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Abstract
Recently, an extension of the τ -hypergeometric functions 2R

τ
1(z) was given by Parmar [6]. The main

object of this paper is to introduce an extension of the τ -hypergeometric function 3R
τ
2(z) and investigate

its various properties such as integral representations, derivative formula, Mellin transform and fractional
calculus operators. Some published results are the special cases of our main results.
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1. Introduction and Preliminaries
Chaudhry and Zubair [1, 2] introduced extended gamma function, as follows:

Γp (z) =

{ ∫∞
0
tz−1 exp

(
−t− p

t

)
dt, (< (p) > 0; z ∈ C)

Γ(z), (<(z) > 0; p = 0)
.

Srivastava et al. [9, p.487, eq.(15)] introduced the following family of generalized hypergeometric functions:

rFs

[
(α1, p) , α2, · · · , αr;
β1, β2, · · · , βs;

z

]
=

∞∑
n=0

(α1; p)n (α2)n · · · (αr)n
(β1)n (β2)n · · · (βs)n

zn

n!
,

where, (α1; p)n is the generalized Pochhammer symbol [9, p.485, eq.(8)], defined as

(λ; p)µ =

{
Γp(λ+µ)

Γ(λ) , (< (p) > 0; λ, µ ∈ C)

(λ)µ , (λ, µ ∈ C; p = 0)
, (1.1)

here, (λ)µ (λ, µ ∈ C) denotes the Pochhammer symbol [10].
The integral representation of (1.1) is given by

(λ; p)µ =
1

Γ (λ)

∫ ∞
0

tλ+µ−1 exp
(
−t− p

t

)
dt, (< (p) > 0, < (λ+ µ) > 0 when p = 0) .

The τ -hypergeometric function was investigated and studied by Virchenko et al. [11], defined by the following
manner:

2R
τ
1 (z) = 2R1 (a, b; c; τ ; z) =

Γ (c)

Γ (b)

∞∑
n=0

(a)n Γ (b+ τn)

Γ (c+ τn)

zn

n!
, (1.2)
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with τ > 0; |z| < 1;< (c) > < (b) > 0.
Integral representation of (1.2) given by [11, p.91, eq.(6)]:

2R1 (a, b; c; τ ; z) =
1

B (b, c− b)

∫ 1

0

tb−1 (1− t)c−b−1
(1− ztτ )

−a
dt, (1.3)

with τ > 0; |arg (1− z)| < π;< (c) > < (b) > 0.
When τ = 1 in (1.2) and (1.3) yields the representations of Gauss’s hypergeometric function [7].

Very recently, Parmar [6, p.423, eq.(2.1)] introduced an extended τ -hypergeometric function 2R
τ
1(z), as follows:

2R
τ
1 (z) = 2R

τ
1 ((a, p), b; c; z) =

Γ (c)

Γ (b)

∞∑
n=0

(a; p)n Γ (b+ τn)

Γ (c+ τn)

zn

n!
, (1.4)

where, a, b ∈ C, c ∈ C\Z−0 , p ≥ 0, τ > 0, |z| < 1, and < (c) > < (b) > 0 when p = 0,
and its integral representation [6, p.423, eq.(3.1)]:

2R
τ
1 ((a, p), b; c; z) =

1

B (b, c− b)

∫ 1

0

tb−1 (1− t)c−b−1
1F0 [(a, p);−; ztτ ] dt,

with τ > 0;< (p) > 0; < (c) > < (b) > 0 when p = 0.

2. Extended τ -Hypergeometric Function 3R
τ
2(z)

Motivated mainly by investigations of the extended τ -hypergeometric function 2R
τ
1(z) defined by (1.2), we

introduced the extended τ -hypergeometric function 3R
τ
2(z) as follows:

For λ, a, b ∈ C and c, d ∈ C\Z−0 , we have

3R
τ
2 (z) = 3R

τ
2 ((λ, p), a, b; c; d; z) =

Γ (c) Γ (d)

Γ (a) Γ (b)

∞∑
n=0

(λ; p)n Γ (a+ τn) Γ (b+ τn)

Γ (c+ τn) Γ (d+ τn)

zn

n!
, (2.1)

where, p ≥ 0, τ > 0, |z| < 1, and < (d) > < (a) > 0, < (c) > < (b) > 0 when p = 0.

Special Cases:
1. If we take b = d, then (2.1) reduces to the extended τ -hypergeometric function 2R

τ
1(z) given by Parmar [6,

p.422, eq.(2.1)] as defined in (1.4).

2. If we put b = d and set τ = 1, then (2.1) reduces to the extended Gauss hypergeometric function [9, p.487,
eq.(17)] given by

2F1 ((λ, p), a; c; z) =

∞∑
n=0

(λ; p)n (a)n
(c)n

zn

n!
.

3. If we take τ = 1 and p = 0 in (2.1), then it reduces to the classical Gauss’s hypergeometric function as

3F2 (λ, a, b; c; d; z) =

∞∑
n=0

(λ)n (a)n (b)n
(c)n (d)n

zn

n!
.

4. If we put b = d and set τ = 1, p = 0 in (2.1), then it reduces to the classical Gauss’s hypergeometric function as

2F1 (a, b; c; z) =

∞∑
n=0

(a)n (b)n
(c)n

zn

n!
.
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3. Integral Representation and Derivative Formula

In this section, we obtain integral representation and differential formula for 3R
τ
2(z) as given in (2.1).

Theorem 1. The following integral representation for 3R
τ
2(z) in (2.1) holds true:

3R
τ
2 ((λ, p), a, b; c; d; z)

=
1

B (a, c− a)

∫ 1

0

ta−1 (1− t)c−a−1
2R

τ
1 [(λ, p), b, d; ztτ ] dt, (3.1)

where 2R
τ
1(z) is given in (1.4), and τ > 0;< (p) > 0; < (d) > < (a) > 0, < (c) > < (b) > 0 when p = 0.

Proof. Using (2.1) and considering the following elementary identity for the Beta function:

B (m,n) =
Γ (m) Γ (n)

Γ (m+ n)
=

∫ 1

0

tm−1 (1− t)n−1
dt, (3.2)

then we arrive at

3R
τ
2 ((λ, p), a, b; c; d; z) =

Γ (c)

Γ (a) Γ (c− a)

∞∑
n=0

(λ; p)n Γ (b+ τn)

Γ (d+ τn)
B (a+ τn, c− a)

zn

n!
,

now using (3.2), then we have

=
Γ (c)

Γ (a) Γ (c− a)

∞∑
n=0

(λ; p)n Γ (b+ τn)

Γ (d+ τn)

∫ 1

0

ta+τn−1 (1− t)c−a−1 zn

n!
dt.

Next, interchanging the order of integration and summation which is permissible

=
Γ (c)

Γ (a) Γ (c− a)

∫ 1

0

ta−1 (1− t)c−a−1

{
Γ (d)

Γ (b)

∞∑
n=0

(λ; p)n Γ (b+ τn) (ztτ )
n

Γ (c+ τn) n!

}
dt,

by using (1.4), then we easily get the desired result in (3.1). This complete the proof of the Theorem 1.

If we put b = d, then (3.1) reduces to the known integral representation of the extended τ -hypergeometric
function 2R

τ
1(z) given by Parmar [6, p.423, eq.(3.1)], as given in the following corollary:

Corollary 1.1.

2R
τ
1 ((λ, p), b; c; z) =

1

B (b, c− b)

∫ 1

0

tb−1 (1− t)c−b−1
1F0 [(λ, p);−; ztτ ] dt,

where <(p) > 0; τ > 0; <(c) > <(b) > 0 when p = 0.

Remark 3.1. If we set τ = 1 in above corollary then we obtain the following result in terms of the extended hypergeometric
function [9, p.488, eq.(24)]:

2F1 ((λ, p), b; c; z) =
1

B (b, c− b)

∫ 1

0

tb−1 (1− t)c−b−1
1F0 [(λ, p);−; zt] dt. (3.3)

Further, if we take p = 0 in (3.3), then we arrive at the known integral representation of the classical Gauss’s hypergeometric
function [3, p.19, eq.(1.11.10)], as follows.

2F1 (λ, b; c; z) =
1

B (b, c− b)

∫ 1

0

tb−1 (1− t)c−b−1
(1− zt)−λ dt.

Theorem 2. The following derivative formula for 3R
τ
2(z) in (2.1) holds true:(

d

dz

)n [
zc−1

3R
τ
2 ((λ, p), a, b; c; d; νzτ )

]
=
zc−n−1 Γ (c)

Γ (c− n)
3R

τ
2 [(λ, p), a, b; c− n; d; νzτ ] . (3.4)
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Proof. By using the series representation of 3R
τ
2(z) as given in (2.1), and interchanging the order of differentiation

and summation, then we arrive at the following:(
d

dz

)n [
zc−1

3R
τ
2 ((λ, p), a, b; c; d; νzτ )

]
=

Γ (c) Γ (d)

Γ (a) Γ (b)

∞∑
m=0

(λ; p)m Γ (a+ τm) Γ (b+ τm)

Γ (c+ τm) Γ (d+ τm)

νm

m!

(
d

dz

)n (
zc+τm−1

)
,

now, differentiating term by term under the sign of summation, we have

=
Γ (c) Γ (d)

Γ (a) Γ (b)

∞∑
m=0

(λ; p)m Γ (a+ τm) Γ (b+ τm)

Γ (c− n+ τm) Γ (d+ τm)

νm

m!
zc+τm−n−1

= zc−n−1 Γ (c) Γ (d)

Γ (a) Γ (b)

∞∑
m=0

(λ; p)m Γ (a+ τm) Γ (b+ τm)

Γ (c− n+ τm) Γ (d+ τm)

(νzτ )
m

m!
.

By using (2.1), we obtain the R.H.S. of (3.4) after little simplifications. This complete the proof.

4. Mellin Transform of the Function 3R
τ
2(z)

The Mellin transform of a function f(x) is defined by

M [f(x); s] = F (s) =

∫ ∞
0

xs−1 f(x) dx, (s ∈ C) , (4.1)

provided that the improper integral in (4.1) exists.

Theorem 3. The Mellin transform of the extended τ -hypergeometric function 3R
τ
2(z) defined in (2.1) is given by

M [3R
τ
2 ((λ, p), a, b; c; d; z) ; s] = Γ (s) (λ)s 3R

τ
2 (λ+ s, a, b; c; d; z) , (4.2)

where < (s) > 0 and < (λ+ s) > 0 when p = 0.

Proof. Using (2.1) and applying Mellin transform, then we get

M [3R
τ
2 ((λ, p), a, b; c; d; z) ; s]

=

∫ ∞
0

ps−1

(
Γ (c) Γ (d)

Γ (a) Γ (b)

∞∑
n=0

(λ; p)n Γ (a+ τn) Γ (b+ τn)

Γ (c+ τn) Γ (d+ τn)

zn

n!

)
dp.

Interchanging the order of integration and summation which is permissible, we have

=
Γ (c) Γ (d)

Γ (a) Γ (b)

∞∑
n=0

Γ (a+ τn) Γ (b+ τn)

Γ (c+ τn) Γ (d+ τn)

zn

n!

1

Γ (λ)

∫ ∞
0

ps−1 Γp (λ+ n) dp.

Now, using the result [2, p.16, eq.(1.110)] given by∫ ∞
0

ps−1 Γp (λ+ n) dp = Γ (λ+ s+ n) Γ (s) , (<(s) > 0) ,

then we arrive at the following:

M [3R
τ
2 ((λ, p), a, b; c; d; z) ; s]

=
Γ (s) Γ (c) Γ (d)

Γ (λ) Γ (a) Γ (b)

∞∑
n=0

Γ (λ+ s+ n) Γ (a+ τn) Γ (b+ τn)

Γ (c+ τn) Γ (d+ τn)

zn

n!

= Γ (s) (λ)s
Γ (c) Γ (d)

Γ (a) Γ (b)

∞∑
n=0

(λ+ s)n Γ (a+ τn) Γ (b+ τn)

Γ (c+ τn) Γ (d+ τn)

zn

n!
.

By using the definition of extended τ -hypergeometric function as given by (2.1), we obtain the desired result in
(4.2). This complete the proof of the Theorem 3.
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5. Fractional Calculus Approach

The Riemann-Liouville left-sided fractional calculus operators Iαa+ and Dα
a+ of order α are defined by [8]

Iαa+f(x) = aI
α
x f(x) =

1

Γ (α)

∫ x

a

(x− t)α−1
f (t) dt, (x > a) ,

is called the Riemann-Liouville left-sided fractional integral of order α.

Dα
a+f(x) = aD

α
xf(x) =

1

Γ (n− α)

(
d

dx

)n ∫ x

a

f (t) dt

(t− x)
α−n+1 , (n = [α] + 1) ,

is called the left-sided Riemann-Liouville derivative of order α.
In this section we consider the fractional differintegral operators containing extended τ -hypergeometric function

3R
τ
2(z) as in kernel.

Theorem 4. Let µ ∈ R+, λ, α, a, b, c, d, ν ∈ C and < (α) > 0, < (c) > 0, < (τ) > 0, then for x > µ the following result
holds true: (

Iαµ+

[
(t− µ)

c−1
3R

τ
2 ((λ, p), a, b; c; d; ν (t− µ)

τ
)
])

(x)

=
(x− µ)

c+α−1
Γ (c)

Γ (c+ α)
3R

τ
2 ((λ, p), a, b; c+ α; d; ν (x− µ)

τ
) . (5.1)

Proof. By using the series representation of extended τ -hypergeometric function 3R
τ
2(z) as given by (2.1) and

interchanging the order of integration and summation, we have(
Iαµ+

[
(t− µ)

c−1
3R

τ
2 ((λ, p), a, b; c; d; ν (t− µ)

τ
)
])

(x)

=
Γ (c) Γ (d)

Γ (a) Γ (b)

∞∑
n=0

(λ; p)n Γ (a+ τn) Γ (b+ τn)

Γ (c+ τn) Γ (d+ τn)

νn

n!
Iαµ+

(
(t− µ)

c+τn−1
)

(x) ,

now for x > µ, taking the following power function formula into account:

Iαa+ (x− a)
β−1

=
Γ (β)

Γ (α+ β)
(x− a)

α+β−1
, (α, β ∈ C, < (α) > 0, < (β) > 0) ,

then we have (
Iαµ+

[
(t− µ)

c−1
3R

τ
2 ((λ, p), a, b; c; d; ν (t− µ)

τ
)
])

(x)

=
(x− µ)

c+α−1
Γ (c)

Γ (c+ α)

Γ (c+ α) Γ (d)

Γ (a) Γ (b)

∞∑
n=0

(λ; p)n Γ (a+ τn) Γ (b+ τn)

Γ (c+ α+ τn) Γ (d+ τn)

[ν (x− µ)
τ
]
n

n!
,

next, by using the definition (2.1), we obtain the desired result in (5.1).

Theorem 5. Let µ ∈ R+, λ, a, b, c, d, ν ∈ C and α > 0, < (c) > 0, < (τ) > 0, then for x > µ the following relation holds
true: (

Dα
µ+

[
(t− µ)

c−1
3R

τ
2 ((λ, p), a, b; c; d; ν (t− µ)

τ
)
])

(x)

=
(x− µ)

c−α−1
Γ (c)

Γ (c− α)
3R

τ
2 ((λ, p), a, b; c− α; d; ν (x− µ)

τ
) . (5.2)

Proof. By using the series representation given by (2.1) and using the following relation

(
Dα
µ+f

)
(x) =

(
d

dx

)n (
In−αµ+ f

)
(x) , (α ∈ C, α > 0; n = [α] + 1) ,
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then we have(
Dα
µ+

[
(t− µ)

c−1
3R

τ
2 ((λ, p), a, b; c; d; ν (t− µ)

τ
)
])

(x)

=

(
d

dx

)n (
In−αµ+

[
(t− µ)

c−1
3R

τ
2 ((λ, p), a, b; c; d; ν (t− µ)

τ
)
])

(x) ,

by using (5.1) and setting α = n− α, then we arrive at the following:(
Dα
µ+

[
(t− µ)

c−1
3R

τ
2 ((λ, p), a, b; c; d; ν (t− µ)

τ
)
])

(x)

=

(
d

dx

)n [
(x− µ)

c+n−α−1
Γ (c)

Γ (c+ n− α)
3R

τ
2 ((λ, p), a, b; c+ n− α; d; ν (x− µ)

τ
)

]
.

next, by using the result (3.4), we obtain the desired result in (5.2) after little simplification. This complete the proof
of the Theorem 5.

Remark 5.1. For the detail of fractional calculus operators the reader can refer the work (see, [4, 5]).

6. Concluding Remarks

In the present paper we derive a new extended τ -hypergeometric function 3R
τ
2(z). Our results motivated mainly

by investigations of the τ -hypergeometric function 2R
τ
1(z) [11] and its extension [6]. We obtained certain integral

representation, a derivative formula, Mellin transform and fractional calculus approach of this new extended
τ -hypergeometric function 3R

τ
2(z). The provided results are new and have uniqueness identity in the literature. On

account of the general nature of the extended τ -hypergeometric function, a number of known results can easily be
found as special cases of our main results.
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