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Abstract

In this paper, by using porosity notion for subsets of natural numbers at infinity porosity lower and porosity upper bound of real valued
sequences will be defined. By using these new notions, definitions of porosity infimum and porosity supremum will be given, respectively.
For a given sequence, the equivalence of porosity infimum and porosity supremum is necessary and sufficient condition for to existence of
porosity convergence but it is necessary, not sufficient, condition for to existence of usual convergence.
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1. Introduction

The concept of porosity for sets was given by Denjoy [4] and Khintchine [7] under different terminologies in 1920 and 1924, respectively.
Then, in 1967 porosity reappeared Dolzenko’s work on the concept of cluster sets [5]. Denjoy was dealed with classification of complements
of the perfect sets [4]. Also, Khintchine gave some new definitions by using density [7].
Let A⊂ R+ = [0,∞), then, the right upper porosity of A at the point 0 is defined as

p+(A) := limsup
h→0+

λ (A,h)
h

where λ (A,h) denotes the length of the largest open subinterval of (0,h) that contains no point of A.
The notion of the right lower porosity of A at the point 0 is defined similarly.
By using the right upper porosity of a set at the point 0, the definitions of right upper porosity and right lower porosity for the subsets of
natural numbers at infinity was given in [1].
Let µ : N→ R+ be a strictly decreasing function such that lim

n→∞
µ(n) = 0, and let E be a subset of N. Right upper porosity and right lower

porosity of E at infinity

pµ (E) := limsup
n→∞

λµ (E,n)
µ(n)

and

p
µ
(E) := liminf

n→∞

λµ (E,n)
µ(n)

where

λµ (E,n) := sup{|µ(n(1))−µ(n(2))| : n≤ n(1) < n(2), (n(1),n(2))∩E = /0}.

Throughout this paper, we will consider only the right upper porosity for subsets of N and use following terminology: A set E ⊆ N is called

• Porous at infinity if pµ (E)> 0;
• Strongly porous at infinity if pµ (E) = 1;
• Nonporous at infinity if pµ (E) = 0.
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By using right upper porosity of a subset of natural numbers at infinity, porosity convergence was defined and some basic properties was
given in [2].

Definition 1.1. Let x = (xn)n∈N be a real valued sequence. x = (xn) is pµ -convergent to l if for every ε > 0,

pµ (Aε )> 0 and pµ (A
c
ε ) = 0

where Aε := {n : |xn− l| ≥ ε} and Ac
ε is the complement of Aε . It is denoted by xn→ l (pµ ) or pµ − lim

n→∞
xn = l.

Let x′ = (xnk ) be a subsequence of x = (xn) and K := {nk : k ∈ N}, then, we abbreviate x′ = (xnk ) by (x)K . Some classes of subsequences of
a given sequence given in [3] as follows:

Definition 1.2. Let x = (xn) be a sequence and (x)K be a subsequence of x = (xn).
(i) If pµ (K)> 0, then, (x)K is called pµ -thin subsequence of x = (xn),
(ii) If pµ (K) = 1, then, (x)K is called a strongly pµ -thin subsequence of x = (xn),
(iii) If pµ (K) = 0, then, (x)K is a pµ -nonthin subsequence of x = (xn).

Now, let us recall that the definition of peak point for real valued sequences we will use later.

Definition 1.3. (Peak Point [6]) The point xl is called upper( or lower) peak point of the sequence x = (xn) if the inequality xl ≥ xn ( or
xl ≤ xn) holds for all n≥ l.

2. New Results

In [8] statistical supremum and statistical infimum have been defined for real valued sequences by using natural density. Here porosity
infimum and porosity supremum for real valued sequences will be defined and some related results will be given.

Definition 2.1. (Porosity Lower Bound) It is said that l ∈ R is a porosity lower bound of a sequence x = (xn), if the following

pµ ({n : xn < l})> 0 and pµ ({n : xn ≥ l}) = 0 (2.1)

hold.

The set of all porosity lower bound of the sequence x = (xn) is denoted by Lpµ
(x).

Let us also denote the set of all usual lower bound of the sequence x = (xn) by L(x), i.e.,

L(x) := {l ∈ R : l ≤ xn for all n ∈ N} .

Definition 2.2. (Porosity Upper Bound) It is said that L ∈ R is a porosity upper bound of given sequence x = (xn), if the following

pµ ({n : xn > L})> 0 and pµ ({n : xn ≤ L}) = 0 (2.2)

hold.

The set of all porosity upper bound of given sequence x = (xn) is denoted by Upµ
(x).

Let us denote the set of all usual upper bounds of the sequence x = (xn) by U(x), i.e.,

U(x) := {L ∈ R : xn ≤ L for all n ∈ N} .

Hence, we have following simple results:

Theorem 2.1. If l ∈ R is an usual lower bound of the sequence x = (xn), then, l ∈ R is a porosity lower bound of the sequence x = (xn).

Proof. From the definition of usual lower bound, we have l ≤ xn for all n ∈ N. So, the set {n : xn < l} is empty. Therefore,

pµ ({n : xn < l}) = 1 > 0 and pµ ({n : xn ≥ l}) = pµ (N) = 0

hold. Therefore, L(x)⊂ Lpµ
(x) holds for any x = (xn).

Remark 2.1. The converse of Theorem 2.1 is not true in general.

Let us consider the sequence x = (xn) = (− 1
n ) and take l =− 1

2 ∈R. Since pµ ({n : xn <− 1
2}) = pµ ({1}) = 1 and pµ ({n : xn ≥− 1

2}) = 0,
then, l =− 1

2 is a porosity lower bound but it is clear that l =− 1
2 is not usual lower bound of this sequence.

Theorem 2.2. If L ∈ R is an usual upper bound of the sequence x = (xn), then, L ∈ R is a porosity upper bound of the sequence x = (xn).

Proof. Since L ∈ R is an usual upper bound of the sequence x = (xn), then, xn ≤ L holds for all n ∈ N. So,

{n : xn > L}= /0.

Therefore,

pµ ({n : xn > L}) = 1 > 0 and pµ ({n : xn ≤ L}) = pµ (N) = 0

hold. This means that U(x)⊂Upµ
(x).

Remark 2.2. The converse of the Theorem 2.2 is not true, in general.
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Let us consider the sequence x = (xn) = ( 1
n ) and take L = 1

2 ∈ R. It is clear that L = 1
2 is a porosity upper bound because pµ ({n : xn >

1
2}) = pµ ({1}) = 1 and pµ ({n : xn ≤ 1

2}) = 0, but it is not usual upper bound for the sequence.
From Definition 2.1 and Definition 2.2, we have also following simple result:

Theorem 2.3. i) If l ∈ R is a porosity lower bound and l′ < l, then, l′ ∈ R is also porosity lower bound of the sequence x = (xn).
ii) If L ∈ R is a porosity upper bound and L < L′, then, L′ ∈ R is also porosity upper bound of the sequence x = (xn).

Before giving the proof, we need following simple lemma:

Lemma 2.1. [2] Let A,B⊂ N and A⊂ B. If pµ (B)> 0, then, pµ (A)> 0. Also, pµ (B)< pµ (A) holds.

Proof of Theorem 2.3. i) Assume that l ∈ R is a porosity lower bound of the sequence x = (xn). That is, the set {n : xn < l} is porous and
the set {n : xn ≥ l} is nonporous. Since l′ < l, then, the following inclusion{

n : xn < l′
}
⊆ {n : xn < l} and {n : xn ≥ l} ⊆

{
n : xn ≥ l′

}
hold. Since pµ ({n : xn < l})> 0, then, Lemma 2.1 gives that pµ ({n : xn < l′})> 0 and pµ ({n : xn ≥ l′}) = 0. So l′ is also a porosity lower
bound.
ii) Since L ∈ R is a porosity upper bound of the sequence x = (xn), then, the set {n : xn > L} is porous and the set {n : xn ≤ L} is nonporous.
Since L < L′, then, the following inclusion{

n : xn > L′
}
⊂ {n : xn > L} and {n : xn ≤ L} ⊆

{
n : xn ≤ L′

}
hold. Since pµ ({n : xn > L})> 0, then, from Lemma 2.1 pµ ({n : xn > L′})> 0 and pµ ({n : xn ≤ L′}) = 0. So L′ is also a porosity upper
bound.

Corollary 2.1. If a sequence x = (xn) has a porosity lower (or porosity upper) bound, then, it has infinitely many porosity lower (or porosity
upper) bounds.

Definition 2.3. (Porosity Infimum (infpµ
)) A number l ∈ R is called porosity infimum of the sequence x = (xn) if it is supremum of Lpµ

(x).
That is, infpµ

xn := supLpµ
(x).

Definition 2.4. (Porosity Supremum (suppµ
)) A number L ∈ R is called porosity supremum of the sequence x = (xn) if it is infimum of

Upµ
(x). That is, suppµ

xn := infUpµ
(x).

Theorem 2.4. Let x = (xn) be a sequence of real numbers. Then, following inequalities

infxn ≤ inf
pµ

xn ≤ sup
pµ

xn ≤ supxn (2.3)

hold.

Proof. From the definition of usual infimum we have

pµ ({n : xn < infxn}) = pµ ( /0) = 1 > 0 and pµ ({n : xn ≥ infxn}) = pµ (N) = 0

This gives that infxn ∈ Lpµ
(x). Since infpµ

xn = supLpµ
(x), then, we have

inf
pµ

xn ≥ infxn.

From the definition of usual supremum we have

pµ ({n : xn > supxn}) = pµ ( /0) = 1 > 0 and pµ ({n : xn ≤ supxn}) = pµ (N) = 0

This gives that supxn ∈Upµ
(x). Since suppµ

xn = infUpµ
(x), then, we have

sup
pµ

xn ≤ supxn.

For to complete the proof, it is enough to show that the inequality

l ≤ L (2.4)

holds for an arbitrary l ∈ Lpµ
(x) and L ∈Upµ

(x).
Let us assume (2.4) is not true. That is, there exist l′ ∈ Lpµ

(x) and L′ ∈Upµ
(x) such that L′ < l′ holds. Since L′ is a porosity upper bound,

then, from Theorem 2.3 (ii), l′ is also porosity upper bound of the sequence. This is a contradiction to the assumption on l′. So, (2.4) is
true.

It is possible to find a sequence such that some inequalities in (2.3) turn to equality:
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Remark 2.3. i) Let x = (xn) be a constant sequence. Then,

infxn = inf
pµ

xn = sup
pµ

xn = supxn.

ii) Let x = (xn) deine as follows:

xn =

{
xn, n≤ n0, n0 ∈ N
a, n > n0,

such that xn ≤ a for all n ∈ {1,2,3, ...,n0}. Then,

sup
pµ

xn = supxn.

iii) Let x = (xn) deine as follows:

xn =

{
xn, n≤ n0, n0 ∈ N
a, n > n0,

such that xn ≥ a for all n ∈ {1,2,3, ...,n0}. Then ,

infxn = inf
pµ

xn

In Theorem 2.5 and Theorem 2.6, necessary and sufficient conditions will be given for a number to be a porosity infimum and porosity
supremum of a real valued sequence, respectively.

Theorem 2.5. Let x = (xn) be a real valued sequence and L ∈ R. Then, infpµ
xn = L if and only if for every ε > 0

(i) pµ ({n : xn < L− ε})> 0 and pµ ({n : xn ≥ L− ε}) = 0

and

(ii) pµ ({n : xn < L+ ε}) = 0 and pµ ({n : xn ≥ L+ ε})> 0

hold.

Proof. ”⇒” Assume that infpµ
xn = L. i.e., supLpµ

(x) = L. So, we have

(a) s≤ L,∀s ∈ Lpµ
(x),

and

(b) ∀ε > 0 ∃s′ ∈ Lpµ
(x)

such that L− ε < s′ holds.
Since from (b) and Theorem 2.3, L− ε is a porosity lower bound. So, (i) holds.
Now, assume that (ii) is not hold for all ε > 0. That is, there exists ε0 such that

pµ ({n : xn < L+ ε0})> 0.

This mean that pµ ({n : xn ≥ L+ ε0}) = 0 and L+ ε0 ∈ Lpµ
(x). Since L < L+ ε0, this is contradiction to assumption on L.

”⇐” Now, assume that, (i) and (ii) hold for all positive ε > 0. It is clear that L− ε ∈ Lpµ
(x) and L+ ε /∈ Lpµ

(x). Therefore, Lpµ
(x) =

(−∞,L− ε], for all ε > 0. So, we have supLpµ
(x) = L.

Theorem 2.6. Let x = (xn) be a real valued sequence and l ∈ R. Then, suppµ
xn = l if and only if for every ε > 0

(i) pµ ({n : xn > l + ε})> 0 and pµ ({n : xn ≤ l + ε}) = 0

and

(ii) pµ ({n : xn > l− ε}) = 0 and pµ ({n : xn ≤ l− ε})> 0

hold.

Proof. ”⇒” Since suppµ
xn = l, then, l = infUpµ

(x). Therefore, we have

(a) l ≤ s,∀ s ∈Upµ
(x),

and

(b) ∀ε > 0 ∃s′ ∈Upµ
(x)

such that s′ < l + ε holds.
From Theorem 2.3 and (b), l + ε is a porosity upper bound of the sequence. So, (i) holds.
Now, assume that, (ii) is not true. That is, there exists an ε0 > 0 such that pµ ({n : xn > l− ε0})> 0. It means that pµ ({n : xn ≤ l− ε0}) = 0
and l− ε0 ∈Upµ

(x). But this is contradiction to l = infUpµ
(x).

”⇐” Now, assume that, for every ε > 0, (i) and (ii) hold. From (i) and (ii) we have l+ε ∈Upµ
(x) and l−ε /∈Upµ

(x), respectively. Therefore,
Upµ

(x) = [l + ε,∞) and infUpµ
(x) = l.
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Theorem 2.7. Let x = (xn) be a real valued sequence. The following statements are true:
(i) If the sequence x = (xn) is monotone increasing, then, infpµ

xn = supxn,
(ii) If the sequence x = (xn) is monotone decreasing, then, suppµ

xn = infxn.

Proof. We shall give only the proof of (i). The case (ii) can be obtained by doing suitable changes in the proof of (i).
Now, assume that x = (xn) is a monotone increasing sequence such that

supxn < ∞,

holds. So, we have for all n ∈ N,

xn ≤ supxn, (2.5)

and for every ε > 0 there exist an n0 ∈ N such that

supxn− ε < xn0 . (2.6)

From (2.5) we have, supxn /∈ Lpµ
(x). Also, from (2.6) we have

{n : xn < supxn− ε} ⊂ {1,2,3, ...,n0} .

Hence, Lemma 2.1 gives that

supxn− ε ∈ Lpµ
(x).

Therefore, from Remark 2.3

Lpµ
(x) = (−∞,supxn− ε),

holds for all ε > 0. So,

inf
pµ

xn = supLpµ
(x) = supxn.

Now, assume that

supxn = ∞.

It means that for all l ∈ R there is an n0 = n0(x) ∈ N such that l ≤ xn0 and for every n ≥ n0 the inequality xn0 ≤ xn holds. So, we have
following inclusion

{n : xn < l} ⊆ {1,2,3, ...,n0} .

From last inclusion and Lemma 2.1, we have

pµ ({n : xn < l}) = 1 > 0 and pµ ({n : xn ≥ l}) = 0.

So, l ∈ Lpµ
(x) for any l ∈ R. Therefore,

Lpµ
(x) = (−∞,∞) and supLpµ

(x) = ∞.

This gives the proof.

Corollary 2.2. Assume x = (xn) real valued bounded sequence. If the sequence x = (xn) is monotone decreasing (or increasing), then,

lim
n→∞

xn = sup
pµ

xn (or = inf
pµ

xn).

Theorem 2.8. Let x = (xn) be a real valued sequence. If the element xn0 is an upper(or lower) peak point of (xn), then, the element xn0 is a
porosity upper (or porosity lower) bound.

Proof. Assume that the point xn0 is an upper (or lower) peak point of the sequence x = (xn) such that xn ≤ xn0 (or xn0 ≤ xn) holds for all
n≥ n0. So, the inclusion

{n : xn > xn0} ⊆ {1,2, ...,n0}, (or {n : xn < xn0} ⊂ {1,2, ...,n0})

holds. From Lemma 2.1, we have

pµ ({n : xn > xn0}) = 1 > 0 and pµ ({n : xn ≤ xn0}) = 0 (or pµ ({n : xn < xn0}) = 1 > 0 and pµ ({n : xn ≥ xn0}) = 0).

This give us the point xn0 is a porosity upper (or lower) bound of the sequence x = (xn).

Definition 2.5. Any two real valued sequences x = (xn) and y = (yn) are called porosity equivalent if the set A = {n : xn 6= yn} is porous. It
is denoted by x� y(pµ ).

Theorem 2.9. If the sequence x = (xn) and y = (yn) are porosity equivalent, then,

inf
pµ

xn = inf
pµ

yn and sup
pµ

xn = sup
pµ

yn.
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Proof. Since the sequences x = (xn) and y = (yn) are porosity equivalent, then, the set A = {n : xn 6= yn} is porous. Let us consider an
arbitrary element l ∈ Lpµ

(x). The element l ∈ R is a porosity lower bound of the sequence x = (xn), then, we have

pµ ({n : xn < l})> 0 and pµ ({n : xn ≥ l}) = 0.

From the following inclusions

{n : xn < l} = {n : xn 6= yn < l}∪{n : xn = yn < l}
⊂ A∪{n : xn = yn < l} ,

and {n : yn ≥ l}= {n : xn 6= yn ≥ l}∪{n : xn = yn ≥ l} we obtain

pµ ({n : yn < l})> 0 and pµ ({n : yn ≥ l}) = 0. (2.7)

From (2.7), the element l ∈ R is a porosity lower bound of the sequence y = (yn). That is, Lpµ
(x)⊂ Lpµ

(y). If we consider arbitrary point
l ∈ Lpµ

(y), it can obtain easily l ∈ Lpµ
(x) such that Lpµ

(y)⊂ Lpµ
(x). Therefore,

Lpµ
(y) = Lpµ

(x) (2.8)

hold. Since supLpµ
(y) = supLpµ

(x), then, infpµ
xn = infpµ

yn is obtained.
By using the same idea as above it can be obtained suppµ

xn = suppµ
yn.

Remark 2.4. The converse of Theorem 2.9 is not true.

Let us consider the sequences x = (xn) and y = (yn) as follows:

xn := 1− 1
n

and yn := 1+
1
n

for all n ∈ N. Then, it is clear that

inf
pµ

xn = inf
pµ

yn = 1 and sup
pµ

xn = sup
pµ

yn = 1.

But, A = {n : xn 6= yn}= N and N is nonporous. So, x = (xn) and y = (yn) are not porosity equivalent.

Theorem 2.10. Let x = (xn) be a real valued sequence and (x)K be a pµ -nonthin subsequence of x = (xn).
(i) If infpµ

xn = m, then, m is porosity infimum of (x)K .
(ii) If suppµ

xn = l, then, l is porosity supremum of (x)K .

Proof. We will prove only (i). The other can be obtained by the same way.
(i) Let infpµ

xn = m. Then, from Theorem 2.5

pµ ({n : xn < m− ε})> 0 and pµ ({n : xn ≥ m− ε}) = 0

holds for every ε > 0. It is clear that {nk : xnk < m− ε} ⊆ {n : xn < m− ε}. This inclusion and Lemma 2.1 give that

pµ ({n : xnk < m− ε})> 0 and pµ ({nk : xnk ≥ m− ε}) = 0.

Hence, m is porosity infimum of (x)K .

Remark 2.5. The converse of Theorem 2.10 is not true, in general.

Let µ : N→ R+ be a scaling function such that µ(n) = 1
n ,n ∈ N. Let a sequence x = (xn) and its subsequence (x2m) as follows:

xn =


−2k, n = 2k,

−3k, n = 2k−1,
0, otherwise,

and

x2m =

{
−2k, m = 2k−1,
0, otherwise.

It is clear that (x2m) is a pµ -nonthin subsequence of x = (xn). So the condition of Theorem 2.10 holds. Also infpµ
(x2m) = 0. But

infpµ
(xn) 6= 0.

Remark 2.6. pµ -nonthiness of subsequence can not be omitted in Theorem 2.10.

Let µ : N→ R+ be a scaling function such that µ(n) = 1
n ,n ∈ N. Let a sequence x = (xn) as follows:

xn :=
{
−n, n = 2m, m ∈ N,
0, otherwise.

Let take the subsequence (x2m) of x= (xn). It is clear that (x2m) is not pµ -nonthin subsequence of (xn). Also, infpµ
(xn) = 0 but infpµ

(x2m) 6= 0.

Theorem 2.11. If lim
n→∞

xn = l, then, suppµ
xn = infpµ

xn = l.
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Proof. Assume lim
n→∞

xn = l. That is, for any ε > 0, there exists n0 = n0(ε) ∈ N such that

|xn− l|< ε, (2.9)

holds for all n≥ n0. Hence, following inclusions deduced from (2.9) easily

{n : xn < l− ε} ⊂ {1,2, ...,n0} , {n : xn > l + ε} ⊂ {1,2, ...,n0} . (2.10)

So, by using (2.10) and Lemma 2.1, we have

pµ ({n : xn < l− ε}) = 1 and pµ ({n : xn ≥ l− ε}) = 0

and

pµ ({n : xn > l + ε}) = 1 and pµ ({n : xn ≤ l + ε}) = 0.

This gives that

l− ε ∈ Lpµ
(x), l + ε ∈Upµ

(x)

for all ε > 0. Also, Theorem 2.3 gives that

Lpµ
(x) = (−∞, l] and Upµ

(x) = [l,∞).

Therefore,

inf
pµ

xn = sup(−∞, l] = l

and

sup
pµ

xn = inf[l,∞) = l

hold. This give the proof of theorem.

Remark 2.7. The converse of the Theorem 2.11 is not true, in general.

Let us consider the sequence x = (xn) as

xn =

{
1, n = 2k,k = 1,2, ...,
0, otherwise.

It is clear that infpµ
xn = suppµ

xn = 0 but the sequence is not convergent to 0. On the other hand, x = (xn) is porosity convergent to 0.
In the following theorem, on the contrary of Theorem 2.11, it is proved that the equality of these two numbers is necessary and sufficient for
existence of porosity limit.

Theorem 2.12. pµ − lim
n→∞

xn = l if and only if suppµ
xn = infpµ

xn = l.

Proof. ”=⇒” Assume that pµ − lim
n→∞

xn = l holds. From the assumption, we have for any ε > 0,

pµ ({n : |xn− l| ≥ ε})> 0 and pµ ({n : |xn− l|< ε}) = 0. (2.11)

Also, we have

{n : |xn− l| ≥ ε}= {n : xn ≥ l + ε}∪{n : xn ≤ l− ε} and {n : |xn− l|< ε}= {n : xn < l + ε}∪{n : xn > l− ε}

From the equation (2.11), and Lemma 2.1 we obtain

pµ ({n : xn ≥ l + ε})> 0 and pµ ({n : xn < l + ε}) = 0 (2.12)

and

pµ ({n : xn ≤ l− ε})> 0 and pµ ({n : xn > l− ε}) = 0. (2.13)

So, (2.12) and (2.13) gives that for every ε > 0, the number l + ε is a porosity upper bound, l− ε is a porosity lower bound, respectively.
Therefore,

Lpµ
(x) = (−∞, l) and Upµ

(x) = (l,∞)

for all ε > 0. So, we have

supLpµ
(x) = l, infUpµ

(x) = l.

”⇐=” Assume that

sup
pµ

xn = inf
pµ

xn = l.
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That is,

infUpµ
(x) = supLpµ

(x) = l.

From the definition of usual supremum and infimum, for all ε > 0, there exists at least one element l′ ∈ Lpµ
(x) and l′′ ∈Upµ

(x) such that the
inequalities

l− ε < l′ and l′′ < l + ε

hold.
Since l′′ is a porosity upper bound, then, the following inclusion

{n : xn > l + ε} ⊂
{

n : xn > l′′
}

and
{

n : xn ≤ l′′
}
⊂ {n : xn ≤ l + ε}

hold. So, we have

pµ ({n : xn > l + ε})> 0 and pµ ({n : xn ≤ l + ε}) = 0. (2.14)

Since l′ is an porosity lower bound, then, the following inclusion

{n : xn < l− ε} ⊂
{

n : xn < l′
}

and
{

n : xn ≥ l′
}
⊂ {n : xn ≥ l− ε}

hold. So, we have

pµ ({n : xn < l− ε})> 0 and pµ ({n : xn ≥ l− ε}) = 0. (2.15)

From (2.14), (2.15) and

{n : |xn− l| ≥ ε}= {n : xn ≥ l + ε}∪{n : xn ≤ l− ε} and {n : |xn− l|< ε}= {n : xn < l + ε}∪{n : xn > l− ε}

we have

pµ ({n : |xn− l| ≥ ε})> 0 and pµ ({n : |xn− l|< ε}) = 0.

Therefore, the sequence x = (xn) is porosity convergent to l ∈ R.
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