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Abstract Detection and monitoring urban vegetation are subjects in many sustainable development goal studies.
Detection of green areas and their decreasing rates with increasing urbanization are followed with
interest by municipalities and planners. Due to their high cost-effectiveness, unmanned aerial vehicles
(UAVs) have been used extensively in agriculture and forest management. Overall, this study aimed to
distinguish urban vegetation in a selected area with heterogeneous classes using multi-spectral UAV data
and ensemble ML methods. It features groundwork for understanding the effects of different methods,
the effectiveness of multi-spectral data, and the DEM effect for future studies on this subject. In this
study, low vegetation, tree and non-vegetation classes were classified using ensemble machine learning
methods on a university campus. After the pre-processing steps of the images obtained via UAV, datasets
consisting of different bands and indices were created for classification, and the effect of the Digital
Elevation Model (DEM) layer was also investigated. Four machine learning classifiers were implemented:
XGBoost, LightGBM, Gradient Boosting and CatBoost. According to the results, the highest classification
performances are achieved when vegetation indices and DEM are used together. The CatBoost algorithm
obtained 90.2 % accuracy and 86.9% F1-score. It is understood that the classification of multispectral
aerial images with machine learning has shown promising results in detecting vegetation in urban areas.
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Introduction
Urban vegetation is essential for ensuring the well-being
of human communities, ecological balance, and reducing
floods. It also can create a pollution barrier. Studies on
rapid and effective detection of changes in urban areas have
recently increased (Gazioğlu et al., 2017; Atik, 2023). Some
studies in this field have demonstrated the advantages of
using unmanned aerial vehicles (UAVs). Thanks to the use
of machine learning (ML) algorithms for UAV data, real-time
studies are possible for urban monitoring. UAVs provide many
advantages with their lightweight, easy portability, low cost,
low altitude flight, and pilotless flight features. By using UAV,
it is possible to obtain spectral images with much higher
resolution than satellite images and at times and places
where satellite images cannot be obtained. According to
user requirements, users can acquire data with extremely
high spatial (centimetric spatial resolution) and temporal
resolutions using UAVs that are lightweight, high-quality,
cost-effective and small vehicles (Bayırhan & Gazioğlu, 2020;
López-García et al., 2022). With the help of ML algorithms,
very high-resolution UAV images can be processed faster
than the operations that a manual operator would perform.
Moreover, despite the increase in image processing speed
thanks to hyperparameter optimization in ML algorithms, it
will be possible to maintain compelling classification features
by applying ensemble methods. The goal of ensemble ML is
to combine several classifiers to produce a higher-performing
classifier. Ensemble ML models offer some benefits over
single models when resolving complicated issues. Ensemble
ML models balance the trade-off between bias and variance,
lowering the chance of both overfitting and underfitting (Atik
& Atik, 2024). Multispectral cameras are imaging equipment
that collects data from more than three spectral bands. They
are often used in agricultural and environmental monitoring
of plant health, soil conditions, and vegetation types. Due
to the visible spectrum (red, green, and blue), red edge,
and near-infrared bands, multispectral cameras use several
analyses (Sefercik et al., 2024) in addition to health monitoring,
cellular structure of plants, water absorption, and chlorophyll.
Recently, ML algorithms have been commonly used for
processing UAV-derived multi-spectral data. The effects of
the vegetation indices on land cover classification were
investigated using ML algorithms. The effects of vegetation
indices on plant species identification in ML-based supervised
classification were examined (Öztürk and Çölkesen, 2021). Shu
et al. investigated the effects of various image bands obtained
from a multispectral UAV camera on the phenotypic trait
estimation performance of ensemble classification algorithms
(2022). Abdollahnejad & Panagiotidis proposed a machine

learning-based methodology for tree species detection and
health status assessment from multispectral UAV images
(2020). SVM classifier and nine VIs were used in the study.
Wang et al. have a study on using multi-spectral and visible
VI conducted various ML algorithms and calculated root mean
square errors (RMSE) for the regression models (2022). They
also use NIR and RE bands and visible ones to predict desert
vegetation cover. Lan et al. used UAV multi-spectral data for
citrus greening detection using VIs in a large-scale area (2020).
The study includes pre-processing data, feature extraction
using principal component analysis (PCA), conducting ML
algorithms and enhancing accuracy steps.

In this study, urban vegetation classification is determined
to be used by supervised ensemble ML methods such as
Gradient Boosting, Categorical Boosting (CatBoost), Extreme
Gradient Boosting (XGBoost) and Light Gradient Boosting
Machine (LightGBM). Orthomosaic and Digital Elevation Model
(DEM) data generated with multispectral UAV images were
used for classification. This study sought answers to the
following questions:

1. Does using multispectral UAV data increase efficiency in
urban vegetation detection?

2. Do popular vegetation indices calculated with near-
infrared, red edge, and visible bands in urban vegetation
detection improve ML classification?

3. Does the use of DEM data positively affect the separation
of vegetation from other classes? Or does it help
distinguish low and high vegetation?

4. Does the classification accuracy increase when different
supervised ensemble ML algorithms are optimized and
compared with accuracy metrics?

Materials and Method

Study area

Istanbul Technical University Ayazaga Campus was selected as
the study area. A UAV flight was carried out in a region where
settlement and vegetation are located together within the
campus. The produced orthomosaic and DEM cover an area of
207 x 267 meters. The study area is presented in Figure 1.

UAV-camera system and data collection

The research was carried out with the DJI Mavic 3M RTK UAV.
The technical specifications of the DJI Mavic 3M RTK UAV are
presented in Table 1. The UAV collected images at an altitude
of 60 m above the take-off point. 80% longitudinal overlap
ratio and 70% side lap ratio were selected in flight planning.
Moreover, ground sampling distance (GSD) is approximately
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Figure 1. Study area

Table 1. Specification of the camera on DJI Mavic 3 multispectral UAV (Specs—DJI Mavic 3 Enterprise, 2025)

Equipment Category Feature

Model DJI Mavic 3M

Camera Sensor 20 Megapixels

Max Flight Time (without wind) 43 minutes

Max Takeoff Weight 1050 g

Max Flight Speed (at sea level, no wind) 15 m/s (Normal Mode)

GNSS G+ R¹+E+C

RTK Positioning Accuracy RTK Fix: H: 1 cm + 1 ppm V: 1.5 cm + 1 ppm

UAV

Operating Temperature 10° to 40° C (14° to 104° F)

1.6 cm/pixel. A total of 179 multispectral aerial images were
obtained from nadir angles.

Each image consists of four bands: red (R), green (G), near-
infrared (NIR), and red-edge (RE) and center wavelength of
the band are shown in Table 2. Experts generally use different
colors in the visible part of the electromagnetic spectrum and
the amount of infrared reflection reflected from the plant to
decide the density of green cover on the land. Five vegetation
indices were calculated with the arithmetic of these
four bands. Normalized Difference Vegetation Index (NDVI)
(Peñuelas et al., 1993), Leaf Chlorophyll Index (LCI) (Pu et al.,
2008), Green Normalized Difference Vegetation Index (GNDVI)
(Gitelson et al., 1996), Optimized Soil-Adjusted Vegetation
Index (OSAVI) (Rondeaux et al., 1996) and Normalized Ratio
Drought Index (NDRE) (Barnes et al., 2000) were used in this
study. The flowchart of the study is shown in Figure 2.

Table 2. Center wavelength values of the bands of the UAV

Band Center Wavelength

Red (R) 560 ± 16 nm

Green (G) 650 ± 16 nm

Red Edge (RE) 730 ± 16 nm

NIR 860 ± 26 nm

Data processing

The RTK system achieved vertical and horizontal position
errors of less than 0.1 m when georeferencing the raw
photos. Using DJI Terra software, raw pictures were acquired
for the creation of georeferenced spectral reflectance and
VI mosaic calibrated production. Aerial triangulation, which
established a distinct direction for every stereo model of
the photogrammetric block, was the initial stage of the
UAV photogrammetry procedure. Bundle adjustment was
performed by the DJI Terra using the multiview stereo (MVS)
and structure from motion (SfM) methods. The simultaneous
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calculation of the internal and external orientations of all
images is called aerial triangulation. In aerial triangulation,
the interior and exterior orientation parameters are
calculated to estimate the pose of each camera.

Structure-from-Motion (SfM)
SfM is a computer vision method that generates 3D models
using 2D images taken from stereo images. In this algorithm,
prior to scene reconstruction, the SfM approach does not
require knowledge of the 3D location of a set of control points
and external parameters. The algorithm automatically detects
similar features in the corresponding photos and reconstructs
the camera pose and scene geometry (Schonberger & Frahm,
2016).

The first step of SfM is extraction and matching of the
corresponding features using feature extraction methods
such as SIFT (Lowe, 2004). The intrinsic projective geometry
between two views, known as the epipolar geometry, is used
to evaluate matching features in two images. The epipolar

geometry is expressed using a 3 × 3 matrix, which is known as
the fundamental matrix (𝐹) (Atik and Arkali, 2025).

𝑥′𝐹𝑥 = 0 (1)

where 𝑥′ and 𝑥 refer to the projected points of the 3D point
onto the camera image plane (Zhao et al., 2021).

The normalized eight-point approach is used to match
features in order to compute the fundamental matrix in a
preliminary approach. Using the combined set of camera and
scene parameters, Bundle Adjustment attempts to reduce
the distance between the projected and observed points
progressively:

𝑔(𝐶,𝑋) = Σ𝑛𝑖=1Σ𝑚𝑗=1𝜔𝑖𝑗 ∥ 𝑥𝑖𝑗 − 𝑃(𝐶𝑖, 𝑋𝑗) ‖2 (2)

where ωij is an indicator variable: ωij = 1 if camera i observes
point j; otherwise, ωij = 0; C represents the collection of camera
parameters for a single camera with Ci = {M, R, t, k1, k2}; xij is
the observed image point; and P(Ci, Xj) is the projected image
point (Zhao et al., 2021).

Figure 2. Flowchart of the study
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Spectral Indices
Spectral indices used in vegetation analysis are widely
used in agricultural management, environmental and
ecosystem monitoring, and drought and climate change.
Agricultural management includes yield estimation, irrigation
amount planning, and fertilization management studies. For
environmental and ecosystem monitoring, studies are carried
out to monitor plant health, estimate biomass, and monitor
changes in the ecosystem. The spectral indices created are
presented in Figure 3.

NDVI (Equation 3) is a vegetation index commonly employed
to assess plant photosynthetic activity. It is determined by
the normalized ratio of NIR and Red bands and utilized to
enhance the understanding of plant activity dynamics. This

is due to the high absorption in the visible range of 0.4–0.7
μm for the color pigment chlorophyll in green leaves. As the
number of leaves on a plant increases, so does the reflection
of wavelengths of light.

𝑁𝐷𝑉 𝐼 = 𝑁𝐼𝑅 −𝑅𝐸𝐷
𝑁𝐼𝑅 +𝑅𝐸𝐷

(3)

LCI (Leaf Chlorophyll Index) (Equation 4) monitors the
chlorophyll content in plant leaves. Chlorophyll is an
important indicator of plant health. By using LCI, chlorophyll
content is measured precisely and is frequently used in
agricultural productivity analyses (Gallardo-Salazar & Pompa-
García, 2020).

𝐿𝐶𝐼 = 𝑅850 −𝑅710
𝑅850 +𝑅680

(4)

Figure 3. Producted vegetation indices for the study area
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GNDVI (Equation 5) is similar to NDVI. However, it measures
the green spectrum between 540 and 570 nm instead of the
red spectrum. Compared to NDVI, this index is more sensitive
to chlorophyll concentration (Gitelson et al., 1996).

𝐺𝑁𝐷𝑉 𝐼 = 𝑁𝐼𝑅 −𝐺𝑅𝐸𝐸𝑁
𝑁𝐼𝑅 +𝐺𝑅𝐸𝐸𝑁

(5)

The NDVI and the GNDVI were also calculated for the study
area, which is very sensitive to chlorophyll concentration.
GNDVI is an index used to assess plant nitrogen content and
general vegetation health. OSAVI (Equation 6), LCI, and NRDE
are other indices widely used to distinguish vegetational
classes.

OSAVI is used in areas with low vegetation cover with a high
ratio soil ratio and in estimating vegetation density.

𝑂𝑆𝐴𝑉 𝐼 = 𝑁𝐼𝑅 −𝑅𝐸𝐷
𝑁𝐼𝑅 +𝑅𝐸𝐷+ 0.16

(6)

NDRE is a vegetation index based on a combination of red and
red-edge bands. To understand sugar content and chlorophyll,
NDRE (Equation 7) may be used for plants (Gallardo-Salazar &
Pompa-García, 2020).

𝑁𝑅𝐷𝐸 = 𝑅𝐸1 − 𝑅𝐸2
𝑅𝐸1 + 𝑅𝐸2

(7)

Ensemble Machine Learning Algorithms for
Classification
Feature extraction is a leading application in remote sensing
on four basics of the image. It uses a composite combination
of color (spectral), pattern, shape (geometry information),
and context (Momm and Easson, 2011). Spectral and spatial
functions are used in feature extraction. ML methods, which
have been widely used in recent years, provide significant
advantages and have been demonstrated in many studies to
improve classification accuracy.

Extreme Gradient Boosting (XGBoost)
XGBoost is an efficient method and is used for both
classification and regression. It is a scalable approach based
on a gradient-boosting tree (Chen and Guestrin, 2016). A tree
ensemble model that uses functions of K. K is an additive
used to estimate the dataset D= {(𝑥𝑖, 𝑦𝑖)} with n samples and
m features. The following formula is used for the algorithm,

𝑦𝑖 = Φ(𝑥𝑖) = Σ𝐾𝑘=1 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝜑 (8)

𝜑 = {𝑓(𝑥) = 𝜔𝑞(𝑥)}(𝑞 : 𝑅𝑚 → 𝑇,𝜔 ∈ 𝑅𝑇 ) (9)

xi refers to an observation, fk (xi) is the projected score for
the given observation, and yi is the model's forecast Eq. (8).
The collection of regression trees with the independent tree
structure q is denoted by φ [Eq. (9)]. The weights of the leaves

is represented by ω, and q. T is the number of leaves on the
tree (Atik et al., 2024).
The standard loss function and the model's complexity
construct XGBoost's goal function Eq. (10) - (11). XGBoost aims
to minimize the regularized objective function,

𝐿(Φ) = Σ𝑖 𝑙(𝑦𝑖, 𝑦𝑖) + Σ𝑘 Ω(𝑓𝑘) (10)

Ω(𝑓) = 𝛾𝑇 + 1
2
𝜆 ∣∣ 𝜔 ‖2 (11)

Light Gradient Boosting Machine (LightGBM)
LightGBM is an effective ML classification algorithm that
includes gradient-boosting decision tree (GBDT), a method
developed by Microsoft in 2017 (Ke et al., 2017). This
algorithm aims to obtain efficient prediction result using
high-dimensional data. LightGBM is a developing version of
XGBoost. The algorithm includes gradient-based one-sided
sampling (GOSS) and exclusive feature packing (EFB). GOSS is
a state-of-the-art sampling approach for GBDT that preserves
accuracy while reducing the number of data samples. EFB is
an innovative technique for efficiently reducing the number
of features.

Categorical Boosting Algorithm (CatBoost)
Prokhorenkova et al. (2018) developed CatBoost algorithm.
It is produced as an alternative to XGBoost, LightGBM
and gradient-boosting machine algorithms. It is particularly
appropriate for use in categorical data. It has been observed
that it shows higher performance on large data sets. It is
implemented in classification and regression applications.
The basic formulation in Equation 12 of CatBoost to optimize
the loss function is similar to classical Gradient Boosting:

𝑦 = 𝐹(𝑋) = Σ𝑀𝑚=1𝛾𝑚ℎ𝑚(𝑋) (12)

𝑋 is input feature vector, 𝑀  is the number of trees in the
ensemble, ℎ𝑚 refers to the mth decision tree and 𝛾𝑚 is the
learning rate is also weight for tree𝑚. The CatBoost algorithm
can produce results with good performance without much
hyperparameter tuning. It has a fast model training feature
without encountering overfitting problems. It is a faster
algorithm compared to GB, especially on categorical data.

Gradient Boosting
The Gradient Boosting algorithm, first proposed by Friedman
(2002), has later been developed into versions such as
XGBoost, LightGBM and CatBoost. Gradient Boosting is an
ensemble ML algorithm that minimizes errors step by step
using decision trees. It is one of the supervised learning
methods and is used in classification and regression
applications. It follows an iterative optimization step to
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minimize the propagation function in its formula in Equation
13.

𝐹𝑚(𝑋) = 𝐹𝑚−1(𝑋) + 𝛾𝑚ℎ𝑚(𝑋) (13)

𝐹𝑚(𝑋) is prediction at iteration m, 𝐹𝑚−1(𝑋) refers to the
prediction from the previous iteration, ℎ𝑚(𝑋) is the new weak
learner and γ is the learning rate and steps size.

Gradient Boosting combines multiple weak learners to create
a stronger model. Since it uses decision trees, it is considered
a tree-based approach. Its loss functions can be customized.

Experimental Details
Orthomosaic and DEM were produced with DJI Terra software
from multispectral aerial images obtained with appropriate
flight planning. The generated ortho mosaic and DEM have
an image size of 5207 x 4063 pixels. Five plant indices were
calculated with appropriate band calculations: NDVI, OSAVI,
NDRE, LCI, and GNDVI. Four data sets were obtained using
orthomosaic, DEM and plant indices.

• 4-band: R, G, NIR, REDEDGE

• 4-band + DEM: R, G, NIR, REDEDGE, DEM

• 9-band: R, G, NIR, REDEDGE, NDVI, OSAVI, NDRE, LCI, GNDVI

• 9-band +DEM: R, G, NIR, REDEDGE, NDVI, OSAVI, NDRE, LCI,
GNDVI, DEM

Training and test samples were selected from the image
to apply ML classifiers. It selected 194860 samples for
training and 2446940 samples for testing. The distribution
of train and test samples are shown in Figure  4. XGBoost,
LightGBM, Gradient Boosting and CatBoost methods were
used to evaluate these data. The most appropriate parameter
selection for each classifier was determined by GridSearch
method. Accordingly, training and testing were performed with
the combinations of values determined for each parameter in
the parameter group of a method. The parameter combination
with the highest accuracy was selected. All classification

was performed in Python software language and using the
scikit learn library. For the experiments, i7-11800H, 2.30 GHz
processor, GTX 3070 graphics card, and 64 GB RAM hardware
was used.

The performance of the classifiers was measured by precision,
recall, F1-score and accuracy metrics in Equation 14-17.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(14)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(15)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑂𝐴×𝑅𝑒𝑐𝑎𝑙𝑙
𝑂𝐴 + 𝑅𝑒𝑐𝑎𝑙𝑙

(16)

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(17)

The number of properly detected pixels when the real label
and the forecast are both positive is known as the real Positive
(TP). The number of properly classified pixels where the real
label and the forecast are both negative is known as the real
Negative (TN). False Positive (FP) is the term used to describe
the quantity of pixels that are mistakenly positively detected
when the genuine label is negative but the forecast is positive.
Pixels with an improperly negative classification—where the
genuine label is positive but the forecast is negative are
known as False Negatives (FN) (Alpaydin, 2020).

Results and Discussion
The results in Table 3 compare the performance of different
band combinations (4 bands, 4 bands + DEM, 9 bands, 9 band +
DEM) and different ensemble algorithms (XGBoost, LightGBM,
Gradient Boosting, CatBoost) using Accuracy and F1-score
metrics. When 4-Band dataset is used, LightGBM algorithm
achieves the highest value (85.3% and 81.3%) in terms of
Accuracy and F1-score. CatBoost algorithm has a slightly lower
performance in this combination compared to the other three
algorithms.

Figure 4. Distribution of train (left) and test (right) samples
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Table 3. Results of the experiments according to accuracy and F1-scores of the algorithms. All values are in %

4-BAND 4-BAND + DEM 9-BAND 9-BAND + DEM

Classifier Acc. F1 Acc. F1 Acc. F1 Acc. F1

XGBoost 85.1 81.1 84.1 75.4 85.4 81.6 88.7 84.9

LightGBM 85.3 81.3 85.8 77.6 85.5 82.0 90.2 86.5

Gradient Boosting 85.0 81.1 84.0 75.3 85.2 81.2 87.8 83.8

CatBoost 84.5 80.7 85.5 78.2 85.5 82.0 90.2 86.9

Adding DEM data to the dataset provided an increase in
accuracy for LightGBM and CatBoost algorithms compared to
4-band data (in Figure 5 - Figure 6). In this dataset, LightGBM
had the highest Accuracy (85.8%) while CatBoost achieved the
highest F1-score (78.2%). Adding DEM for XGBoost and Gradient
Boosting gave slightly lower or similar results (especially in
XGBoost, Accuracy dropped from 85.1% to 84.1%).

When 9-Band data is used (Figure  7), all algorithms show
similar and relatively high performance (approximately 85
Accuracy, approximately 81–82 F1-score). It has been observed
that the results of the LightGBM and CatBoost algorithms
are at the same level. The combination of 9 bands + DEM
gives the highest results for all classifiers. LightGBM and
CatBoost algorithms have neck and neck performance on
Accuracy. In the F1 score, CatBoost classifier (86.9%) produced
slightly better results than LightGBM (86.5%). It has been
observed that XGBoost and Gradient Boosting show significant
improvements compared to their previous combinations with
9-Band + DEM.

It has been observed that increasing the number of bands
from 4 bands to 9 bands and adding DEM information
generally increases the classification performance. The
highest performance was achieved with the combination of 9-
Band + DEM. Among the algorithms, LightGBM and CatBoost
were mostly seen to give the best results. Especially CatBoost
(general accuracy = 90.2 % , F1-score = 86. 9%) and LightGBM
(general accuracy = 90.2%, F1-score = 86.5%) have the best
performance with 9-Band + DEM. These results show that
increasing the use of spectral bands for classification (9
bands) and using additional elevation information (DEM)
increased the discrimination power of the models. In addition,
it was seen that CatBoost and LightGBM were partly more
stable and provided higher success among different ensemble
algorithms.

When we evaluate the results on a class basis, the precision
for the tree class in all models is quite high, usually in the
range of 92–98%. Recall increases with the number of bands
and the addition of DEM; in the 4-band dataset, accuracies
reach 90% with 9-band + DEM. In particular, CatBoost and

Figure 5. Qualitative results of the methods for 4-Band. (a) XGBoost; (b) LightGBM; (c) Gradient Boosting; (d) Catboost

Figure 6. Qualitative results of the methods for 4-Band + DEM. (a) XGBoost; (b) LightGBM; (c) Gradient Boosting; (d) Catboost
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Figure 7. Qualitative results of the methods for 9-Band. (a) XGBoost; (b) LightGBM; (c) Gradient Boosting; (d) Catboost

Figure 8. Qualitative results of the methods for 9-Band+DEM/ (a) XGBoost; (b) LightGBM; (c) Gradient Boosting; (d) Catboost

LightGBM algorithms reach approximately 97–98% precision
and 91–92% recall classification accuracy for the tree class
(Figure 8) when the 9-Band + DEM dataset is used (Table 4).
The low vegetation class was observed to have the lowest
accuracy of the models. In the 4-Band dataset, precision was
obtained between 57–61% and recall values were obtained
between 73–75%. It was observed that when 4-Band + DEM was
added, the values in precision metrics increased significantly
in Figure  6. In addition, recall values were observed to
decrease significantly. This indicates that the model labeled

the low vegetation class more selectively, thus decreasing
false positives but increasing false negatives.

Although 4-band data (R, G, B and NIR) provides reasonable
performance on its own, better results were observed
especially in low vegetation class and partially in tree
classes when 9-band dataset was used. Adding DEM band
increased the recall value of tree class and it was found
that low vegetation class also increased its precision value
significantly. However, adding DEM to 4-band dataset caused
a significant decrease in low vegetation recall metric. 9-
band + DEM generally gave the highest accuracy and best F1

Table 4. Results of the experiments according to classes of the algorithms. All values are in %

4-BAND 4-BAND + DEM 9-BAND 9-BAND + DEM

Classifier Class Precision Recall Precision Recall Precision Recall Precision Recall

Tree 97.5 84.5 92.5 90.9 97.6 84.0 97.8 90.8

Low veg. 60.2 74.1 92.2 38.8 61.2 73.2 84.1 72.1XGBoost

Non-veg. 79.4 94.9 66.9 99.4 79.2 98.3 73.2 95.6

Tree 97.3 84.7 94.1 92.7 97.8 83.5 97.4 92.5

Low veg. 61.1 73.6 88.7 43.2 62.8 74.7 89.2 70.5LightGBM

Non-veg. 79.2 95.7 69.1 98.8 78.6 99.4 76.2 98.8

Tree 97.5 84.4 92.8 91.1 97.8 84.6 96.1 90.1

Low veg. 59.3 73.9 89.9 39.8 60.4 74.1 88.7 66.2
Gradient
Boosting

Non-veg. 80.0 95.2 66.2 97.3 79.0 95.3 71.5 97.6

Tree 97.4 83.2 93.8 92.1 98.1 83.8 98.0 91.4

Low veg. 57.8 74.6 88.8 47.0 60.2 76.5 86.9 74.1CatBoost

Non-veg. 80.3 95.3 68.5 96.3 80.7 97.1 76.4 99.2
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scores, and when looking at the table, it was seen that it
produced more balanced results for all three classes. When
the differences on class basis were considered, CatBoost
and LightGBM achieved higher precision or more balanced
precision-recall especially in low vegetation class.

According to the findings obtained in the study, it was found
that using more spectral bands (9 bands) and adding DEM
information generally increased the classification quality. The
performance improvement is especially noticeable in a class
that is harder to distinguish, such as low vegetation. While
the tree class already has a high precision value in all
datasets; the recall value also increased with the increase in
the number of DEM and bands. The very high recall value
in the non-vegetation class showed that the models tended
not to miss pixels belonging to this class. However, the
precision metric was slightly lower during this time. CatBoost
and LightGBM algorithms gave the highest results in both
precision and recall metrics in the Low vegetation class in
the 9-band + DEM dataset. Depending on the purpose of
the application, if the low vegetation class is intended to be
classified with the highest accuracy, in other words, if high
recall is required, optimization can be made with parameter
settings or class weights. On the other hand, decision-making
thresholds or model hyperparameters can be optimized to
reduce false positives, i.e. to increase precision. Consequently,
CatBoost or LightGBM models using 9-band + DEM data; it
provides the best balance in both general accuracy and F1-
score metrics and in class-based evaluation, especially in the
low vegetation class. Changing hyperparameter settings or
decision thresholds according to the class priorities required
by the application, such as requiring a higher recall for the low
vegetation class, can provide even more optimized results.

Conclusion
In this study, ensemble ML-based supervised classification
of urban vegetation was performed using multispectral
orthomosaic, DEM, and vegetation indices generated from
UAV images. As a result, it was observed that CatBoost or
LightGBM models using 9-band + DEM data provided the
best balance in both overall accuracy and F1-score metrics
and especially in evaluating the low-vegetation class. The
outcomes demonstrate that multispectral UAVs offer high-
resolution, economical, and time-efficient data for monitoring
in areas with diverse environmental conditions and especially
for vegetation and tree classes.

The results of this study are promising, but more research
is needed on the data. The difference in the density of the
vegetation and the changes in different seasons increase the
complex structure of the data used. Therefore, the algorithm

to be used in such applications needs to be improved. Like
Kaya and Dervisoglu's urban areas classification study (2023),
the application can be enhanced with new studies to which
many spectral indices will be added.

Overall, this study aimed to distinguish urban vegetation in a
selected area with heterogeneous classes using multi-spectral
UAV data and ensemble ML methods. It features groundwork
for understanding the effects of different methods, the
effectiveness of multi-spectral data, and the DEM effect
for future studies on this subject. The study can be more
interpretable and transparent in future applications by adding
explainable artificial intelligence techniques to ML methods.
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