝑆. Then,  

 

(ꗟ̃
 ° 

𝑆Ԣ) ∩̃ (𝑆Ԣ ° ꗟ̃ ° 
𝑆Ԣ) ⊆̃ 𝑆Ԣ  

and 

 

(𝑆Ԣ° 
ꗟ̃ ) ∩̃ (𝑆Ԣ ° ꗟ̃ ° 

𝑆Ԣ) ⊆̃ 𝑆Ԣ. 

 

Let ᵲ ∊ 𝑆Ԣ ∩ Ԣ𝑆Ԣ. Then, 

 

𝑆Ԣ(ᵲ) ⊇ (ꗟ̃ ° 
𝑆Ԣ) (ᵲ) ∩ (𝑆Ԣ ° 

ꗟ̃ ° 
𝑆Ԣ) (ᵲ)

⊇ 𝑆𝑆Ԣ(ᵲ) ∩ 𝑆Ԣ𝑆Ԣ (ᵲ) ⊇ 𝑆𝑆Ԣ∩Ԣ𝑆Ԣ(ᵲ)

= 𝑈 

 

Thus, 𝑆Ԣ(ᵲ) = 𝑈  and so ᵲ ∈ Ԣ , implying that 𝑆Ԣ ∩

Ԣ𝑆Ԣ ⊆ Ԣ. Hence, Ԣ is an ʟ-ƁԚ ideal of 𝑆. Similarly, 

let ᵶ ∈ Ԣ𝑆 ∩ Ԣ𝑆Ԣ. Then, 

 

 𝑆Ԣ(ᵶ) ⊇ (𝑆Ԣ ° ꗟ̃) (ᵶ) ∩ (𝑆Ԣ ° ꗟ̃ ° 𝑆Ԣ) (ᵶ) ⊇ 𝑆Ԣ𝑆(ᵶ) ∩

𝑆Ԣ𝑆Ԣ (ᵶ) ⊇ 𝑆Ԣ𝑆∩Ԣ𝑆Ԣ(ᵶ) = 𝑈 

 

Thus, 𝑆Ԣ(ᵶ) = 𝑈 , and so ᵶ ∈ Ԣ , implying that Ԣ𝑆 ∩

Ԣ𝑆Ԣ ⊆ Ԣ. Hence, Ԣ is an ʀ-ƁԚ ideal of 𝑆. Therefore, 

Ԣ is a ƁԚ ideal of 𝑆. 

 

Example 3.5. We consider the semigroup in Example 3.2. 

One can show that 𝐵 = {𝔣, ᵲ} is a ƁԚ ideal of 𝑆. By the 

definition of 𝚂𝙲𝙵, 𝑆𝐵 = {(𝔣, 𝑈), (ℎ, ∅), (ᵲ, 𝑈)} . One can 

easily show that 𝑆𝐵 is an S-int ƁԚ ideal. Conversely, by 

choosing the S-int ƁԚ ideal as 𝜂𝑆 =
{(𝔣, ∅), (ℎ, 𝑈), (ᵲ, 𝑈)}, which is the 𝚂𝙲𝙵 of 𝐾 = {ℎ, ᵲ}, one 

can show that 𝐾 is a ƁԚ ideal of 𝑆. 

 

Now, we continue with the relationships between S-int 

ƁԚ ideals and other types of S-int ideals of 𝑆. 

 

Proposition 3.6. Every S-int bi-ideal is an S-int ʀ-ƁԚ 

ideal. 

Proof: Let ҕ𝑆  be an S-int bi-ideal of 𝑆 . Then,  

ҕ𝑆 °
 ꗟ̃ ° 

ҕ𝑆 ⊆̃ ҕ𝑆. Thus, 

 

(ҕ𝑆 ° ꗟ̃) ∩̃ (ҕ𝑆 ° ꗟ̃ ° ҕ𝑆) ⊆̃ ҕ𝑆 ° ꗟ̃ ° 
ҕ𝑆 ⊆̃ ҕ𝑆 

 

Hence, ҕ𝑆 is an S-int ʀ-ƁԚ ideal of 𝑆. 

 

We show with a counterexample that the converse of 

Proposition 3.6 is not true: 

 

Example 3.7. Consider the semigroup 𝑆 = {ɚ, ƴ, 𝔯, 𝔰} 

defined by the following table: 

 

 

 

Table 1. Cayley table of ‘⸙’ binary operation. 
 
 

 

 
 

 

 

 

Let ҕ𝑆 be an 𝚂𝚂 over 𝑈 = 𝑁  as follows: 

 

ҕ𝑆 = {(ɚ, {1,2,3,4}), (ƴ, {1,2,3}), (𝔯, {4}), (𝔰, {1,2})} 

 

Here, ҕ𝑆 is an S-int ʀ-ƁԚ ideal. In fact, 

 

[(ҕ𝑆 ° ꗟ̃) ∩̃ (ҕ𝑆 ° ꗟ̃ ° ҕ𝑆)] (ɚ)

= ҕ𝑆(ɚ) ∪ ҕ𝑆(ƴ) ∪ ҕ𝑆(𝔯) ∪ ҕ𝑆(𝔰)
⊆ ҕ𝑆(ɚ) 

 

[(ҕ𝑆 ° ꗟ̃) ∩̃ (ҕ𝑆 ° ꗟ̃ ° ҕ𝑆)] (ƴ) = ҕ𝑆(𝔰) ⊆ ҕ𝑆(ƴ) 

 

[(ҕ𝑆 ° ꗟ̃) ∩̃ (ҕ𝑆 ° ꗟ̃
 °

 ҕ𝑆)] (𝔯) = ∅ ⊆ ҕ𝑆(𝔯) 

 

[(ҕ𝑆 ° ꗟ̃) ∩̃ (ҕ𝑆 ° ꗟ̃ ° ҕ𝑆)] (𝔰) = ∅ ⊆ ҕ𝑆(𝔰) 

 

Thus,  ҕ𝑆  is an S-int ʀ-ƁԚ ideal of 𝑆 . However, since 

(ҕ𝑆 ° ҕ𝑆)(𝔯) = ҕ𝑆(𝔰) ∩ ҕ𝑆(𝔰) ⊈ ҕ𝑆(𝔯) , ҕ𝑆  is not an S-int 

bi-ideal. 

 

Proposition 3.8 shows that the converse of Proposition 3.6 

holds for soft ʟ-simple* semigroups. 

 

Proposition 3.8. Let ҕ𝑆 ∈ 𝑆𝑆(𝑈)  and 𝑆  be a soft ʟ-

simple* semigroup. Then, the following conditions are 

equivalent: 

 

(1) ҕ𝑆 is an S-int bi-ideal. 

(2) ҕ𝑆 is an S-int ʀ-ƁԚ ideal. 

1.  

Proof: (1) implies (2) is obvious by Proposition 3.6. 

Assume that ҕ𝑆  is an S-int ʀ-ƁԚ ideal. By assumption, 

ꗟ̃ = ꗟ̃ ∘ ҕ𝑆. Thus, 

 

ҕ𝑆 ° 
ҕ𝑆 = (ҕ𝑆 ° 

ҕ𝑆) ∩̃ (ҕ𝑆 ° 
ҕ𝑆) ⊆̃ (ҕ𝑆 ° ꗟ̃) ∩̃ (ҕ𝑆 ° ꗟ̃)

= (ҕ𝑆 ° 
ꗟ̃) ∩̃ (ҕ𝑆 ° ꗟ̃ ° ҕ𝑆) ⊆̃ ҕ𝑆 

 

Hence, ҕ𝑆 is an S-int subsemigroup. Moreover,  

 

ҕ𝑆 ° ꗟ̃ ° 
ҕ𝑆 = (ҕ𝑆 °

 ꗟ̃ ° ҕ𝑆) ∩̃ (ҕ𝑆 ° ꗟ̃ ° ҕ𝑆)

= (ҕ𝑆 ° ꗟ̃) ∩̃ (ҕ𝑆 ° ꗟ̃ ° ҕ𝑆) ⊆̃ ҕ𝑆 

 

Thus, ҕ𝑆 is an S-int bi-ideal. 

 

Proposition 3.9. Every S-int bi-ideal is an S-int ʟ-ƁԚ 

ideal. 

 

Proof: Let ҕ𝑆  be an S-int bi-ideal of 𝑆 . Then, 

ҕ𝑆 ° ꗟ̃ ° ҕ𝑆 ⊆̃ ҕ𝑆. Thus, 

 

⸙ ɚ ƴ 𝔯 𝔰 

ɚ ɚ ɚ ɚ ɚ 

ƴ ɚ ɚ ɚ ɚ 

𝔯 ɚ ɚ ɚ Ƴ 

𝔰 ɚ ɚ ƴ 𝔯 
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(ꗟ̃ ° ҕ𝑆) ∩̃ (ҕ𝑆 ° ꗟ̃ ° 
ҕ𝑆) ⊆̃ ҕ𝑆 °

 ꗟ̃ ° ҕ𝑆 ⊆̃ ҕ𝑆 

 

Hence, ҕ𝑆 is an S-int ʟ-ƁԚ ideal of 𝑆. 

 

We show with a counterexample that the converse of 

Proposition 3.9 is not true: 

 

Example 3.10. Consider the 𝚂𝚂 ҕ𝑆 in Example 3.7. The 

𝚂𝚂 ҕ𝑆 is an S-int ʟ-ƁԚ ideal. Since, 

 

[(ꗟ̃ ° ҕ𝑆) ∩̃ (ҕ𝑆 ° ꗟ̃ ° ҕ𝑆)] (ɚ)

= ҕ𝑆(ɚ) ∪ ҕ𝑆(ƴ) ∪ ҕ𝑆(𝔯) ∪ ҕ𝑆(𝔰)
⊆ ҕ𝑆(ɚ) 

 

[(ꗟ̃ ° ҕ𝑆) ∩̃ (ҕ𝑆 ° ꗟ̃ ° ҕ𝑆)] (ƴ) = ҕ𝑆(𝔰) ⊆ ҕ𝑆(ƴ) 

 

[(ꗟ̃ ° ҕ𝑆) ∩̃ (ҕ𝑆° ꗟ̃ ° ҕ𝑆)] (𝔯) = ∅ ⊆ ҕ𝑆(𝔯) 

 

[(ꗟ̃
 °

 ҕ𝑆) ∩̃ (ҕ𝑆 ° ꗟ̃ ° 
ҕ𝑆)] (𝔰) = ∅ ⊆ ҕ𝑆(𝔰) 

 

Hence, ҕ𝑆 is an S-int ʟ-ƁԚ ideal. However, since 

 
(ҕ𝑆 ° ҕ𝑆)(𝔯) = ҕ𝑆(𝔰) ∩ ҕ𝑆(𝔰) ⊈ ҕ𝑆(𝔯) 

 

ҕ𝑆 is not an S-int bi-ideal. 

 

Proposition 3.11 shows that the converse of Proposition 

3.9 holds for soft ʀ-simple* semigroups. 

 

Proposition 3.11. Let ҕ𝑆 ∈ 𝑆𝑆(𝑈)  and 𝑆  be a soft ʀ-

simple* semigroup. Then, the following conditions are 

equivalent: 

 

(1) ҕ𝑆 is an S-int bi-ideal. 

(2) ҕ𝑆 is an S-int ʟ-ƁԚ ideal. 

 

Proof: (1) implies (2) is obvious by Theorem 3.9. Assume 

that ҕ𝑆 is an S-int ʟ-ƁԚ ideal. By assumption, ꗟ̃ = ҕ𝑆 ∘

ꗟ̃. Thus, 

 

ҕ𝑆 ° 
ҕ𝑆 = (ҕ𝑆 ° 

ҕ𝑆) ∩̃ (ҕ𝑆 ° 
ҕ𝑆) ⊆̃ (ҕ𝑆 ° ꗟ̃) ∩̃ (ҕ𝑆 ° ꗟ̃)

= (ҕ𝑆 ° ꗟ̃) ∩̃ (ҕ𝑆 ° ꗟ̃ ° ҕ𝑆) ⊆̃ ҕ𝑆 

 

Hence, ҕ𝑆 is an S-int subsemigroup. Moreover, 

 

ҕ𝑆 ° ꗟ̃ ° 
ҕ𝑆 = (ҕ𝑆 ° ꗟ̃ ° 

ҕ𝑆) ∩̃ (ҕ𝑆 ° ꗟ̃ ° 
ҕ𝑆)

= (ꗟ̃ ° ҕ𝑆) ∩̃ (ҕ𝑆 ° ꗟ̃ ° 
ҕ𝑆) ⊆̃ ҕ𝑆 

 

Thus, ҕ𝑆 is an S-int bi-ideal. 

 

Theorem 3.12. Every S-int bi-ideal is an S-int ƁԚ ideal. 

 

Proof: It is followed by Proposition 3.6 and Proposition 

3.9. 

 

Theorem 3.13 shows that the converse of Theorem 3.12 

holds for soft simple* semigroup. 

Theorem 3.13. Let ҕ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a soft simple* 

semigroup. Then, the following conditions are equivalent: 

 

(1) ҕ𝑆 is an S-int bi-ideal. 

(2) ҕ𝑆 is an S-int ƁԚ ideal. 

 

Proof: (1) implies (2) is obvious by Theorem 3.12. 

Assume that ҕ𝑆 is an S-int ƁԚ ideal. Then, by Definition 

2.19, 𝑆  is both a soft ʟ-simple* and a soft ʀ-simple* 

semigroup. The rest of the proof follows from Proposition 

3.8 and Proposition 3.11. 

 

Proposition 3.14. Every S-int ʀ-ideal is an S-int ʀ-ƁԚ 

ideal. 

 

Proof: Let 𝜂𝑆 be an S-int ʀ-ideal of 𝑆. Then, 𝜂𝑆 ° ꗟ̃ ⊆̃ 𝜂𝑆. 

Thus, (𝜂𝑆 ° ꗟ̃) ∩̃ (𝜂𝑆° ꗟ̃ ° 𝜂𝑆) ⊆̃ 𝜂𝑆 ° ꗟ̃ ⊆̃ 𝜂𝑆 . Hence, 𝜂𝑆 

is an S-int ʀ-ƁԚ ideal of 𝑆. 

 

Additionally, since 𝜂𝑆 is an S-int ʀ-ideal, by Theorem 

2.17, it is an S-int bi-ideal. Therefore, by Proposition 3.6, 

𝜂𝑆 is an S-int ʀ-ƁԚ ideal. 

 

We show with a counterexample that the converse of 

Proposition 3.14 is not true: 

 

Example 3.15. Consider the semigroup 𝑆 = {ɣ, ɀ} 

defined by the following table: 

 
Table 3: Cayley table of ‘☼’ binary operation. 

☼ ɣ ɀ 

ɣ ɣ ɀ 

ɀ ɣ ɀ 

 

Let 𝜂𝑆 be an 𝚂𝚂 over 𝑈 = ℤ  as follows: 

 

𝜂𝑆 = {(ɣ, {1,3}), (ɀ, {1,2})} 

 

Here, 𝜂𝑆 is an S-int ʀ-ƁԚ ideal. In fact, 

 

[(𝜂𝑆 ° ꗟ̃) ∩̃ (𝜂𝑆 ° ꗟ̃ ° 𝜂𝑆)] (ɣ)

= (𝜂𝑆 ° ꗟ̃)(ɣ) ∩ (𝜂𝑆 °
 ꗟ̃ ° 𝜂𝑆) (ɣ)

= 𝜂𝑆(ɣ) ⊆ 𝜂𝑆(ɣ) 

 

[(𝜂𝑆 ° ꗟ̃) ∩̃ (𝜂𝑆 ° ꗟ̃ ° 𝜂𝑆)] (ɀ)

= (𝜂𝑆 ° ꗟ̃) (ɀ) ∩ (𝜂𝑆 °
 ꗟ̃ ° 𝜂𝑆) (ɀ)

= 𝜂𝑆(ɀ) ⊆ 𝜂𝑆(ɀ) 

 

Thus, 𝜂𝑆 is an S-int ʀ-ƁԚ ideal of 𝑆. However, since 

 

(𝜂𝑆 ° ꗟ̃) (ɣ) = [𝜂𝑆(ɣ) ∩ ꗟ̃(ɣ)] ∪ [𝜂𝑆(ɀ) ∩ ꗟ̃(ɣ)]

= 𝜂𝑆(ɣ) ∪ 𝜂𝑆(ɀ) ⊈ 𝜂𝑆(ɣ) 
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(𝜂𝑆 ° 
ꗟ̃) (ɀ) = [𝜂𝑆(ɣ) ∩ ꗟ̃(ɀ)] ∪ [𝜂𝑆(ɀ) ∩ ꗟ̃(ɀ)]

= 𝜂𝑆(ɣ) ∪ 𝜂𝑆(ɀ) ⊈ 𝜂𝑆(ɀ) 

 

𝜂𝑆 is not an S-int ʀ-ideal. 

 

Proposition 3.16 shows that the converse of Proposition 

3.14 holds for soft ʟ-simple* semigroups. 

 

Proposition 3.16. Let 𝜂𝑆 ∈ 𝑆𝑆(𝑈)  and 𝑆  be a soft ʟ-

simple* semigroup. Then, the following conditions are 

equivalent: 

 

(1) 𝜂𝑆 is an S-int ʀ-ideal. 

(2) 𝜂𝑆 is an S-int ʀ-ƁԚ ideal. 

 

Proof: (1) implies (2) is obvious by Proposition 3.14. 

Assume that 𝜂𝑆  is an S-int ʀ-ƁԚ ideal. By assumption, 

ꗟ̃ = ꗟ̃ ° 𝜂𝑆. Thus, 

 

(𝜂𝑆 ° ꗟ̃) = (𝜂𝑆 ° ꗟ̃) ∩̃ (𝜂𝑆 ° 
ꗟ̃)

= (𝜂𝑆 ° ꗟ̃) ∩̃ (𝜂𝑆 ° ꗟ̃ ° 𝜂𝑆) ⊆̃ 𝜂𝑆 

 

Hence, 𝜂𝑆 is an S-int ʀ-ideal. 

 

Proposition 3.17. Every S-int ʀ-ideal is an S-int ʟ-ƁԚ 

ideal. 

 

Proof: Let 𝜂𝑆  be an S-int ʀ-ideal of 𝑆. Then, 𝜂𝑆 ° ꗟ̃ ⊆̃ 𝜂𝑆 

and 𝜂𝑆 ° 𝜂𝑆 ⊆̃ 𝜂𝑆. Thus,  

 

(ꗟ̃ ° 
𝜂𝑆) ∩̃ (𝜂𝑆 ° ꗟ̃ ° 𝜂𝑆) ⊆̃ 𝜂𝑆 ° ꗟ̃ ° 𝜂𝑆 ⊆̃ 𝜂𝑆 ° 

𝜂𝑆 ⊆̃ 𝜂𝑆 

 

Hence, 𝜂𝑆 is an S-int ʟ-ƁԚ ideal of 𝑆. 

 

Additionally, since 𝜂𝑆 is an S-int ʀ-ideal, by Theorem 

2.17, it is an S-int bi-ideal. Therefore, by Proposition 3.9, 

𝜂𝑆 is an S-int ʟ-ƁԚ ideal. 

 

We show with a counterexample that the converse of 

Proposition 3.17 is not true: 

 

Example 3.18. Consider the 𝚂𝚂 𝜂𝑆 in Example 3.15. The 

𝚂𝚂 𝜂𝑆 is an S-int ʟ-ƁԚ ideal. Since, 

 

[(ꗟ̃ ° 𝜂𝑆) ∩̃ (𝜂𝑆 ° ꗟ̃ ° 𝜂𝑆)] (ɣ)

= (ꗟ̃ ° 
𝜂𝑆) (ɣ) ∩ (𝜂𝑆 °

 ꗟ̃ ° 
𝜂𝑆) (ɣ)

= 𝜂𝑆(ɣ) ⊆ 𝜂𝑆(ɣ) 

 

[(ꗟ̃ ° 𝜂𝑆) ∩̃ (𝜂𝑆 ° ꗟ̃ ° 𝜂𝑆)] (ɀ)

= (ꗟ̃ ° 
𝜂𝑆) (ɀ) ∩ (𝜂𝑆 °

 ꗟ̃ ° 
𝜂𝑆) (ɀ)

= 𝜂𝑆(ɀ) ⊆ 𝜂𝑆(ɀ) 

 

Hence, 𝜂𝑆 is an S-int ʟ-ƁԚ ideal. However, since 

 

(𝜂𝑆 ° 
ꗟ̃) (ɣ) = [𝜂𝑆(ɣ) ∩ ꗟ̃(ɣ)] ∪ [𝜂𝑆(ɀ) ∩ ꗟ̃(ɣ)]

= 𝜂𝑆(ɣ) ∪ 𝜂𝑆(ɀ) ⊈ 𝜂𝑆(ɣ) 

 

(𝜂𝑆 ° ꗟ̃) (ɀ) = [𝜂𝑆(ɣ) ∩ ꗟ̃(ɀ)] ∪ [𝜂𝑆(ɀ) ∩ ꗟ̃(ɀ)]

= 𝜂𝑆(ɣ) ∪ 𝜂𝑆(ɀ) ⊈ 𝜂𝑆(ɀ) 

 

𝜂𝑆 is not an S-int ʀ-ideal. 

 

Proposition 3.19 shows that the converse of Proposition 

3.17 holds for soft simple* semigroups. 

 

Proposition 3.19. Let 𝜂𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a soft simple* 

semigroup. Then, the following conditions are equivalent: 

 

(1) 𝜂𝑆 is an S-int ʀ-ideal. 

(2) 𝜂𝑆 is an S-int ʟ-ƁԚ ideal. 

 

Proof: (1) implies (2) is obvious by Theorem 3.17. 

Assume that 𝜂𝑆  is an S-int ʟ-ƁԚ ideal. By assumption, 

ꗟ̃ = 𝜂𝑆 ° ꗟ̃ = ꗟ̃ ° 
𝜂𝑆. Thus, 

 

(𝜂𝑆 ° 
ꗟ̃) = (𝜂𝑆 ° 

ꗟ̃) ∩̃ (𝜂𝑆 ° 
ꗟ̃)

= (ꗟ̃ ° 𝜂𝑆) ∩̃ (𝜂𝑆 °
 ꗟ̃ ° 𝜂𝑆) ⊆̃ 𝜂𝑆 

 

𝜂𝑆 is an S-int ʀ-ideal. 

 

Theorem 3.20. Every S-int ʀ-ideal is an S-int ƁԚ ideal. 

 

Proof: It is followed by Proposition 3.14 and Proposition  

3.17. 

 

Here note that the converse of Theorem 3.20 is not true 

follows from Example 3.15 and Example 3.18. Theorem 

3.21 shows that the converse of Theorem 3.20 holds for 

soft simple* semigroup. 

 

Theorem 3.21. Let 𝑓𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a soft simple* 

semigroup. Then, the following conditions are equivalent: 

 

(1) 𝜂𝑆 is an S-int ʀ-ideal. 

(2) 𝜂𝑆 is an S-int ƁԚ ideal. 

 

Proof: (1) implies (2) is obvious by Theorem 3.20. (2) 

implies (1) is obvious by Proposition 3.16 and Proposition 

3.19. 

 

Proposition 3.22. Every S-int ʟ-ideal is an S-int ʀ-ƁԚ 

ideal. 

Proof: Let 𝑓𝑆 be an S-int ʟ-ideal of 𝑆. Then, ꗟ̃ ° 𝑓𝑆 ⊆̃ 𝑓𝑆 

and 𝑓𝑆 ° 𝑓𝑆 ⊆̃ 𝑓𝑆. Thus,  

 

(𝑓𝑆 ° 
ꗟ̃) ∩̃ (𝑓𝑆 ° ꗟ̃ ° 𝑓𝑆) ⊆̃ 𝑓𝑆 ° ꗟ̃ ° 𝑓𝑆 ⊆̃ 𝑓𝑆 ° 𝑓𝑆 ⊆̃ 𝑓𝑆 

 

Hence, 𝑓𝑆 is an S-int ʀ-ƁԚ ideal of 𝑆. 

 

Additionally, since 𝑓𝑆 is an S-int ʟ-ideal, by Theorem 

2.17, it is an S-int bi-ideal. Therefore, by Proposition 3.6, 

𝑓𝑆 is an S-int ʀ-ƁԚ ideal. 

 

We show with a counterexample that the converse of 

Proposition 3.22 is not true: 
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Example 3.23. Consider the semigroup 𝑆 = {𝜚, Ձ} 

defined by the following table: 

 
Table 4: Cayley table of ‘֎’ binary operation. 

  ֎ 𝜚 Ձ 

𝜚 𝜚 𝜚 

Ձ Ձ Ձ 

 

Let ϥ𝑆 be an 𝚂𝚂 over 𝑈 = ℤ  as follows: 

 

ϥ𝑆 =  {(𝜚, {3,6}) , (Ձ, {3,9})} 

 

Here, ϥ𝑆 is an S-int ʀ-ƁԚ ideal. In fact, 

 

[(ϥ𝑆 ° ꗟ̃) ∩̃ (ϥ𝑆 ° ꗟ̃ ° ϥ𝑆)] (𝜚)

= (ϥ𝑆 ° ꗟ̃)(𝜚) ∩ (ϥ𝑆 ° ꗟ̃ ° ϥ𝑆) (𝜚)

= ϥ𝑆(𝜚) ⊆ ϥ𝑆(𝜚) 

 

[(ϥ𝑆 ° ꗟ̃) ∩̃ (ϥ𝑆 ° ꗟ̃ ° ϥ𝑆)] (Ձ)

= (ϥ𝑆 ° ꗟ̃)(Ձ) ∩ (ϥ𝑆 ° ꗟ̃ ° ϥ𝑆) (Ձ)

= ϥ𝑆(Ձ) ⊆ ϥ𝑆(Ձ) 

 

Thus, ϥ𝑆 is an S-int ʀ-ƁԚ ideal of 𝑆. However, since 

 

(ꗟ̃ ° ϥ𝑆) (𝜚) = [ꗟ̃(𝜚) ∩ ϥ𝑆(𝜚)] ∪ [ꗟ̃(𝜚) ∩ ϥ𝑆(Ձ)]

= ϥ𝑆(𝜚) ∪ ϥ𝑆(Ձ) ⊈ ϥ𝑆(𝜚) 

 

(ꗟ̃ ° ϥ𝑆) (Ձ) = [ꗟ̃(Ձ) ∩ ϥ𝑆(𝜚)] ∪ [ꗟ̃(Ձ) ∩ ϥ𝑆(Ձ)]

= ϥ𝑆(𝜚) ∪ ϥ𝑆(Ձ) ⊈ ϥ𝑆(Ձ) 

 

ϥ𝑆 is not an S-int ʟ-ideal. 

 

Proposition 3.24 shows that the converse of Proposition 

3.22 holds for soft simple* semigroups. 

 

Proposition 3.24. Let ϥ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a soft simple* 

semigroup. Then, the following conditions are equivalent: 

 

(1) ϥ𝑆 is an S-int ʟ-ideal. 

(2) ϥ𝑆 is an S-int ʀ-ƁԚ ideal. 

 

Proof: (1) implies (2) is obvious by Proposition 3.22. 

Assume that ϥ𝑆  is an S-int ʀ-ƁԚ ideal. By assumption, 

ꗟ̃ = ϥ𝑆 ° ꗟ̃ = ꗟ̃ ° 
ϥ𝑆. Thus, 

 

ꗟ̃ ° 
ϥ𝑆 = (ꗟ̃ ° ϥ𝑆) ∩̃ (ꗟ̃ ° 

ϥ𝑆)

= (ϥ𝑆 ° ꗟ̃) ∩̃ (ϥ𝑆 ° 
ꗟ̃ ° 

ϥ𝑆) ⊆̃ ϥ𝑆 

 

ϥ𝑆 is an S-int ʟ-ideal. 

 

Proposition 3.25. Every S-int ʟ-ideal is an S-int ʟ-ƁԚ 

ideal. 

Proof: Let ϥ𝑆 be an S-int ʟ ideal of 𝑆. Then, ꗟ̃ ° 
ϥ𝑆 ⊆̃ ϥ𝑆. 

Thus, (ꗟ̃ ° ϥ𝑆) ∩̃ (ϥ𝑆 ° ꗟ̃ ° 
ϥ𝑆 ) ⊆̃ ꗟ̃ ° ϥ𝑆 ⊆̃ ϥ𝑆 . Hence, 

ϥ𝑆 is an S-int ʟ-ƁԚ ideal of 𝑆. 

 

Additionally, since ϥ𝑆 is an S-int ʟ-ideal, by Theorem 

2.17, it is an S-int bi-ideal. Therefore, by Proposition 3.9, 

ϥ𝑆 is an S-int ʟ-ƁԚ ideal. 

 

We show with a counterexample that the converse of 

Proposition 3.25 is not true: 

 

Example 3.26. Consider the 𝚂𝚂 ϥ𝑆 in Example 3.23. The 

𝚂𝚂 ϥ𝑆 is an S-int ʟ-ƁԚ ideal. Since, 

 

[(ꗟ̃ ° ϥ𝑆) ∩̃ (ϥ𝑆 ° ꗟ̃ ° ϥ𝑆)] (𝜚)

= (ꗟ̃ ° ϥ𝑆) (𝜚) ∩ (ϥ𝑆 °
 ꗟ̃ ° ϥ𝑆) (𝜚)

= ϥ𝑆(𝜚) ⊆ ϥ𝑆(𝜚) 

 

[(ꗟ̃ ° ϥ𝑆) ∩̃ (ϥ𝑆° ꗟ̃ ° ϥ𝑆)] (Ձ)

= (ꗟ̃ ° ϥ𝑆)(Ձ) ∩ (ϥ𝑆 °
 ꗟ̃ ° ϥ𝑆) (Ձ)

= ϥ𝑆(Ձ) ⊆  ϥ𝑆(Ձ) 

 

Hence, ϥ𝑆 is an S-int ʟ-ƁԚ ideal. However, since 

 

(ꗟ̃ ° ϥ𝑆) (𝜚) = [ꗟ̃(𝜚) ∩ ϥ𝑆(𝜚)] ∪ [ꗟ̃(𝜚) ∩ ϥ𝑆(Ձ)]

= ϥ𝑆(𝜚) ∪ ϥ𝑆(Ձ) ⊈ ϥ𝑆(𝜚) 

 

(ꗟ̃ ° ϥ𝑆) (Ձ) = [ꗟ̃(Ձ) ∩ ϥ𝑆(𝜚)] ∪ [ꗟ̃(Ձ) ∩ ϥ𝑆(Ձ)]

= ϥ𝑆(𝜚) ∪ ϥ𝑆(Ձ) ⊈ ϥ𝑆(Ձ) 

 

ϥ𝑆 is not an S-int ʟ-ideal. 

 

Proposition 3.27 shows that the converse of Proposition 

3.25 holds for soft ʀ-simple* semigroups. 

 

Proposition 3.27. Let ϥ𝑆 ∈ 𝑆𝑆(𝑈)  and 𝑆  be a soft ʀ-

simple* semigroup. Then, the following conditions are 

equivalent: 

 

(1) ϥ𝑆 is an S-int ʟ-ideal. 

(2) ϥ𝑆 is an S-int ʟ-ƁԚ ideal. 

 

Proof: (1) implies (2) is obvious by Theorem 3.25. 

Assume that ϥ𝑆  is an S-int ʟ-ƁԚ ideal. By assumption, 

ꗟ̃ = ϥ𝑆 ° ꗟ̃. Thus, 

 

ꗟ̃ ° ϥ𝑆 = (ꗟ̃ ° ϥ𝑆) ∩̃ (ꗟ̃ ° ϥ𝑆)

= (ꗟ̃ ° ϥ𝑆) ∩̃ (ϥ𝑆° ꗟ̃ ° ϥ𝑆) ⊆̃ ϥ𝑆 

 

ϥ𝑆 is an S-int ʟ-ideal. 

 

Theorem 3.28. Every S-int ʟ-ideal is an S-int ƁԚ ideal. 

Proof: It is followed by Proposition 3.22 and Proposition 

3.25. 

 

Here note that the converse of Theorem 3.28 is not true 

follows from Example 3.23 and Example 3.26.  



     

Tr. J. Nature Sci. Volume 14, Issue 2, Page 162-178, 2025 
 

 

170 

Theorem 3.29 shows that the converse of Theorem 3.28 

holds for soft simple* semigroup. 

 

Theorem 3.29. Let ϥ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a soft simple* 

semigroup. Then, the following conditions are equivalent: 

 

(1) ϥ𝑆 is an S-int ʟ-ideal. 

(2) ϥ𝑆 is an S-int ƁԚ ideal. 

 

Proof: (1) implies (2) is obvious by Theorem 3.28. (2) 

implies (1) is obvious by Proposition 3.24 and Proposition 

3.27. 

 

Theorem 3.30. Every S-int ideal is an S-int ƁԚ ideal. 

 

Proof: It is followed by Theorem 3.20 and Theorem 3.28. 

Theorem 3.31 shows that the converse of Theorem 3.30 

holds for soft simple* semigroup. 

 

Theorem 3.31. Let ϥ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a soft simple* 

semigroup. Then, the following conditions are equivalent: 

 

(1) ϥ𝑆 is an S-int ideal. 

(2) ϥ𝑆 is an S-int ƁԚ ideal. 

1.  

Proof: (1) implies (2) is obvious by Theorem 3.30. (2) 

implies (1) is obvious by Proposition 3.21 and Proposition 

3.28. 

 

Proposition 3.32. Every S-int quasi-ideal is an S-int ʀ-

ƁԚ ideal. 

 

Proof: Let 𝑓𝑆  be an S-int quasi-ideal of 𝑆 . Then, 

(ҕ𝑆 °
 ꗟ̃) ∩̃ (ꗟ̃ ° 

ҕ𝑆) ⊆̃ ҕ𝑆.  

 

Thus,  

 

(ҕ𝑆 ° ꗟ̃) ∩̃ (ҕ𝑆 ° ꗟ̃ ° ҕ𝑆) ⊆̃ (ҕ𝑆 °
 ꗟ̃) ∩̃ (ꗟ̃ ° ꗟ̃ ° 

ҕ𝑆) ⊆̃ 

(ҕ𝑆 ° ꗟ̃) ∩̃ (ꗟ̃ ° 
ҕ𝑆) ⊆̃ ҕ𝑆 

 

Hence, ҕ𝑆 is an S-int ʀ-ƁԚ ideal of 𝑆. 

 

We show with a counterexample that the converse of 

Proposition 3.32 is not true: 

 

Example 3.33. Consider the 𝚂𝚂 ҕ𝑆 in Example 3.7. The 

𝚂𝚂 ҕ𝑆 is an S-int ʀ-ƁԚ ideal. Since,  

 

[(ҕ𝑆 ° ꗟ̃) ∩̃ (ꗟ̃
 ° 

ҕ𝑆)] (ƴ) = ҕ𝑆(𝔯) ∪ ҕ𝑆(𝔰) ⊈ ҕ𝑆(ƴ) 

 

Hence, ҕ𝑆 is not an S-int quasi ideal. 

 

Proposition 3.34 shows that the converse of Proposition 

3.32 holds for soft ʀ-simple* semigroups. 

 

Proposition 3.34. Let ҕ𝑆 ∈ 𝑆𝑆(𝑈)  and 𝑆  be a soft ʀ-

simple* semigroup. Then, the following conditions are 

equivalent: 

 

(1) ҕ𝑆 is an S-int quasi-ideal. 

(2) ҕ𝑆 is an S-int ʀ-ƁԚ ideal. 

Proof: (1) implies (2) is obvious by Theorem 3.32. 

Assume that ҕ𝑆  is an S-int ʀ-ƁԚ ideal. By assumption, 

ꗟ̃ = ҕ𝑆 ° ꗟ̃. Thus,  

 

(ҕ𝑆 ° 
ꗟ̃) ∩̃ (ꗟ̃ ° ҕ𝑆) = (ҕ𝑆 ° 

ꗟ̃) ∩̃ (ҕ𝑆 ° ꗟ̃ ° ҕ𝑆) ⊆̃ ҕ𝑆 

 

ҕ𝑆 is an S-int quasi-ideal. 

 

Proposition 3.35. Every S-int quasi-ideal is an S-int ʟ-ƁԚ 

ideal. 

 

Proof: Let ℊ𝑆  be an S-int quasi-ideal of 𝑆 . Then, 

(ℊ𝑆 °
 ꗟ̃) ∩̃ (ꗟ̃ ° ℊ𝑆) ⊆̃ ℊ𝑆. Thus,  

 

(ꗟ̃ ° ℊ𝑆) ∩̃ (ℊ𝑆 ° ꗟ̃ ° ℊ𝑆) ⊆̃ (ꗟ̃
 ° 

ℊ𝑆) ∩̃ (ℊ𝑆 ° ꗟ̃ ° ꗟ̃) ⊆̃ 

(ꗟ̃ ° 
ℊ𝑆) ∩̃ (ℊ𝑆 ° ꗟ̃) ⊆̃ ℊ𝑆 

 

Hence, ℊ𝑆 is an S-int ʟ-ƁԚ ideal of 𝑆. 

 

We show with a counterexample that the converse of 

Proposition 3.35 is not true: 

 

Example 3.36. Consider the 𝚂𝚂 ҕ𝑆 in Example 3.7. The 

𝚂𝚂 ҕ𝑆 is an S-int ʟ-ƁԚ ideal. Since,  

 

[(ҕ𝑆 ° ꗟ̃) ∩̃ (ꗟ̃ ° 
ҕ𝑆)] (ƴ) = ҕ𝑆(𝔯) ∪ ҕ𝑆(𝔰) ⊈ ҕ𝑆(ƴ) 

 

ҕ𝑆 is not an S-int quasi-ideal. 

 

Proposition 3.37 shows that the converse of Proposition 

3.35 holds for soft simple* semigroups. 

 

Proposition 3.37. Let ℊ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a soft simple* 

semigroup. Then, the following conditions are equivalent: 

 

(1) ℊ𝑆 is an S-int quasi-ideal. 

(2) ℊ𝑆 is an S-int ʟ-ƁԚ ideal. 

 

Proof: (1) implies (2) is obvious by Theorem 3.35. 

Assume that ℊ𝑆 is an S-int ʟ-ƁԚ ideal. By assumption, 

ꗟ̃ = ℊ𝑆 ° ꗟ̃ = ꗟ̃ ° 
ℊ𝑆. Thus,  

 

(ℊ𝑆 ° 
ꗟ̃) ∩̃ (ꗟ̃ ° ℊ𝑆) = (ꗟ̃ ° ℊ𝑆) ∩̃ (ℊ𝑆 °

 ꗟ̃ ° ℊ𝑆) ⊆̃ ℊ𝑆 

 

ℊ𝑆 is an S-int quasi-ideal. 

 

Theorem 3.38. Every S-int quasi-ideal is an S-int ƁԚ 

ideal. 

 

Proof: It is followed by Theorem 3.32 and Theorem 3.35. 

Here note that the converse of Theorem 3.38 is not true 

follows from Example 3.33 and Example 3.36.  

 

Theorem 3.39 shows that the converse of Theorem 3.38 

holds for soft simple* semigroup. 

 

Theorem 3.39. Let ℊ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a soft simple* 

semigroup. Then, the following conditions are equivalent: 
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(1) ℊ𝑆 is an S-int quasi-ideal. 

(2) ℊ𝑆 is an S-int ƁԚ ideal. 

 

Proof: (1) implies (2) is obvious by Theorem 3.38. (2) 

implies (1) is obvious by Proposition 3.34 and Proposition 

3.37. 

 

Proposition 3.40. Let 𝜗𝑆 be an idempotent 𝚂𝚂 over 𝑈. If 

𝜗𝑆 is an S-int interior ideal, then 𝜗𝑆 is an S-int ʟ-ƁԚ ideal. 

Proof: Let 𝜗𝑆 be an idempotent S-int interior ideal of 𝑆. 

Then, 𝜗𝑆 ° 𝜗𝑆 = 𝜗𝑆 and ꗟ̃
 °

 𝜗𝑆 ° 
ꗟ̃ ⊆̃ 𝜗𝑆. Thus, 

 

(ꗟ̃
 °

 𝜗𝑆) ∩̃ (𝜗𝑆 ° 
ꗟ̃

 °
 𝜗𝑆) ⊆̃ ꗟ̃

 °
 𝜗𝑆

= ꗟ̃
 °

 𝜗𝑆 °
 𝜗𝑆 ⊆̃ ꗟ̃

 °
 𝜗𝑆 °

 ꗟ̃ ⊆̃ 𝜗𝑆 

 

Hence, 𝜗𝑆 is an S-int ʟ-ƁԚ ideal of 𝑆. 

 

Proposition 3.41. Let 𝜗𝑆 be an idempotent 𝚂𝚂 over 𝑈. If 

𝜗𝑆 is an S-int interior ideal, then 𝜗𝑆 is an S-int ʀ-ƁԚ ideal. 

 

Proof: Let 𝜗𝑆 be an idempotent S-int interior ideal of 𝑆. 

Then, 𝜗𝑆 ° 𝜗𝑆 = 𝜗𝑆 and ꗟ̃
 °

 𝜗𝑆 ° 
ꗟ̃ ⊆̃ 𝜗𝑆. Thus,  

 

(𝜗𝑆 ° 
ꗟ̃) ∩̃ (𝜗𝑆 ° 

ꗟ̃
 °

 𝜗𝑆) ⊆̃ 𝜗𝑆 ° 
ꗟ̃

= 𝜗𝑆 °
 𝜗𝑆 ° 

ꗟ̃ ⊆̃ ꗟ̃
 °

 𝜗𝑆 °
 ꗟ̃ ⊆̃ 𝜗𝑆 

 

Hence, 𝜗𝑆 is an S-int ʀ-ƁԚ ideal of 𝑆. 

 

Theorem 3.42. Let 𝜗𝑆 be an idempotent 𝚂𝚂 over 𝑈. If 𝜗𝑆 

is an S-int interior ideal, then 𝜗𝑆 is an S-int ƁԚ ideal. 

 

Proof: It is followed by Theorem 3.40 and Theorem 3.41. 

 

Proposition 3.43. Let 𝜗𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a soft simple* 

semigroup. Then, the following conditions are equivalent: 

 

(1) 𝜗𝑆 is an S-int interior ideal. 

(2) 𝜗𝑆 is an S-int ʟ-ƁԚ ideal. 

 

Proof: First assume that (1) holds. Where 𝜗𝑆 is an S-int 

interior ideal of 𝑆. Then, ꗟ̃
 °

 𝜗𝑆 ° 
ꗟ̃ ⊆̃ 𝜗𝑆. By assumption, 

ꗟ̃ = 𝜗𝑆 ° ꗟ̃ = ꗟ̃ ° 
𝜗𝑆. Thus, 

 

(ꗟ̃
 °

 𝜗𝑆) ∩̃ (𝜗𝑆 ° 
ꗟ̃

 °
 𝜗𝑆) ⊆̃ 𝜗𝑆 ° 

ꗟ̃
 °

 𝜗𝑆

= ꗟ̃
 °

 𝜗𝑆 °
 𝜗𝑆 ⊆̃ ꗟ̃

 °
 𝜗𝑆 °

 ꗟ̃ ⊆̃ 𝜗𝑆  
 

𝜗𝑆 is an S-int ʟ-ƁԚ ideal. 

 

Conversely, assume that (2) holds. Where 𝜗𝑆 is an S-int ʟ-

ƁԚ ideal of 𝑆. Then, (ꗟ̃
 °

 𝜗𝑆) ∩̃ (𝜗𝑆 ° 
ꗟ̃

 °
 𝜗𝑆) ⊆̃ 𝜗𝑆 .  In 

order to show that 𝜗𝑆 S-int interior ideal, we need to show 

that  ꗟ̃
 °

 𝜗𝑆 °
 ꗟ̃ ⊆̃ 𝜗𝑆 . By assumption, ꗟ̃ = 𝜗𝑆 ° ꗟ̃ =

ꗟ̃ ° 
𝜗𝑆. Thus, 

 

ꗟ̃
 °

 𝜗𝑆 °
 ꗟ̃ = (ꗟ̃

 °
 𝜗𝑆 °

 ꗟ̃) ∩̃ (ꗟ̃
 °

 𝜗𝑆 ° 
ꗟ̃)

= (ꗟ̃ ° 
ꗟ̃ ° 

𝜗𝑆) ∩̃ (𝜗𝑆 ° ꗟ̃ °
 ꗟ̃) ⊆̃ (ꗟ̃ ° 

𝜗𝑆) ∩̃ (𝜗𝑆 ° ꗟ̃ 
)

= (ꗟ̃ ° 
𝜗𝑆) ∩̃ (𝜗𝑆 ° ꗟ̃ ° 

𝜗𝑆) ⊆̃ 𝜗𝑆 

 

Hence, 𝜗𝑆 is an S-int interior ideal. 

 

Proposition 3.44. Let 𝜗𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a soft simple* 

semigroup. Then, the following conditions are equivalent: 

 

(1) 𝜗𝑆 is an S-int interior ideal. 

(2) 𝜗𝑆 is an S-int ʀ-ƁԚ ideal. 

 

Proof: First assume that (1) holds.Where 𝜗𝑆  is an S-int 

interior ideal of 𝑆. Then, ꗟ̃
 °

 𝜗𝑆 ° 
ꗟ̃ ⊆̃ 𝜗𝑆. By assumption, 

ꗟ̃ = 𝜗𝑆 ° ꗟ̃ = ꗟ̃ ° 
𝜗𝑆. Thus, 

 

(𝜗𝑆 ° 
ꗟ̃) ∩̃ (𝜗𝑆 ° 

ꗟ̃
 °

 𝜗𝑆) ⊆̃ 𝜗𝑆 ° 
ꗟ̃

 °
 𝜗𝑆

= ꗟ̃
 °

 𝜗𝑆 °
 𝜗𝑆 ⊆̃ ꗟ̃

 °
 𝜗𝑆 °

 ꗟ̃ ⊆̃ 𝜗𝑆 

 

Therefore, 𝜗𝑆 is an S-int ʀ-ƁԚ ideal. 

 

Conversely, assume that (2) holds, where 𝜗𝑆 
is an S-int ʀ-

ƁԚ ideal of 𝑆 . Then, (𝜗𝑆 ° 
ꗟ̃) ∩̃ (𝜗𝑆 ° 

ꗟ̃
 °

 𝜗𝑆) ⊆̃ 𝜗𝑆. In 

order to show that 𝜗𝑆 S-int interior ideal, we need to show 

that  ꗟ̃
 °

 𝜗𝑆 °
 ꗟ̃ ⊆̃ 𝜗𝑆 . By assumption, ꗟ̃ = 𝜗𝑆 ° ꗟ̃ =

ꗟ̃ ° 
𝜗𝑆. Thus, 

 

ꗟ̃
 °

 𝜗𝑆 °
 ꗟ̃ = (ꗟ̃

 °
 𝜗𝑆 °

 ꗟ̃) ∩̃ (ꗟ̃
 °

 𝜗𝑆 °
 ꗟ̃)

= (𝜗𝑆 ° ꗟ̃ ° 
ꗟ̃) ∩̃ (𝜗𝑆 ° ꗟ̃ °

 ꗟ̃) ⊆̃ (𝜗𝑆 ° ꗟ̃) ∩̃ (𝜗𝑆 ° ꗟ̃ 
)

= (𝜗𝑆 ° ꗟ̃) ∩̃ (𝜗𝑆 ° ꗟ̃ ° 
𝜗𝑆) ⊆̃ 𝜗𝑆 

 

Therefore, 𝜗𝑆 is an S-int interior ideal. 

 

Theorem 3.45. Let 𝜗𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a soft simple* 

semigroup. Then, the following conditions are equivalent: 

 

(1) 𝜗𝑆 is an S-int interior ideal. 

(2) 𝜗𝑆 is an S-int ƁԚ ideal. 

1.  

Proof: It is followed by Theorem 3.43 and Theorem 3.44. 

 

Proposition 3.46. Let ƿ𝑆 and ƾ𝑆 be S-int ʟ-(ʀ-) ƁԚ ideals. 

Then, ƿ𝑆 ∩̃ ƾ𝑆 is an S-int ʟ-(ʀ-) ƁԚ ideal. 

 

Proof: The proof is presented only for S-int ʟ-ƁԚ ideal, 

as the proof for S-int ʀ-ƁԚ ideal can be shown similarly. 

Let ƿ𝑆 and ƾ𝑆 be S-int ʟ-ƁԚ ideals of 𝑆. Then, 

 

(ꗟ̃ ° 
ƿ𝑆) ∩̃ (ƿ𝑆 ° ꗟ̃ ° ƿ𝑆) ⊆̃ ƿ𝑆 

 

(ꗟ̃ ° 
ƾ𝑆) ∩̃ (ƾ𝑆 ° ꗟ̃ ° 

ƾ𝑆) ⊆̃ ƾ𝑆 

 

Thus, 

 

[ꗟ̃
 °

 (ƿ𝑆 ∩̃ ƾ𝑆)] ∩̃ [(ƿ𝑆 ∩̃ ƾ𝑆)° ꗟ̃ ° (ƿ𝑆 ∩̃ ƾ𝑆)] ⊆̃ 

(ꗟ̃ ° ƿ𝑆) ∩̃ (ƿ𝑆 ° ꗟ̃ ° ƿ𝑆) ⊆̃ ƿ𝑆 

 

 

[ꗟ̃ ° (ƿ𝑆 ∩̃ ƾ𝑆)] ∩̃ [(ƿ𝑆 ∩̃ ƾ𝑆)° ꗟ̃ ° (ƿ𝑆 ∩̃ ƾ𝑆)] ⊆̃ 

(ꗟ̃ ° ƾ𝑆) ∩̃ (ƾ𝑆 ° ꗟ̃ ° ƾ𝑆) ⊆̃ ƾ𝑆 
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Hence,  

 

[ꗟ̃ ° (ƿ𝑆 ∩̃ ƾ𝑆)] ∩̃ [(ƿ𝑆 ∩̃ ƾ𝑆) ° ꗟ̃ ° (ƿ𝑆 ∩̃ ƾ𝑆)] ⊆̃ ƿ𝑆 ∩̃ ƾ𝑆 

 

Thus, ƿ𝑆 ∩̃ ƾ𝑆 is an S-int ʟ-ƁԚ ideals. 

 

Theorem 3.47. Let ƿ𝑆 and ƾ𝑆 be S-int ƁԚ ideals. Then, 

ƿ𝑆 ∩̃ ƾ𝑆 is an S-int ƁԚ ideals. 

 

Corollary 3.48. The finite intersection of S-int ƁԚ ideals 

is an S-int ƁԚ ideal. 

 

Proposition 3.49. Let Գ𝑆  and ƾ𝑆  be S-int ʟ-(ʀ-) ideals. 

Then, Գ𝑆 ∩̃ ƾ𝑆 is an S-int ʟ-(ʀ-) ƁԚ ideal. 

 

Proof: The proof is presented only for S-int ʟ-ƁԚ ideal, 

as the proof for S-int ʀ-ƁԚ ideal can be shown similarly. 

Let Գ𝑆  and ƾ𝑆  be S-int ʟ-ideals of 𝑆 . Then, ꗟ̃ ° Գ𝑆 ⊆̃ ɠ𝑆 

and ꗟ̃ ° ƾ𝑆 ⊆̃ ƾ𝑆. Thus, 

 

[ꗟ̃ ° (Գ𝑆 ∩̃ ƾ𝑆)] ∩̃ [(Գ𝑆 ∩̃ ƾ𝑆) ° ꗟ̃
 °

 (Գ𝑆 ∩̃ ƾ𝑆)] ⊆̃ 

(ꗟ̃ ° Գ𝑆) ∩̃ (Գ𝑆 ° ꗟ̃ ° 
Գ𝑆) ⊆̃ ꗟ̃ ° 

Գ𝑆 ⊆̃ Գ𝑆 

 

[ꗟ̃ ° (Գ𝑆 ∩̃ ƾ𝑆)] ∩̃ [(Գ𝑆 ∩̃ ƾ𝑆) ° ꗟ̃ ° (Գ𝑆 ∩̃ ƾ𝑆)] ⊆̃ 

(ꗟ̃ ° ƾ𝑆) ∩̃ (ƾ𝑆 ° ꗟ̃ ° ƾ𝑆) ⊆̃ ꗟ̃ ° 
ƾ𝑆 ⊆̃ ƾ𝑆 

 

Hence,  

 

[ꗟ̃ ° (Գ𝑆 ∩̃ ƾ𝑆)] ∩̃ [(Գ𝑆 ∩̃ ƾ𝑆) ° ꗟ̃ ° (Գ𝑆 ∩̃ ƾ𝑆)] ⊆̃ Գ𝑆 ∩̃ ƾ𝑆 

 

Thus, Գ𝑆 ∩̃ ƾ𝑆 is an S-int ʟ-ƁԚ ideals. 

 

Theorem 3.50. Let Գ𝑆  and ƾ𝑆  be S-int ideals. Then, 

Գ𝑆 ∩̃ ƾ𝑆 is an S-int ƁԚ ideals. 

 

Theorem 3.51. Let Գ𝑆 be an S-int ʀ-ideal and ƾ𝑆 be an S-

int ʟ-ideal. Then, Գ𝑆 ∩̃ ƾ𝑆 is an S-int ƁԚ ideal. 

 

Proof: Let Գ𝑆  be an S-int ʀ-ideal and ɧ𝑆  be an S-int ʟ-

ideal. Then, Գ𝑆 ° ꗟ̃ ⊆̃ Գ𝑆 , ꗟ̃ ° ƾ𝑆 ⊆̃ ƾ𝑆 , and 

Գ𝑆 ° Գ𝑆 ⊆̃ Գ𝑆, ƾ𝑆 ° ƾ𝑆 ⊆̃ ƾ𝑆.Thus, 

 

[ꗟ̃ ° (Գ𝑆 ∩̃ ƾ𝑆)] ∩̃ [(Գ𝑆 ∩̃ ƾ𝑆) ° ꗟ̃ ° (Գ𝑆 ∩̃ ƾ𝑆)] ⊆̃ 

(ꗟ̃ ° 
ƾ𝑆) ∩̃ (Գ𝑆 °

 ꗟ̃ ° Գ𝑆) ⊆̃ ƾ𝑆 ∩̃ (Գ𝑆 ° Գ𝑆) ⊆̃ ƾ𝑆 ∩̃ Գ𝑆 

 

Hence, Գ𝑆 ∩̃ ƾ𝑆 is an S-int ʟ-ƁԚ ideal. Similarly, since 

 

[(Գ𝑆 ∩̃ ƾ𝑆) ° ꗟ̃] ∩̃ [(Գ𝑆 ∩̃ ƾ𝑆) ° ꗟ̃ ° (Գ𝑆 ∩̃ ƾ𝑆)] ⊆̃ 

(Գ𝑆 ° ꗟ̃) ∩̃  (ƾ𝑆 ° 
ꗟ̃ ° ƾ𝑆) ⊆̃ Գ𝑆 ∩̃ (ƾ𝑆 °

 ƾ𝑆) ⊆̃ Գ𝑆 ∩̃ ƾ𝑆 

 

Գ𝑆 ∩̃ ƾ𝑆  is an S-int ʀ-ƁԚ ideal. Therefore, Գ𝑆 ∩̃ ƾ𝑆 is an 

S-int ƁԚ ideal. 

 

Theorem 3.52. Let 𝜗𝑆 be an S-int ʟ-ƁԚ ideal and 𝔱𝑆 be an 

S-int ʟ-ideal. Then, 𝜗𝑆 ∩̃ 𝔱𝑆 is an S-int ƁԚ ideal. 

 

Proof: Let 𝜗𝑆 be an S-int ʟ-ƁԚ ideal and 𝔱𝑆 be an S-int ʟ-

ideal. Then, (ꗟ̃ ° 
𝜗𝑆) ∩̃ (𝜗𝑆 °

 ꗟ̃ ° 𝜗𝑆) ⊆̃ 𝜗𝑆  and 

ꗟ̃ ° 𝔱𝑆 ⊆̃ 𝔱𝑆. Thus, 

 

[ꗟ̃ ° (𝜗𝑆 ∩̃ 𝔱𝑆)] ∩̃ [(𝜗𝑆 ∩̃ 𝔱𝑆) ° ꗟ̃ ° (𝜗𝑆 ∩̃ 𝔱𝑆)] ⊆̃ 

(ꗟ̃ ° 
𝜗𝑆) ∩̃ (𝜗𝑆 °

 ꗟ̃ ° 𝜗𝑆) ⊆̃ 𝜗𝑆 

 

[ꗟ̃ ° (𝜗𝑆 ∩̃ 𝔱𝑆)] ∩̃ [(𝜗𝑆 ∩̃ 𝔱𝑆)
 °

 ꗟ̃ ° (𝜗𝑆 ∩̃ 𝔱𝑆)] ⊆̃ 

(ꗟ̃ ° 
𝔱𝑆) ∩̃ (𝔱𝑆 °

 ꗟ̃ ° 
𝔱𝑆) ⊆̃ ꗟ̃ ° 𝔱𝑆 ⊆̃ 𝔱𝑆 

 

Hence,  

 

[ꗟ̃ ° (𝜗𝑆 ∩̃ 𝔱𝑆)] ∩̃ [(𝜗𝑆 ∩̃ 𝔱𝑆) ° ꗟ̃ ° (𝜗𝑆 ∩̃ 𝔱𝑆)] ⊆̃ 𝜗𝑆 ∩̃ 𝔱𝑆 

 

Thus, 𝜗𝑆 ∩̃ 𝔱𝑆 is an S-int ʟ-ƁԚ ideal. 

 

Theorem 3.53. Let ƾ𝑆 be an S-int ʟ-ideal and բ𝑆 be an 𝚂𝚂 

over 𝑈. Then, ƾ𝑆 ° բ𝑆 is an S-int ʟ-ƁԚ ideal. 

 

Proof: Let ƾ𝑆 be an S-int ʟ-ideal. Then, ꗟ̃ ° 
ƾ𝑆 ⊆̃ ƾ𝑆. Thus, 

 

[ꗟ̃ ° (ƾ𝑆 ° 
բ𝑆)] ∩̃ [(ƾ𝑆 ° բ𝑆)° ꗟ̃ ° (ƾ𝑆 ° 

բ𝑆)] ⊆̃ ꗟ̃ ° (ƾ𝑆 ° 
բ𝑆)

= (ꗟ̃ ° ƾ𝑆) ° բ𝑆 ⊆̃ ƾ𝑆 ° 
բ𝑆 

 

Hence, ƾ𝑆 ° բ𝑆 is an S-int ʟ-ƁԚ ideal.  

 

Theorem 3.54. Let ƾ𝑆 be an S-int ʀ-ideal and բ𝑆 be an 𝚂𝚂 

over 𝑈. Then, բ𝑆 ° ƾ𝑆 is an S-int ʀ-ƁԚ ideal. 

 

Proof: Let ƾ𝑆 be an S-int ʀ-ideal. Then, ƾ𝑆 ° 
ꗟ̃ ⊆̃ ƾ𝑆. Thus, 

 

[(բ𝑆 ° ƾ𝑆)
 °

 ꗟ̃] ∩̃ [(բ𝑆 ° ƾ𝑆)
 °

 ꗟ̃ ° (բ𝑆 ° ƾ𝑆)] ⊆̃ (բ𝑆 ° ƾ𝑆)° ꗟ̃

= բ𝑆 ° (ƾ𝑆 ° ꗟ̃) ⊆̃ բ𝑆 ° ƾ𝑆 

 

Hence, բ𝑆 ° ƾ𝑆 is an S-int ʀ-ƁԚ ideal.  

 

Theorem 3.55. Let Һ𝑆 be a nonempty 𝚂𝚂 over 𝑈. Then, 

every soft subset of Һ𝑆 containing (ꗟ̃ ° Һ𝑆) ∪̃ (Һ𝑆 ° ꗟ̃) is 

an S-int ƁԚ ideal.  

 

Proof: Let 𝔭𝑆  be a soft subset of Һ𝑆  containing 

(ꗟ̃ ° Һ𝑆) ∪̃ (Һ𝑆 ° ꗟ̃). Since,  

 

ꗟ̃ ° 𝔭𝑆 ⊆̃ ꗟ̃ ° Һ𝑆 ⊆̃ (ꗟ̃ ° Һ𝑆) ∪̃ (Һ𝑆 ° ꗟ̃) ⊆̃ 𝔭𝑆 

 

(ꗟ̃  ∘ 𝔭𝑆) ⊆̃ 𝔭𝑆 is obtained. Hence, 𝔭𝑆 is an S-int ʟ-ideal. 

 

𝔭𝑆 ° ꗟ̃  ⊆̃ Һ𝑆 ° ꗟ̃  ⊆̃ (ꗟ̃ ° Һ𝑆) ∪̃ (Һ𝑆 °
 ꗟ̃ ) ⊆̃ 𝔭𝑆 

 

Thus, 𝔭𝑆 ° ꗟ̃ ⊆̃ 𝔭𝑆 . Hence, 𝔭𝑆  is an S-int ʀ-ideal. 

Therefore, 𝔭𝑆  is an S-int ƁԚ ideal. Thus, by Theorem 

3.30, 𝔭𝑆 is an S-int ƁԚ ideal. Hence, every soft subset of 

Һ𝑆 containing (ꗟ̃  ° Һ𝑆) ∪̃ (Һ𝑆 ° ꗟ̃ ) is an S-int ƁԚ ideal.  
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Theorem 3.56. Let 𝜗𝑆 be a nonempty 𝚂𝚂 over 𝑈. Then, 

every soft subset of 𝜗𝑆 containing ꗟ̃  ° 𝜗𝑆 is an S-int ʟ-ƁԚ 

ideal.  

 

Proof: Let ɧ𝑆  be a soft subset of 𝜗𝑆  containing ꗟ̃ ° 𝜗𝑆 . 

Since,  ꗟ̃ ° ɧ𝑆 ⊆̃ ꗟ̃ ° 𝜗𝑆 ⊆̃ ɧ𝑆.  Thus, ꗟ̃ ° 
ɧ𝑆 ⊆̃ ɧ𝑆 . Hence, 

ɦ𝑆 is an S-int ʟ-ideal. Thus, by Theorem 3.25, ɦ𝑆 is an S-

int ƁԚ ideal. Hence, every soft subset of 𝜗𝑆  containing 

ꗟ̃ ° 
𝜗𝑆 is an S-int ʟ-ƁԚ ideal.  

 

Theorem 3.57. Let 𝜗𝑆 be a nonempty 𝚂𝚂 over 𝑈. Then, 

every soft subset of 𝜗𝑆  containing 

(ꗟ̃ ° 𝜗𝑆) ∩̃ (𝜗𝑆 ° ꗟ̃ ° 
𝜗𝑆) is an S-int ʟ-ƁԚ ideal.  

 

Proof: Let ɧ𝑆  be a soft subset of 𝜗𝑆  containing 

(ꗟ̃ ° 𝜗𝑆) ∩̃ (𝜗𝑆 ° ꗟ̃ ° 𝜗𝑆). Then,  

 

ꗟ̃ ° ɧ𝑆 ⊆̃ ꗟ̃ ° 𝜗𝑆 and ɧ𝑆 ° ꗟ̃ ° ɧ𝑆 ⊆̃ 𝜗𝑆 ° ꗟ̃ ° 𝜗𝑆 

 

Since,  

 

(ꗟ̃ ° ɧ𝑆) ∩̃ (ɧ𝑆 °
 ꗟ̃ ° 

ɧ𝑆) ⊆̃ (ꗟ̃ ° 
𝜗𝑆) ∩̃ (𝜗𝑆 ° ꗟ̃ ° 𝜗𝑆) ⊆̃ ɧ𝑆 

 

Hence, ɧ𝑆 is an S-int ʟ-ideal.  

 

Proposition 3.58. Let ϼ𝑆 be an S-int subsemigroup over 

𝑈 , 𝜎  be a subset of 𝑈 , 𝐼𝑚(ϼ𝑆)  be the image of ϼ𝑆  such 

that 𝜎 ∈ 𝐼𝑚(ϼ𝑆). If ϼ𝑆 is an S-int ʟ −(ʀ-) ƁԚ ideal of 𝑆, 

then 𝒰(ϼ𝑆; 𝜎) is a ʟ-(ʀ-) ƁԚ ideal of 𝑆. 

 

Proof: The proof is presented only for S-int ʟ-ƁԚ ideal, 

as the proof for S-int ʀ-ƁԚ ideal can be shown similarly. 

Since, ϼ𝑆(ӿ) = 𝜎 for some ӿ ∈ 𝑆, ∅ ≠ 𝒰(ϼ𝑆; 𝜎) ⊆ 𝑆. Let 

𝜅 ∈ (𝑆. 𝒰(ϼ𝑆; 𝜎)) ∩ (𝒰(ϼ𝑆; 𝜎). 𝑆. 𝒰(ϼ𝑆; 𝜎)). Then, there 

exist ӿ, 𝘺, 𝑧 ∈ 𝒰(ϼ𝑆; 𝜎)  and r, 𝓈 ∈ 𝑆  such that 𝜅 = 𝓈ӿ =
𝘺𝑟𝑧 . Thus, ϼ𝑆(𝑥) ⊇ 𝜎 , 𝑓𝑆(𝘺) ⊇ 𝜎  and ϼ𝑆(𝑧) ⊇ 𝜎 . Since 

ϼ𝑆 is an S-int ʟ-ƁԚ ideal, 

 

(ꗟ̃ ° ϼ𝑆) (𝜅) = ⋃ {ꗟ̃(ɱ) ∩ ϼ𝑆(𝑛)}

𝜅=ɱ𝑛

⊇ ꗟ̃(𝓈) ∩ ϼ𝑆(ӿ)

= 𝑈 ∩ ϼ𝑆(ӿ) = ϼ𝑆(ӿ) ⊇ 𝜎 

 

       (ϼ𝑆 ° ꗟ̃ ° ϼ𝑆) (𝜅) = ⋃ {ϼ𝑆(ɱ) ∩ (ꗟ̃ ° ϼ𝑆) (𝑛)}

𝜅=ɱ𝑛

⊇ ϼ𝑆(ӿ) ∩ (ꗟ̃ ° ϼ𝑆) (𝘺𝑧)

= ϼ𝑆(ӿ) ∩ ⋃ {ꗟ̃ (𝑝) ∩ ϼ𝑆(𝑞)}

𝘺𝑧=𝑝𝑞

⊇ ϼ𝑆(ӿ) ∩ ϼ𝑆(𝘺) ∩ ϼ𝑆(𝑧)
⊇ 𝜎 ∩ 𝜎 ∩ 𝜎 = 𝜎 

 

Thus, (ꗟ̃ ° 
ϼ𝑆)(𝜅) ∩ (ϼ𝑆 ° ꗟ̃ ° ϼ𝑆)(𝜅)) ⊇ 𝜎 . Since ϼ𝑆  is 

an S-int ʟ-ƁԚ ideal,  

 

ϼ𝑆(𝜅) ⊇ (ꗟ̃ ° 
ϼ𝑆)(𝜅) ∩ (ϼ𝑆 ° ꗟ̃ ° ϼ𝑆)(𝜅) ⊇ 𝜎 

 

Thus, 𝜅 ∈ 𝒰(ϼ𝑆; 𝜎). Therefore, 

 

[𝑆. 𝒰(ϼ𝑆; 𝜎)] ∩ [𝒰(ϼ𝑆; 𝜎). 𝑆. 𝒰(ϼ𝑆; 𝜎)] 

Hence, 𝒰(ϼ𝑆; 𝜎) is a ƁԚ ideal of 𝑆. 

 

Theorem 3.59. Let ϼ𝑆 be an S-int subsemigroup over 𝑈, 

𝜎 be a subset of 𝑈, 𝐼𝑚(ϼ𝑆) be the image of ϼ𝑆 such that 

𝜎 ∈ 𝐼𝑚(ϼ𝑆) . If ϼ𝑆  is an S-int ƁԚ ideal of 𝑆 , then 

𝒰(ϼ𝑆; 𝜎) is a ƁԚ ideal ideal of 𝑆. 

 

We illustrate Theorem 3.59 with Example 3.60. 

 

Example 3.60. Consider the 𝚂𝚂 𝜂𝑆  in Example 3.2. By 

considering the image set of 𝜂𝑆, that is, 

 

𝐼𝑚(𝜂𝑆) = {{𝑒, 𝑥, 𝑥2, 𝑦}, {𝑒, 𝑥, 𝑥2}, {𝑒, 𝑥}} 

 

we obtain the following: 

 

𝒰(𝜂𝑆; 𝜎) = {

{𝔣, ℎ, ᵲ},       𝜎 = {𝑒, 𝑥}           

{𝔣, ᵲ},           𝜎 = {𝑒, 𝑥, 𝑥2}     

{ᵲ},               𝜎 = {𝑒, 𝑥, 𝑥2, 𝑦} 

 

 

Here, {𝑓, ℎ, ᵲ}, {𝑓, ᵲ} and {ᵲ} are all ƁԚ ideals of 𝑆. In fact, 

since 

 
{ᵲ}. {ᵲ} ⊆ {ᵲ}, {𝔣, ᵲ}. {𝔣, ᵲ} ⊆ {𝔣, ᵲ}, {𝔣, ℎ, ᵲ}. {𝔣, ℎ, ᵲ}

⊆ {𝔣, ℎ, ᵲ} 

 

each 𝒰(𝜂𝑆; 𝜎) is a subsemigroup of 𝑆. Similarly, since 

 

(𝑆. {ᵲ}) ∩ ({ᵲ}. 𝑆. {ᵲ}) ⊆ {ᵲ} ∩ {ᵲ} ⊆ {ᵲ} 

(𝑆. {𝔣, ᵲ}) ∩ ({𝔣, ᵲ}. 𝑆. {𝔣, ᵲ}) ⊆ {𝔣, ᵲ} ∩ {𝔣, ᵲ} ⊆ {𝔣, ᵲ} 

(𝑆. {𝔣, ℎ, ᵲ}) ∩ ({𝔣, ℎ, ᵲ}. 𝑆. {𝔣, ℎ, ᵲ}) ⊆ {𝔣, ℎ, ᵲ} ∩ {𝔣, ℎ, ᵲ}
⊆ {𝔣, ℎ, ᵲ} 

 

each 𝒰(𝜂𝑆; 𝜎) is an ʟ-ƁԚ ideal of 𝑆. Similarly, since 

 

({ᵲ}. 𝑆)  ∩ ({ᵲ}. 𝑆. {ᵲ}) ⊆ {ᵲ} ∩ {ᵲ} ⊆ {ᵲ} 

 

({𝔣, ᵲ}. 𝑆) ∩ ({𝔣, ᵲ}. 𝑆. {𝔣, ᵲ}) ⊆ {𝔣, ᵲ} ∩ {𝔣, ᵲ} ⊆ {𝔣, ᵲ} 

 
({𝔣, ℎ, ᵲ}. 𝑆) ∩ ({𝔣, ℎ, ᵲ}. 𝑆. {𝔣, ℎ, ᵲ}) ⊆ {𝔣, ℎ, ᵲ} ∩ {𝔣, ℎ, ᵲ}

⊆ {𝔣, ℎ, ᵲ} 

 

each 𝒰(𝜂𝑆; 𝜎)  is an ʀ-ƁԚ ideal of 𝑆 , and thus each of 

𝒰(𝜂𝑆; 𝜎) is a ƁԚ ideal of 𝑆. 

 

Now, consider the 𝚂𝚂 ₰𝑆 in Example 3.2. By taking into 

account 

 

𝐼𝑚(₰𝑆) = {{𝑒, 𝑥2, 𝑦, 𝑦𝑥2}, {𝑒, 𝑥, 𝑦}, {𝑒, 𝑥}} 

 

we obtain the following: 

 

𝒰(₰𝑆; 𝜎) = {

{𝔣, ℎ},   𝜎 = {𝑒, 𝑥}                 

{𝔣},       𝜎 = {𝑒, 𝑥, 𝑦}            

{ᵲ},        𝜎 = {e, 𝑥2, 𝑦, 𝑦𝑥2} 

 

 

Here, {𝔣, ℎ} is not a ƁԚ ideal of 𝑆. In fact, since 

 

(𝑆. {𝔣, ℎ}) ∩ ({𝔣, ℎ}. 𝑆. {𝔣, ℎ}) ⊆ {𝔣, ℎ, ᵲ} ∩ {𝔣, ℎ, ᵲ} ⊈ {𝔣, ℎ} 
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one of the 𝒰(₰𝑆; 𝜎) is not an ʟ-ƁԚ ideal of 𝑆, hence it is 

not a ƁԚ ideal of 𝑆, It is seen that each of 𝒰(₰𝑆; 𝜎) is not 

a ƁԚ ideal of 𝑆. On the other hand, in Example 3.2 it was 

shown that  ₰𝑆 is not an S-int ƁԚ ideal of 𝑆. 

 

Proposition 3.61. For a semigroup 𝑆 , the following 

conditions are equivalent: 

 

(1) 𝑆 is regular. 

(2) 𝜂𝑆 = (ꗟ̃ ° 𝜂𝑆) ∩̃ (𝜂𝑆 °
 ꗟ̃ ° 𝜂𝑆)  for every S-int ʟ-

ƁԚ ideal. 

 

Proof: First assume that (1) holds. Let 𝑆  be a regular 

semigroup, 𝜂𝑆  be an S-int ʟ-ƁԚ ideal and ӽ ∈ 𝑆 . Then, 

(ꗟ̃ ° 
𝜂𝑆) ∩̃ (𝜂𝑆 ° ꗟ̃ ° 𝜂𝑆) ⊆̃ 𝜂𝑆 and there exist an element 

𝑦 ∈ 𝑆 such that ӽ = ӽ𝑦ӽ. Since  

 

(ꗟ̃ ° 
𝜂𝑆) (ӽ) = ⋃ {ꗟ̃(𝑘) ∩ 𝜂𝑆(𝑛)}

ӽ=𝑘𝑛

⊇ ꗟ̃(ӽ𝑦) ∩ 𝜂𝑆(ӽ)

= 𝑈 ∩ 𝜂𝑆(ӽ) = 𝜂𝑆(ӽ) 

 

(𝜂𝑆 ° ꗟ̃ ° 
𝜂𝑆) (ӽ) = ⋃ {𝜂𝑆(𝑘) ∩ (ꗟ̃ ° 

𝜂𝑆)(𝑛)}

ӽ=𝑘𝑛

 

⊇  𝜂𝑆(ӽ) ∩ (ꗟ̃ ° 
𝜂𝑆) (𝑦ӽ)  

= 𝜂𝑆(ӽ)

∩ ⋃ {ꗟ̃(𝑟) ∩ 𝜂𝑆(𝑠)}  

𝑦ӽ=𝑟𝑠

⊇ 𝜂𝑆(ӽ) ∩ ꗟ̃(𝑦) ∩ 𝜂𝑆(ӽ)
=  𝜂𝑆(ӽ) ∩ 𝑈 ∩ 𝜂𝑆(ӽ) = 𝜂𝑆(ӽ) 

 

 Thus,  

 

(ꗟ̃ ° 𝜂𝑆) (ӽ) ∩ (𝜂𝑆 °
 ꗟ̃ ° 𝜂𝑆 ) (ӽ) ⊇ 𝜂𝑆(ӽ) ∩ 𝜂𝑆(ӽ)

⊇ 𝜂𝑆(ӽ) 

 

implying that 𝜂𝑆 ⊆̃ (ꗟ̃ ° 𝜂𝑆) ∩̃ (𝜂𝑆 ° ꗟ̃ ° 𝜂𝑆) . Therefore, 

𝜂𝑆 = (ꗟ̃ ° 𝜂𝑆) ∩̃ (𝜂𝑆 ° ꗟ̃ ° 𝜂𝑆). 

 

Conversely, let ɲ𝑆 = (ꗟ̃ ° 𝜂𝑆) ∩̃ (𝜂𝑆 ° ꗟ̃ ° 𝜂𝑆), where 𝑓𝑆 is 

an S-int ʟ-ƁԚ ideal. In order to show that 𝑆 is regular, we 

need to show that 𝒫 = 𝑆𝒫 ∩ 𝒫𝑆𝒫 for every ʟ-ƁԚ ideal 

of 𝑆. It is obvious that 𝑆𝒫 ∩ 𝒫𝑆𝒫 ⊆ 𝒫. Thus, it is enough 

to show that 𝒫 ⊆ 𝑆𝒫 ∩ 𝒫𝑆𝒫. Let 𝑑 ∈ 𝒫 and 𝒫 be any ʟ-

ƁԚ ideal of 𝑆 . Thus, 𝑆𝒫  is an S-int ʟ-ƁԚ ideal ideal. 

Hence,  

 

𝑆𝒫(𝑑) = (ꗟ̃ ° 𝑆𝒫) (𝑑) ∩ (𝑆𝒫° ꗟ̃ ° 𝑆𝒫) (𝑑)

= (𝑆𝑆 ° 𝑆𝒫)(𝑑) ∩ (𝑆𝒫  ° 𝑆𝑆 °
 𝑆𝒫)(𝑑)

= 𝑆𝑆𝒫∩𝒫𝑆𝒫(𝑑) = 𝑈 

 

implying that 𝑑 ∈ 𝑆𝒫 ∩ 𝒫𝑆𝒫. Hence, 𝒫 = 𝑆𝒫 ∩ 𝒫𝑆𝒫 so 

𝑆 is a regular semigroup. 

 

Proposition 3.62. For a semigroup 𝑆 , the following 

conditions are equivalent: 

 

(1) 𝑆 is regular. 

(2) Ϧ𝑆 = (Ϧ𝑆 °
 ꗟ̃) ∩̃ (Ϧ𝑆 °

 ꗟ̃ ° Ϧ𝑆) for every S-int ʀ-

ƁԚ ideal. 

 

Proof: First assume that (1) holds. Let 𝑆  be a regular 

semigroup, Ϧ𝑆  be an S-int ʀ-ƁԚ ideal and ӽ ∈ 𝑆 . Then, 

(Ϧ𝑆 ° ꗟ̃) ∩̃ (Ϧ𝑆 ° ꗟ̃ ° Ϧ𝑆) ⊆̃ Ϧ𝑆 and there exist an element 

𝑡 ∈ 𝑆 such that ӽ = ӽ𝑡ӽ. Since,  

 

(Ϧ𝑆 ° ꗟ̃) (ӽ) = ⋃ {Ϧ𝑆(𝑘) ∩ ꗟ̃(𝑛)}

ӽ=𝑘𝑛

⊇ Ϧ𝑆(ӽ) ∩ ꗟ̃(𝑡ӽ)

= Ϧ𝑆(ӽ) ∩ 𝑈 = Ϧ𝑆(ӽ) 

 

(Ϧ𝑆 ° ꗟ̃ ° 
Ϧ𝑆) (ӽ) = ⋃ {Ϧ𝑆(𝑘) ∩ (ꗟ̃ ° 

Ϧ𝑆)(𝑛)}ӽ=𝑘𝑛 ⊇

 Ϧ𝑆(ӽ) ∩ (ꗟ̃ ° 
Ϧ𝑆) (𝑡ӽ) = Ϧ𝑆(ӽ) ∩ ⋃ {ꗟ̃(𝑞) ∩𝑡ӽ=𝑞𝑠

Ϧ𝑆(𝑠)} ⊇ Ϧ𝑆(ӽ) ∩ ꗟ̃(𝑦) ∩ Ϧ𝑆(ӽ)  =  Ϧ𝑆(ӽ) ∩ 𝑈 ∩

Ϧ𝑆(ӽ) = Ϧ𝑆(ӽ). 

 

Thus,  

 

(Ϧ𝑆 ° ꗟ̃) (ӽ) ∩ (Ϧ𝑆 °
 ꗟ̃ ° Ϧ𝑆 ) (ӽ) ⊇ Ϧ𝑆(ӽ) ∩ Ϧ𝑆(ӽ)

⊇ Ϧ𝑆(ӽ) 

 

implying that Ϧ𝑆 ⊆̃ (Ϧ𝑆 ° ꗟ̃) ∩̃ (Ϧ𝑆 ° ꗟ̃ ° Ϧ𝑆) . Therefore, 

Ϧ𝑆 = (Ϧ𝑆 ° ꗟ̃) ∩̃ (Ϧ𝑆 ° ꗟ̃ ° Ϧ𝑆). 

 

Conversely, let Ϧ𝑆 = (Ϧ𝑆 ° ꗟ̃) ∩̃ (Ϧ𝑆 ° ꗟ̃ ° Ϧ𝑆)  where Ϧ𝑆 

is an S-int ʀ-ƁԚ ideal. In order to show that 𝑆 is regular, 

we need to show that Ɱ = Ɱ𝑆 ∩ Ɱ𝑆Ɱ  for every ʀ-ƁԚ 

ideal of 𝑆. It is obvious that Ɱ𝑆 ∩ Ɱ𝑆Ɱ ⊆ Ɱ. Thus, it is 

enough to show that Ɱ ⊆ Ɱ𝑆 ∩ Ɱ𝑆Ɱ . Let ⱴ ∈ Ɱ  and Ɱ 

be any ʀ-ƁԚ ideal of 𝑆. Thus, 𝑆Ɱ is an S-int ʀ-ƁԚ ideal 

ideal. Hence, 

 

𝑆Ɱ(ⱴ) = (𝑆Ɱ °
 ꗟ̃) (ⱴ) ∩ (𝑆Ɱ °

 ꗟ̃ ° 𝑆Ɱ) (ⱴ)

= (𝑆Ɱ ° 𝑆𝑆)(ⱴ) ∩ (𝑆Ɱ ° 𝑆𝑆 °
 𝑆Ɱ)(ⱴ)

= 𝑆Ɱ𝑆∩Ɱ𝑆Ɱ(ⱴ) = 𝑈 

 

implying that ⱴ ∈ Ɱ𝑆 ∩ Ɱ𝑆Ɱ . Hence, Ɱ = Ɱ𝑆 ∩
Ɱ𝑆Ɱ so 𝑆 is a regular semigroup. 

 

Theorem 3.63. For a semigroup 𝑆 , the following 

conditions are equivalent: 

 

(1) 𝑆 is regular. 

(2) ɲ𝑆 = (ꗟ̃ ° ɲ𝑆) ∩̃ (ɲ𝑆 ° ꗟ̃ ° ɲ𝑆) =

(ɲ𝑆 ° ꗟ̃) ∩̃ (ɲ𝑆° ꗟ̃ ° ɲ𝑆) for every S-int ƁԚ ideal. 

 

Proof: It is followed by Proposition 3.61 and Proposition 

3.62. 

 

Proposition 3.64. Let 𝑆  be a regular semigroup. Then 

every S-int ʟ-ƁԚ ideal of a semigroup 𝑆 is an S-int quasi 

ideal of semigroup. 
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Proof: Let 𝑓𝑆  be an S-int ʟ-ƁԚ ideal of 𝑆 . Then, 

(ꗟ̃ ° Գ𝑆) ∩̃ (Գ𝑆 ° ꗟ̃ ° 
Գ𝑆) ⊆̃ Գ𝑆 . We know that   Գ𝑆 ° ꗟ̃ 

and ꗟ̃ ° Գ𝑆 are S-int ʀ-and S-int ʟ-ideals of the semigroup 

𝑆  respectively. By Corollary 2.20, we have 

(Գ𝑆 ° ꗟ̃) ∩̃ (ꗟ̃ ° Գ𝑆) = Գ𝑆 ° ꗟ̃
 ° 
ꗟ̃ ° Գ𝑆. Thus,  

 

(Գ𝑆 ° ꗟ̃) ∩̃ (ꗟ̃ ° Գ𝑆) ⊆̃ ꗟ̃ ° 
Գ𝑆 and (Գ𝑆 ° ꗟ̃) ∩̃ (ꗟ̃ ° Գ𝑆) =

Գ𝑆 ° ꗟ̃
 ° 
ꗟ̃ ° Գ𝑆 ⊆̃ Գ𝑆 ° ꗟ̃ ° Գ𝑆 

 

Hence,  

 

(Գ𝑆 ° ꗟ̃) ∩̃ (ꗟ̃ ° Գ𝑆) ⊆̃ (ꗟ̃ ° Գ𝑆) ∩̃ (Գ𝑆 ° ꗟ̃ ° Գ𝑆) ⊆̃ Գ𝑆 

 

Therefore, Գ𝑆 is an S-int quasi ideal. 

 

Proposition 3.65. Let 𝑆  be a regular semigroup. Then 

every S-int ʀ-ƁԚ ideal of a semigroup 𝑆 is an S-int quasi 

ideal of semigroup. 

 

Proof: Let Գ𝑆  be an S-int ʀ-ƁԚ ideal of 𝑆 . Then, 

(Գ𝑆 ° ꗟ̃) ∩̃ (Գ𝑆 ° ꗟ̃ ° 
Գ𝑆) ⊆̃ Գ𝑆 . We know that   Գ𝑆 ° ꗟ̃ 

and ꗟ̃ ° Գ𝑆 are S-int ʀ-and S-int ʟ-ideals of the semigroup 

𝑆 respectively. By Corollary 2.20, we have  

 

(Գ𝑆 ° ꗟ̃) ∩̃ (ꗟ̃ ° Գ𝑆) = Գ𝑆 ° ꗟ̃
 ° 
ꗟ̃ ° Գ𝑆 

 

Thus,  

 

(Գ𝑆 ° ꗟ̃) ∩̃ (ꗟ̃ ° Գ𝑆) ⊆̃ Գ𝑆 ° ꗟ̃  

 

 (Գ𝑆 ° ꗟ̃) ∩̃ (ꗟ̃ ° Գ𝑆) = Գ𝑆 ° ꗟ̃
 ° 
ꗟ̃ ° Գ𝑆 ⊆̃ Գ𝑆 ° ꗟ̃ ° Գ𝑆.  

 

Hence,  

 

(Գ𝑆 ° ꗟ̃) ∩̃ (ꗟ̃ ° Գ𝑆) ⊆̃ (Գ𝑆 ° ꗟ̃) ∩̃ (Գ𝑆 ° ꗟ̃ ° Գ𝑆) ⊆̃ Գ𝑆 

 

Therefore, Գ𝑆 is an S-int quasi ideal. 

 

Theorem 3.66. Let 𝑆 be a regular semigroup. Then every 

S-int ƁԚ ideal of a semigroup 𝑆 is an S-int quasi ideal of 

semigroup. 

 

Proof: It is followed by Proposition 3.64 and Proposition 

3.65. 

 

 

4. DISCUSSION AND CONCLUSION 

 

Rao [8] expanded the notions of quasi-ideal, bi-ideal, ʟ-

(ʀ-) ideal, and ideal in semigroups by defining ƁԚ ideals 

and examining their characteristics. In this study, we have 

applied the concept of "S-int ƁԚ ideals of semigroups" to 

both 𝚂𝚂 theory and semigroup theory. It has been shown 

that every S-int bi-ideal, S-int ideal, S-int quasi-ideal, and 

S-int interior ideal of an idempotent 𝚂𝚂 is an S-int ƁԚ 

ideal. Counterexamples show that the converse is not 

always true, and for the converse to hold, the semigroup 

must be simple* or regular. It has also been demonstrated 

that in a soft simple* semigroup, the S-int ƁԚ ideal 

coincides with the S-int bi-ideal, S-int ʟ-(ʀ-) ideal, S-int 

quasi-ideal, and S-int interior ideal. To link 𝚂𝚂 theory and 

classical semigroup theory, it is shown that if a 

subsemigroup is an S-int ƁԚ ideal, its upper α-inclusion 

set is also a ƁԚ ideal. Furthermore, if a subsemigroup is 

a ƁԚ ideal, its 𝚂𝙲𝙵 is an S-int ƁԚ ideal, and the reverse 

is also true. The finite soft intersections of S-int ƁԚ ideals 

are shown to be S-int ƁԚ ideals, as are the soft 

intersections of S-int ideals. Additionally, the relationship 

between regular semigroups and S-int ƁԚ ideals is 

explored. In future studies, the characterization of S-int 

ƁԚ ideals of semigroups can be conducted with respect 

to various types of semigroups, such as ʟ-(ʀ-) simple 

semigroups, ʟ-(ʀ-) zero semigroups, and intra-regular 

semigroups. 

 

The relation between several S-int ideals and their 

generalized ideals is depicted in the following figure, 

where 𝒜 → ℬ denotes that 𝒜 is ℬ but ℬ may not always 

be 𝒜. 
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Figure 1. Diagram illustrating the relationships between some S-int ideals 
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