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Abstract

Computer-aided diagnosis systems help physicians diagnose diseases accurately at an early
stage by automating preprocessing, image enhancement, and feature extraction, thus in-
creasing patient survival rates. In this paper, we introduce an algorithm that leverages
metric-based fuzzy positive regions to address the degradation of feature quality in brain
tumor magnetic resonance imaging caused by inappropriate image enhancement. Employ-
ing sliding window blocks, the algorithm performs overlapping segmentation of magnetic
resonance images and evaluates the membership of these blocks to decision classes by
metric-based fuzzy positive regions. Blocks with the highest fuzzy positive region values
are selected for multiple enhancement rounds, forming a candidate set that is sequen-
tially integrated back into the original image. Finally, the features of the locally enhanced
images are analyzed using the fuzzy positive region to generate the optimal feature set.
To validate the effectiveness of the proposed algorithm, the features extracted using this
method are compared with those extracted directly from the original image, globally en-
hanced images, and locally enhanced images processed based on similar fuzzy positive
regions. The experimental results demonstrate that the proposed algorithm significantly
outperforms the other three methods in various evaluation metrics, including the confu-
sion matrix, classification accuracy, and the kappa coefficient.
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1. Introduction

Brain tumors pose a serious threat to human health, accounting for more than 350,000
annual cases worldwide and are associated with a mortality rate of 2.5%. Magnetic
resonance imaging (MRI) is commonly used in medicine to detect brain tumors, using
contrast-enhanced scans to clearly highlight soft tissue and pathological areas of the brain
[22]. Given the complexity of brain tumor types, precise diagnosis is heavily based on
clinicians’ expertise. To improve diagnostic precision, computer-aided diagnosis (CAD)
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systems [16, 18,38, 39] have been developed, which utilize machine learning or deep learn-
ing to train and analyze extracted image features, allowing automatic classification of
different image types and detection of subtle changes during tumor growth that may not
be visually apparent. For CAD systems, obtaining high-quality image features is cru-
cial, as it directly impacts the model’s classification performance. Generally, optimizing
brain tumor MRI quality in CAD systems involves both image enhancement and feature
extraction processes.

Image enhancement serves to improve image quality by boosting contrast and clarity,
with the aim of highlighting target features for specific applications. Primary methods
include histogram equalization, which adjusts the grayscale distribution to enhance con-
trast and clarity [48]; pulse-coupled neural network (PCNN) algorithms, which simulate
interactions between neurons in the mammalian visual system to enhance contrast and
details in similar grayscale areas [43]; wavelet transform algorithms, which decompose and
adjust details and approximations of the image frequency to enhance detail and contrast
[27]. Image enhancement strategies are typically divided into global enhancement [41,53]
and local enhancement [30]. Local enhancement tends to preserve local details more effec-
tively than global enhancement while improving contrast [13]. In brain MRI processing,
global enhancement frequently fails to effectively highlight target features due to noise and
the prevalence of soft tissue structures. In contrast, local enhancement targets specific ar-
eas, improving not only the clarity and contrast of these regions but also the integrity of
surrounding tissues, thus maintaining the overall completeness of the image information.

Feature extraction primarily involves analyzing the color, shape, and texture charac-
teristics of an image. Most medical images, including X-rays, CT scans, and MRI, are
presented in gray-scale, primarily reflecting differences in tissue signal intensity. In gray-
scale images, texture features reveal the microstructure of tissues and are particularly
sensitive to subtle pathological changes. These features can detect subtle changes in gray-
scale information before changes in shape or color become apparent at the lesion site.
Thus, analyzing texture features in medical images is crucial for the early detection and
diagnosis of diseases.

Fuzzy rough sets, which combine the advantages of fuzzy set theory and rough set theory,
effectively handle the incompleteness and uncertainty inherent in continuous data without
requiring prior domain knowledge, thereby demonstrating significant value across diverse
applications. In feature selection and attribute reduction, fuzzy rough set-based meth-
ods identify essential features, remove redundancy, and improve classification efficiency,
particularly in high-dimensional datasets such as genomic analysis, biomedical research,
and text classification [17,26,54]. These techniques have been successfully applied to tu-
mor classification through gene selection [17] and distributed feature selection in large-scale
data processing [26]. Similarly, in pattern recognition and machine learning, fuzzy positive
regions refine classification boundaries, leading to better decision-making and recognition
accuracy in applications such as facial recognition, fingerprint identification, and speech
recognition [1,5,10]. In addition, fuzzy rough sets play a critical role in image processing
by enhancing feature extraction, segmentation, and classification, thus improving overall
image analysis performance. Du et al. [14] optimized the process of feature extraction
and selection for driver fatigue detection using fuzzy rough set techniques in the kernel.
Yu et al. [42] developed an automatic class boundary detection algorithm using fuzzy
rough sets, effectively resolving issues with overlapping intensity distributions in auroral
oval images that complicate boundary separation. Chen et al. [9] improved the accuracy
of land use classification in remote sensing images and reduced the count of features using
domain-based fuzzy rough set technology, overcoming the limitations of traditional maxi-
mum likelihood classification methods in 2020. Qu et al. [36] improved the classification
accuracy in breast X-ray photography by extracting high-quality features with fuzzy rough
sets. All of these image-processing studies utilized fuzzy rough set models that focused on
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the similarity between elements. Yao et al. [51,52] integrated a hemimetric function into
fuzzy rough sets to delineate distant relationships between elements, thereby enhancing
the differentiation of disparities among them. In medical image diagnostics, the main anal-
ysis focuses on the disparities in texture, density, and signal intensity between the lesion
areas and adjacent normal tissues. Compared to similarity-based fuzzy rough sets, the
distance function directly quantifies differences between elements, offering a more direct
and flexible approach. This method enables a more precise differentiation of regions that
are visually subtle but exhibit significant discrepancies in image characteristics relative to
surrounding tissues.

Based on the preceding analysis, we construct a metric-based fuzzy positive region
(MFPR) by analyzing metric-based fuzzy rough sets. In addition, we propose an algo-
rithm that uses MFPR to optimize the quality of MRI features for brain tumors. The
algorithm employs a sliding window method [11] to perform overlapping segmentation on
MRI and extracts texture features from each window block using a gray-level co-occurrence
matrix (GLCM) [24]. Then, a PCNN was used to perform multiple rounds of enhancement
on the window block with the highest MFPR value, forming a candidate set of enhanced
results [34,49]. Note that the value of the fuzzy positive region quantifies the impor-
tance of each window block in decision-making [8]. Furthermore, these enhanced blocks
are then sequentially embedded in the original image, and the features of the locally en-
hanced image with the highest MFPR value are selected to form the optimal feature set.
In the experimental section, the comparison algorithms include feature extraction based
on the original image, global enhancement (GE), and fuzzy positive region (SFPR) win-
dow enhancement based on similarity. We employ twelve commonly used classifiers to
comprehensively analyze the experimental results using three metrics: confusion matrix
[35], classification accuracy, and kappa coefficient [46]. The results demonstrate that the
MFPR algorithm outperforms other methods in most classification models. In addition,
the experimental section analyzes the classification performance of the algorithm under
different window sizes to verify its general applicability.

The remainder of this paper is organized as follows. The fundamental theoretical con-
cepts are introduced in Section 2. The construction process of the MFPR, and its prop-
erties, together with the corresponding proofs, are explained in Section 3. The specific
implementation process of the MFPR algorithm for optimizing the features of the image
is described in Section 4. The experimental results are analyzed in Section 5. The paper
concludes in Section 6 with a discussion of the challenges in this research field and future
research directions.

2. Background

This section introduces the method of using the GLCM to extract image texture features
and explains the principle of using PCNN for image enhancement.

2.1. Gray-level co-occurrence matrix

The GLCM is a tool that characterizes the texture of an image by analyzing pixel pairs
at various distances d and angles 6. This method quantifies the gray-scale variation of
image pixels at multiple scales and orientations while analyzing the spatial distribution
patterns of gray-level values [24]. From the GLCM, texture features such as correlation,
contrast, entropy, angular second moment, and inverse difference moment are extracted to
characterize texture information in the image [28]. These features are widely used in fields
such as image analysis, target recognition, and classification [15,40]. In the calculation of
the GLCM, the parameter d is generally set to 1, and 6 is selected as 0°, 45°, 90°, and 135°
to capture the predominant texture orientations within the image, as shown in Figure 1.
The process of generating the GLCM is illustrated in Figure 2. Figure 2 (a) contains 5
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135° 90° 45°

Figure 1. Illustration of pixel distance d = 1 and angles 0°, 45°, 90°, and 135°.
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Figure 2. Example of GLCM generation with d =1 and 6 = 0°. (a) Gray-scale
image. (b) Gray-level co-occurrence matrix.

gray levels, resulting in a matrix 5 x 5 as seen in Figure 2(b), where each element G(i, j)
in the matrix represents the number of times the gray levels ¢ and j cooccur at a distance
of d = 1 and an angle of § = 0°. For example, in Figure 2(a), the ordered pairs with
gray-levels 2 and 3 appear horizontally adjacent three times, indicating that G(2,3) = 3
in Figure 2(b).

2.2. Pulse coupled neural network

The PCNN captures pixels with similar gray values by simulating the interactions be-
tween neurons in the mammalian visual system [34,49]. PCNN is widely applied in image
processing tasks such as image segmentation, texture analysis, image enhancement, and
pattern recognition [31,50]. This technique can enhance image brightness, improve con-
trast and details, and highlight essential texture features. In this study, PCNN is utilized
to enhance images by highlighting the texture features of critical information.

The PCNN consists of a single-layer, two-dimensional array of neurons, each correspond-
ing to a pixel in the input image [25]. Specifically, the neuron Nj; in the array corresponds
to the (1, j) pixel of the image. Each neuron in PCNN comprises three main components:
a signal input domain, a non-linear modulation domain, and a pulse generation domain
[29], as seen in Figure 3.

2.2.1. Signal input domain. The input signals primarily consist of feedback inputs F;;
and linking inputs from neighboring neurons L;;, both of which are represented as matrices
with i rows and j columns. At the n-th pulse firing, the expressions for Fj;[n| and L;;[n]
are as follows:

Fij[n] = Si;lnl; (2.1)

Lijln] = e Lijln — 1]+ VL. > WijYi[n — 1]. (2.2)
Kl
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Figure 3. A PCNN neuron model.

In this context, S;; represents the normalized grayscale input image, Yj;[n — 1] is the
pulse output of the neighboring neuron (k,[) at the (n — 1)th firing time, which can be
0 or 1. The definition of Y}; is given in (2.4). Wjjj represents the weight matrix of the
connection between neurons, while a;, and V, correspond to the time decay constant and
the inherent potential of L;;, respectively.

2.2.2. Nonlinear modulation domain. The internal excitation voltage U;; of the neu-
ron (i, j), resulting from the coupling, is influenced by the pulse firing of neighboring
neurons. The value of U;; is determined through nonlinear modulation involving F;; and
L;j, as defined by the following equation:

Uij[n] = Fijln](1 + BLijn]), (2.3)
where ( is the connection strength coefficient between neighboring neurons.
2.2.3. Pulse generation domain. In this module, the generation of the time series
pulse sequence Y;; depends on the magnitude of U;; and the dynamic threshold voltage

E;j, as shown in (2.4). (2.5) describes the dynamic change process of the threshold voltage
[56]:

Eij [n] = e_aEEij [n — 1} + VEYij [n] (2.5)

The neuron (4, j) produces a low level when E;; exceeds U;;, causing the pulsing domain
to stop, i.e. Y;; = 0. Subsequently, it £;; decays exponentially according to the threshold
decay constant ap, which determines the decay rate, until Ej;; falls below U;; again,
triggering the next firing event. The algorithm iteratively cycles through (2.1) to (2.5),
forming a pulse sequence. The number of firings can be predefined [12].

The principle of image enhancement is expressed in (2.6):

EnhS;;[n] = (In(Bri) — ag(n — 1))Y;;(n], (2.6)

where EnhS;; represents the enhanced gray-scale image, and Bri denotes the maximum
pixel value in the input image [21]. It is evident from the equation above that different
values of ag correspond to different enhancement effects.

3. Metric-based fuzzy positive region and properties

Previous fuzzy rough set models, using binary relations, neighborhood operators, and
coverings, have proven effective in characterizing specific proximity relationships between
data sets [4,19,37,44]. Beyond these relation-based methods, a distance function, for-
mally known as a metric in mathematics, provides a numerical measure of separation or
dissimilarity between objects. Smaller values indicate greater similarity, while larger val-
ues signify greater differences. In contrast to tosimilarity-based fuzzy rough sets, distance
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functions offer a more direct and flexible means of quantifying disparities between ele-
ments, enabling the detection of subtle variations that traditional relation-based methods
may overlook.

Motivated by this perspective, this section develops fuzzy upper and lower approxima-
tion operators based on metric functions using metric functions. Furthermore, the fuzzy
positive region is constructed systematically and its essential properties are rigorously
analyzed.

3.1. Hemimetric-based fuzzy rough approximation operators

A hemimetric [20] is a variation of a traditional metric that allows for asymmetry. Based
on this concept, Yao et al. [51] constructed a fuzzy rough set model based on hemimetrics
to describe similarity or dissimilarity between elements.

Definition 3.1 ([20]). For a non-empty set X, a function d : X x X — [0, +00) is called
a hemimetric if

d(xz,z) =0, for Vx € X; (3.1a)
d(z,z) <d(x,y) +d(y,z), for Vx,y,z € X. (3.1b)

The pair (X,d) is called a hemimetric space. The function d represents a distance
or degree of separation between elements in the set X, constituting a non-symmetric
version of the standard metric. If d(x,y) = d(y,x) holds for every z,y € X, then d is
considered symmetric. Specifically, property (3.1a) indicates that the distance function
satisfies reflexivity, meaning the distance from any point to itself is zero. The property
(3.1b) is similar to the triangle inequality in metric spaces, ensuring the consistency and
stability of d. Based on these properties, a pair of fuzzy rough approximation operators
is constructed within the hemimetric space.

Definition 3.2 ([52]). Let (X,d) be a hemimetric space. A function A : X — [0,1] is
a fuzzy subset of X. For any x € X, A(z) represents the membership degree of = in A.
Let FI(X) = {A; | i € I} be the collection of all fuzzy subsets. Then, the fuzzy lower
and upper rough approximation operators Apr & Apry : F(X) — F(X), induced by the
hemimetric d, are defined as follows:

Apr (A)(x) = N (Aly) + d(z,y)); (3.2a)
yeX

Aprg(A)(z) = \/ (Ay) - d(y, z)). (3.2b)
yeX

In particular, the asymmetry of the hemimetric d introduces a directional dependency
on the input arguments x and y, which must be carefully considered when defining fuzzy
rough approximation operators. Although hemimetrics offer flexibility in modeling asym-
metry in fuzzy rough set theory, their directional dependency limits their applicability in
domains such as medical imaging, where anatomical consistency requires a distance func-
tion that satisfies metric properties, including symmetry d(z,y) = d(y,z). To address this
limitation, we introduce a metric-based fuzzy decision system to ensure symmetry, with
the aim of simplifying theoretical analysis and computational processes.

3.2. Metric-based fuzzy decision system and metric-based fuzzy positive
region

The traditional metric definition allows the values to extend indefinitely. In this study,
we focus on fuzzy rough sets where membership degrees are restricted to the [0, 1] inter-
val. To ensure accurate data processing, the original attribute values are first fuzzified
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and mapped to the [0, 1] range through a normalization process. Building on this founda-
tion, we introduce a metric function to define a new fuzzy metric relation, quantify data
differences, and build a metric-based fuzzy decision system.

Definition 3.3. In a fuzzy information system (U, A), let U denote the universe, and let
A ={by,ba,...,b,} be the set of condition attributes. For each attribute b € A, let dj be
the metric function, where dj(x,y) measures the degree of dissimilarity between objects z
and y with respect to attribute b. Then, the fuzzy metric relation of an attribute subset
B C A is defined by

dB(xay) - \/ db('rvy): Ve,y € U. (33)
beB

Now, we investigate the properties of the fuzzy metric relation on U.

Theorem 3.4. Let (U, A) be a fuzzy information system. Then for B C A, it holds that
dp(z,x) =0, Vx € U; (3.4a)
dp(z,y) = dp(y,x), Y,y € U; (3.4b)
dp(z,z) <dp(z,y) +dp(y,2), Vx,y,z € U; (3.4c)
dp, < dp;,if Bi C B; C A. (3.4d)

Proof. 1t is obvious that (3.4a) and (3.4b) are satisfied, here we only prove (3.4c) and
(3.4d).
(3.4c) For every z,y,z € U,

dB(l"?y) + dB(?J, Z) = \/ db(xay) + \/ db(y’ Z)
beB beB

= \/ (dp(z,y) + dp(y, 2))
beB

> \/ db(fB,Z)
beB
=d,(z, 2).

(34d) For B; C Bj C A, Va,y € U,

dp,(z,y) = \/ dy(z,y) < \/ do(z,y) = dp,(z,y).
beBi bEBJ‘

O

Properties (3.4a)-(3.4c) indicate that dp satisfies the conditions of a metric. Property
(3.4d) demonstrates the monotonicity of the fuzzy metric function with respect to the
expansion of the set of attributes. This property is particularly useful for attribute im-
portance analysis, feature selection, and pattern recognition, as it helps optimize fuzzy
decision system construction and improves computational efficiency. Based on dp, the
fuzzy lower and upper rough approximation operators are defined as follows:

Definition 3.5. Let (U, A, D) be a fuzzy decision system, where A is the set of condition
attributes and D is the set of decision attributes. The partition of U induced by D is
denoted as U/D = {[z|p | x € U} = {D1, D2, ..., D;}, where [z]p represents the decision
class containing the object z. For each decision class D; C U/D and B C A, the metric-
based fuzzy rough approximation operators are given by
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Apr, (Di)(z) = A (Dily) + dp(z,y)); (3.5)
yeU

Apry, (Di)(z) = \/ (Di(y) — dp(x,y)). (3.5b)
yelU

where the function

( ) 1, ifye Dy
Di(y) =
' 0, otherwise,

represents the membership degree of y in the decision class D;. Under the condition
attributes, the fuzzy lower rough approximation operator Apr dn (D;) captures the extent to
which x definitively belongs to the decision D;, while the fuzzy upper rough approximation
operator rmdB (D;) reflects the degree of potential membership. Since the positive region
is constructed solely on the basis of Apr iy (D;), we focus on exploring the properties of
Apr iy (D;) in the following discussion.

Theorem 3.6. Let (U, A, D) be a fuzzy decision system, define 0 as a set where all ele-
ments have a membership degree of zero, while 1 represents a set where all elements have
a membership degree of one. Then for all D; € U/D and B C A, let Dy and Dy denote
the empty set and the universal set, respectively. The following properties hold:

0<Apr, (Di)<1; (3.6a)
Apr, (Do)=0; Apr, (Du)=1; (3.6b)
Apr, (A Di) = \Apr,, (Dy); (3.6¢)
Apr, (Apr, (Dy)) = Apr, (Di); (3.6d)
A dB($,y)7 T €D
Apr, (Di)(x) =  v#D: (3.6¢)
B 0, otherwise;
@dBi(Di) < @d% (Ds), ifB; € B; C A. (3.6f)

It is important to note that the properties analogous to Equations (3.6a)(3.6d) were
established in [52] for the hemimetric case. In this work, we extend these results to the
metric case, where the symmetry of the metric function imposes stricter constraints. Con-
sequently, these properties are naturally maintained. Equation (3.6e) presents a simplified
form of the definition of the fuzzy lower approximation operator. Here, we provide the
proof only for Equation (3.6f).

Proof. By (3.4c), for B; C B; C A, Vx € U, we have:

MdBi (Dz)(x) = /\ (DZ(y) + dBL(x7y))
yelU

< A\ (Dilw) + di, (z,9))
yelU

J

O

Property (3.6f) indicates that the fuzzy lower rough approximation operator possesses a
monotonically non-decreasing characteristic as the attribute subsets expand. This implies
that larger attribute subsets yield stronger certainty lower bounds, potentially enhancing
the approximation capability for decision classes.
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Table 1. An example of fuzzy information systems

U | b | by | b3 | by
r1(01]05]0.6]0.6
z2(0.3]0.6]0.7]|0.4
23]0.6]02]04]|04
z4109(10402]0.7
z5(08]08]05]|0.1
z6|0.6(1.0]0.3]0.2

HOOHI—‘HU
—_
o}—w—looowb

Definition 3.7. Let (U, A, D) be a fuzzy decision system, for all D; € U/D, B C A and
x € U, the metric-based fuzzy positive region (MFPR) is defined by

l
Posq,(D)(x) = \/ MdB(Di)(x). (3.7)
i=1

The MFPR, defined as the supremum (\/) of fuzzy lower rough approximation operators
across all decision classes D;, quantifies the certainty of an element’s membership to the
decision classes under the metric relation dg. A higher value of the fuzzy positive region
signifies a stronger correlation between the element and the decision.

Example 3.8. Let (U, B, D) be a fuzzy decision system, as shown in Table 1. Here,
U = {$1,$2,$3,$4,$5,£L’6}, B = {bl,bg,bg,b4}, and U/D = {Dl,DQ}, where D1 =
{z1, 22, 23,26} and Dy = {x4,x5}. Let dp(z,y) = |b(x) — b(y)| for every x,y € U. It
is evident that dy(x,y) is a metric function. The metric relationship of elements in the
dataset under each attribute b; is as follows:

0.0 02 05 0.8 0.7 0.5
0.2 00 03 06 05 0.3
dy. (2,1) = 05 03 00 03 02 0.0
n\® Y 0.8 06 03 00 01 03
0.7 05 02 0.1 0.0 0.2
05 03 00 03 02 0.0

(3.8)

0.0 0.1 03 0.1 03 05
01 00 04 02 02 04
dy,(.) = 0.3 04 0.0 02 0.6 0.8
b2\ Y 01 02 02 0.0 04 0.6
03 02 0.6 04 00 02
05 04 0.8 0.6 02 0.0

(3.9)

0.0 01 02 04 01 0.3
0.1 0.0 03 05 02 04
0y (2.1) 0.2 03 00 02 01 0.1
bs\ > Y 04 05 0.2 0.0 03 0.1
01 02 01 03 00 0.2
0.3 04 0.1 01 02 0.0

(3.10)

00 02 02 01 05 04
0.2 0.0 0.0 03 03 0.2
0y (2.) = 0.2 0.0 0.0 03 03 0.2
ba T Y 0.1 03 0.3 0.0 06 05
0.5 0.3 03 0.6 00 0.1
04 02 02 05 0.1 0.0

(3.11)
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Based on Equation (3.3), the metric relationship among elements under the attribute
set B is obtained as follows:

0.0 0.2 05 08 0.7 0.5
02 0.0 04 06 05 04
dn(e.g)— | 05 04 00 03 06 08
B\, Y 0.8 0.6 0.3 0.0 0.6 0.6
0.7 0.5 0.6 0.6 0.0 02
05 0.4 0.8 0.6 0.2 0.0

(3.12)

Based on Equation (3.5a), the fuzzy lower approximation value for each element z is
determined as follows:

Apr, (D1)(z)=(0.7 05 03 0.0 0.0 02) (3.13)

Apr, (Do)(x)=(00 00 00 03 02 00) (3.14)

Based on Equation (3.7), the following results can be derived:

Posq,(D)(x) = (0.7 05 03 03 02 02) (3.15)

From the calculations above, the maximum fuzzy positive region value for z; is 0.7,
indicating that z; has the highest correlation with the decision. Next, we investigate
theorems related to the MFPR.

Theorem 3.9. Let (U, A, D) be a fuzzy decision system, for all D; € U/D and B C A,
let Dy and Dy denote the empty set and the universal set, respectively. The following
properties hold:

Posq, (Di) = Apr, (Di); (3.16a)
Posg, (Do) = 0; Posa,(Dy) =1; (3.16b)
0 < Posq,(D) < 1; (3.16¢)
Posq, (Posqy (D)) = Posay (D); (3.16d)
Posay (D) < Posay (D), if Bi C Bj C 4; (3.16e)
Posqy (D) < Posay (Dn), if Dy € Dy CU/D. (3.16f)

Proof. 1t is evident that theorem (3.16a) and (3.16b) is satisfied. The proofs of theorems
(3.16¢)-(3.16f) are provided subsequently:
(3.16¢) Clearly, Posg, (D) > 0, for every z € U,

That is, Posg, (D) < 1.



1008 Metric-based fuzzy rough sets for brain tumor magnetic resonance imaging classification

(3.16d) For every x € U,

Posa, (Posq,(D))(x) = Apr, (Posay(D))(z)

(3.16e) For every B; C B; C B and z € U,

l
Posqy, (D)(z) = \/ Apr, (Di)()
i=1 ‘

l
< \/ Apr, (Di)(z)
i=1 7

_ Pos, (D))
(3.16f) For every Dyy ={D; |i € M} C Dy ={D;|i € N} CU/D and x € U,

POSdB DM \/ Ap?“ Di )

| A

\n/ (@)
o

08d (Dn)(x)

0

The theoretical framework of MFPR serves as a practical tool in image processing.
During the image enhancement phase, MFPR is employed to identify critical regions in
images that are essential for decision-making, referred to as target regions. Furthermore,
the integration of sliding windows and PCNN algorithms facilitates the optimization of
image feature quality, thereby improving classification accuracy. The following sections
will provide a detailed discussion of the implementation steps for these techniques.

4. Image processing based on the MFPR algorithm

This section outlines the process of implementing the MFPR algorithm to optimize
image feature quality, focusing on critical steps such as image segmentation, evaluation,
and the generation of the optimal feature set.

4.1. Image segmentation and evaluation

This study uses a sliding window block algorithm for image partitioning to analyze the
local information of the image. For an image of size (x,y), a rectangular window block
of (I,w) is defined. The window block slides from left to right and from top to bottom
with a specified step size A, extracting image information [45]. The window block size
and step size must be appropriately selected: excessively large blocks may obscure target
features, while overly small blocks might capture insufficient features, hindering effective
analysis. If A is too large, the overlap between window blocks will decrease or disappear,
affecting the relationship between the segmented blocks. In contrast, if A is too small, the
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Figure 4. Sliding window block traversal for image segmentation.

traversal of the entire image will take a long time [33]. Given the varying resolutions of
the images in the data set used in this experiment, fixed proportional relationships are
applied to determine the dimensions of the sliding window blocks and step sizes. As shown
in Figure 4, setting the sliding window to (%’C, %y) and setting the step size to (%‘l, %),
traversing the entire image yields nine segmented blocks.

Subsequently, the GLCM is computed for each segmented block. When the gray-scale
level of an image is too high, the resulting GLCM becomes excessively large, increasing
computational complexity. Moreover, some gray-scale levels may occur infrequently or not
at all, resulting in a sparse GLCM that can lead to inaccurate texture feature extraction.
Therefore, before generating the GLCM, it is necessary to appropriately reduce the number
of gray-scale levels in the original image. In this study, the gray-scale levels are reduced
to 32 to balance computational efficiency and feature accuracy [2].

For a GLCM with dimensions N; X Ny, the sums of all elements in row ¢ and column

j of G(i,j) are denoted respectively as:
Ny—1

pe(i) = > p(i,J); (4.1a)
=0

Ny—1

py() = D (i), (4.1b)
=0

where p(i, j) is the normalized GLCM. Let p, 1y, 05, 0y be the means and standard devi-
ations of p, (i) and py(j) respectively. The extracted texture features are defined as follows
[55]:
e Correlation (Cor) reflects the linear relationship between gray-levels in an image,
with higher values indicating stronger linear correlations and lower values indicat-
ing weaker correlations.

Ng—1 < Ng—1,. . ..
Yito 220 (0-5) p(i,]) = pia - iy (4.2)
Oy " Oy .

Cor =

e Contrast (Con) measures the degree of local variation within an image and re-
flects the differences between gray-scale levels, indicating the clarity and depth of

texture.
Ng—1Ng—1

Con= Y > (i—j) plij) (4.3)

i=0 ;=0
e Entropy (Ent) measures the randomness in the information content of an image,
reflecting the complexity of its gray-scale distribution. A higher entropy value
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ap =0.01 ag = 0.05

ag = 0.1 ag = 0.5

@ (b)

Figure 5. The enhancement effects correspond to different values of ap.
(a) is the original image. (b) shows the images when ap is 0.01, 0.05, 0.1, or 0.5.

indicates more complex image textures.
Nyg—1 Ng—1
Ent=— Y p(i,j) - log(p(i,j)) (4.4)
i=0 ;=0
e Angular second moment (ASM) is a metric used to assess the uniformity of an
image’s gray-level distribution and the texture’s coarseness or fineness, providing
insight into irregular or complex texture patterns.
Nyg—1Ng—1
ASM = Y > p(i,j)* (4.5)
i=0 j=0
e Inverse difference moment (IDM) reflects the clarity and regularity of an image’s
texture. A higher value indicates greater texture clarity and stronger regularity.
Nyg—1Ng—1 1
IDM = Y Y ———p(i,j). (4.6)
. 2 9
i jmo 1t (-J)

In this study, a pixel distance of d = 1 is used to generate the GLCM at four orientations:
01,4571, 90  and 135 ¥. Each GLCM extracts five texture features, resulting in a total
of 20 features per image. Based on these features, the segmented block with the highest
fuzzy positive region value is selected for subsequent enhancement using PCNN.

4.2. Generation of optimal feature set

From (2.5) and (2.6), it is observed that the time decay constant ag directly influences
the decay rate of the threshold voltage E;; and the effectiveness of image enhancement.
An appropriate value of ag is crucial; too high values hinder noise removal, while too low
values impair image details and edge enhancement. Figure 5 displays the results of the
varying image enhancement with ag values of 0.01, 0.05, 0.1 and 0.5, where Figure 5(a) is
a segmented block of Figure 4. It is evident from the results that excessively low ag values
result in subtle image enhancements, while overly high values lead to distortion. Therefore,
selecting an optimal ag is critical to achieving high-quality enhancement outcomes.

To achieve optimal enhancement effects, a multi-round enhancement strategy is em-
ployed. The number of enhancement rounds for each MRI in the brain tumor dataset
depends on the distinct values ap. For example, increasing ap from 0.01 to 0.5 in 0.01
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(a) (b) ()

Figure 6. Display of glioma MRI under different image processing conditions.
(a) Original image. (b) Global enhancement image. (c¢) Local enhancement image.

steps results in 50 iterations per MRI, producing a set of enhanced block candidates. As
shown in Figure 6(c), blocks of the candidate set are progressively integrated into the
original image to create locally enhanced images. The gray-level features of these im-
ages are extracted using GLCM, and the locally enhanced image with the highest fuzzy
positive region value is selected as the optimal enhancement. Ultimately, the optimal
feature set consists of the best-enhanced features from each image. Figure 6(b) shows
the corresponding globally enhanced image. Compared to (b), (c¢) selectively enhances
target areas, reducing noise interference and improving texture and contrast in key re-
gions. When calculating the fuzzy positive region for a single locally enhanced image, the
remaining images in the data set remain unchanged. The specific implementation process
is outlined in Algorithm 1.

5. Experimental analysis

This experiment uses a dataset obtained from the open dataset "Brain Tumor Classifi-
cation (MRI)" available on the Kaggle platform [6], which predominantly comprises three
types of brain tumors:

e Gliomas [23], primarily originating from glial cells in the brain or spinal cord,
represent one of the most common types of primary brain tumors. They typi-
cally present with irregular borders and shapes in MRI, with locations that vary
significantly.

e Meningiomas [47], typically originating from the membranes surrounding the brain
or spinal cord, can compress adjacent brain tissue and nerves, leading to various
neurological symptoms. They usually appear as round or oval shapes in MRI, with
relatively distinct boundaries.

e Pituitary tumors [7], which originate in the pituitary gland, typically cause en-
largement of the pituitary region. Their MRI characteristics vary depending on
their size, type, and hormone secretion status.

To ensure generalizability of the experimental results, 12 classification models were
selected and grouped into six categories based on their underlying classification principles:

e Tree-based classifiers: Gradient Boosting (GB), Decision Tree (DT), CatBoost,
ExtraTrees (ET), XGBoost, and Light GBM.

Distance-based classifier: K-Nearest Neighbors (KNN).

Kernel technique for non-linear data: Support Vector Classifier (SVC).
Probabilistic classification: Gaussian Naive Bayes (GNB).

Linear Classifiers: Logistic Regression (LR).

Performance enhancement through the model ensemble: AdaBoost, Bootstrap Ag-
gregating (BA).
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Algorithm 1 Optimizing Image Features by MFPR

Require: Images: Image dataset
num: Total number of iterations for time decay constant ag transformation
Ensure: Ap.: Optimal feature set
1: Perform denoising preprocessing on Images;

2: Ag <+ Extract feature set using GLCM from all original Images;
3: Initialize: v = 0, n = |Images|, i = 1;
4: Local Enhancement:
5: while 7 < num do
6: for j =1ton do
7 Segment the j-th image into m blocks using sliding window block algorithm;
8: for [ =1 tom do
9: aj; < Extract features from the I-th block of j-th image using GLCM;
10: Aj; < Update features of j-th image in Ag to aj;
11: pj1 + Calculate MFPR value of Aj;;
12: if p;; > v then
13: UV < Pjl;
14: Iy < I
15: end if
16: end for
17: Enhance [-th block of j-th image using PCNN;
18: Embed enhanced block into j-th image to form locally enhanced image;
19: end for
20: A; + Extract features from all locally enhanced images using GLCM;
2. i< i1
22: end while
23: Feature Fusion:
24: while 7 < n do
25: for + = 1 to num do
26: a;; < Features of j-th image in A;;
27: A;; + Update features of j-th image in Ag to a;j;
28: pij < Calculate MFPR value of A;;;
29: if p;; > v then
30: U < Dij;
31: 1 1
32: end if
33: end for
34 jej+1;
35: Set features of j-th image in Apest to @,

36: end while

Different classifiers may exhibit substantial performance differences in the same dataset.
By comparing multiple classifiers, the data can be analyzed comprehensively from various
perspectives, thereby validating the generalizability of the algorithms. In this experiment,
100 images were randomly selected from each of the three categories of brain tumors, total-
ing 300 images. During the pre-processing stage, all images underwent denoising and nor-
malization, followed by processing using the Original, GE, SFPR, and MFPR algorithms,
respectively. To evaluate the generalization capability, the classification performance of
12 models was tested under these four processing methods. To ensure a fair comparison
among the algorithms, both data partitioning and model configurations were standardized.
Specifically, stratified random sampling with a fixed seed (random_state=3220819) was
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Table 2. Experimental parameters configuration table

Method Parameters

Size: 2?”5 X QTZ”

Step length A: %‘l x ==
Gray-level: 32 levels
Distance d =1

Angles 6: 0°, 45°, 90°, 135°
Potential V;, = 1.00
Decay ay, = 0.06931
Strength 8 = 0.2
Amplitude Vg = 200
Decay ap = 0.01
Updates for ag: m = 50
Pulse ignitions n = 1000

Metric function dp(z,y) = |b(x) — b(y)|

Sliding window blocks

GLCM

PCNN

RSNl S el o el I o

employed to split the dataset into training (70%) and testing (30%) subsets. Moreover, all
classification models were executed with their default hyperparameter settings throughout
the experiments, thereby minimizing potential performance biases arising from variations
in parameter optimization. All experimental results documented in Tables 35 strictly
adhere to this protocol. The classification results were evaluated using three metrics:
confusion matrix, classification accuracy, and kappa coefficient. Furthermore, the effect
of different segmentation block sizes on the performance of the proposed algorithm was
investigated. All algorithms were implemented in Python 3.11.5 and executed on a hard-
ware platform equipped with a 12th Gen Intelé Core 19-12900H @ 2.50GHz processor and
32GB of RAM. Comprehensive parameter specifications are provided in Table 2.

5.1. Evaluation of classification performance

This section primarily evaluates the experimental results from three aspects: confusion
matrix, classification accuracy and kappa coefficient.

5.1.1. Confusion matrix. The confusion matrix is a commonly used tool for evaluating
classification performance. Visualizes the distribution of data within true classes during
prediction in tabular form. In a confusion matrix, the columns represent the actual classes
and the rows represent the predicted classes. False negatives and false positives are key
metrics in the confusion matrix to evaluate model performance. False negatives refer to
target-class images that are misclassified into other classes, while false positives refer to
images from other classes that are misclassified as the target class. From the confusion
matrix, several performance metrics can be calculated, such as classification accuracy,
precision, recall, and F1 score, providing a comprehensive assessment of feature extraction
performance under different algorithms. ,

In this section, the CatBoost classification model is used to obtain the confusion matrices
for the features extracted based on the original algorithms, GE, MFPR, and SFPR. The
size of the sliding window is set to (2, %y) with a step size A of (5%, ¥5%). As shown in
Table 3, the MFPR algorithm demonstrated a classification accuracy of 90.00%, showing
a significant advantage over other comparative algorithms. Furthermore, compared to the
original, GE and SFPR algorithms, the MFPR algorithm exhibited poor misclassification
rates in both glioma and meningioma, with only 1 false negative and 0 false positives in
glioma. Although the number of false negatives increased for the pituitary tumor, the

MFPR. algorithm significantly reduced the number of false positives. In summary, the
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Table 3. Confusion matrix and classification accuracy under four algorithms us-
ing the CatBoost classifier

Original (Accuracy = 82.22%) GE (Accuracy = 85.56%)

glioma meningioma pituitary glioma meningioma pituitary

glioma 20 5 7 glioma 27 3 2

meningioma 1 28 2 meningioma 3 26 2

pituitary 1 0 26 pituitary 3 0 24

SFPR (Accuracy = 87.78%) MFPR (Accuracy = 90.00%)
glioma meningioma pituitary glioma meningioma pituitary

glioma 29 1 2 glioma 31 0 1

meningioma 0 27 4 meningioma 0 28 3

pituitary 0 4 23 pituitary 0 5 22

MFPR algorithm not only improves overall classification accuracy but also reduces the
risk of misdiagnosis in brain tumors, providing more stable and reliable performance when
handling complex and variable data sets. Table 4 and Table 5 use the same parameter
configurations.

5.1.2. Classification accuracy. To more reliably evaluate the impact of different al-
gorithms on classification performance, we calculated the classification accuracy of 12
classifiers on datasets processed by the original, GE, MFPR and SFPR algorithms. The
proposed MFPR algorithm was compared with the other three algorithms using three
symbols: higher (v), equal (*), or lower (), as shown in Table 4. The symbol "higher (v)"
indicates that within the same classifier, the features extracted using the MFPR algorithm
exhibit superior performance compared to those extracted by the other algorithms. For
example, in the DT classifier, the features extracted using the MFPR, algorithm demon-
strated superior performance compared to those derived from the SFPR algorithm and
the original data, while performing comparably to the GE algorithm. The final row of
the table summarizes the counts of these comparison outcomes. For example, the value
"(10/2/0)" in the last row for GE means that the MFPR algorithm outperformed GE in
10 classifiers, performed equally to GE in 2 classifiers and performed worse in 0 classi-
fiers. The results consistently demonstrate that the MFPR algorithm outperforms the
three comparative algorithms in terms of classification accuracy. Moreover, the MFPR
algorithm achieved classification accuracies that exceeded 85% between classifiers such as
KNN, Light GBM, BA, GB, XGBoost, ET and CatBoost. Comprehensive comparative an-
alyzes further demonstrate that the MFPR algorithm significantly enhances image feature
quality, thereby improving classification accuracy.

5.1.3. Kappa coefficient. The kappa coefficient is another crucial metric for evaluating
classification performance [32]. Unlike accuracy, which directly evaluates performance, the
kappa coefficient measures the agreement between model predictions and actual results,
providing a more precise evaluation, especially in cases of class imbalance. A higher kappa
coeflicient indicates better classification consistency and less randomness. Using both accu-
racy and the kappa coefficient, a more comprehensive assessment of algorithm performance
is provided. Table 5 presents the kappa coeflicients of the 12 classification models on the
data processed by the four algorithms. The MFPR algorithm significantly outperforms
the other three algorithms in both consistency and predictive accuracy. Moreover, the
kappa coefficients for the MFPR, algorithm in various classification models consistently
exceed 60%.
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Table 4. Classification accuracy across 12 different models

Model MFPR  SFPR GE Original
KNN 90.00% 83.33%v 86.67%v 76.67%v
DT 82.22% 73.33%v  82.22%* 78.89%v
LR 73.33% 68.89%v 48.89%v T1.11%v
GNB 75.56% 66.67%v 61.11%v 67.78%v

LightGBM 88.89% 81.11%v 85.56%v 84.44%v
AdaBoost  83.33% 72.22%v  81.11%v 77.78%v

BA 86.67% 81.11%v 83.33%v 78.89%v
GB 87.78% 80.00%v 84.44%v 81.11%v
SVC 76.67% T1.11%v  46.67%v 70.00%v
XGBoost  85.56% 78.89%v 85.56%* 83.33%v
ET 90.00% 83.33%v 83.33%v 77.78%v

CatBoost  90.00% 87.78%v 85.56%v 82.22%v
summary  (v/*/") (12/0/0) (10/2/0) (12/0/0)

Table 5. Kappa coefficients across 12 different models

Model MFPR  SFPR GE Original
KNN 85.00% 74.90% v 80.00% v 65.10% v
DT 73.30% 60.10% v 73.20% v 68.40% v
LR 59.90% 53.00% v 24.50% v 57.10% v
GNB 62.80% 49.20% v 41.60% v 52.50% v

LightGBM 83.30% 71.60% v 78.20% v 76.70% v
AdaBoost  74.90% 58.50% v 71.60% v 66.80% v

BA 79.90% 71.50% v 74.90% v 68.40% v
GB 81.70% 70.00% v 76.60% v 71.70% v
SVC 64.60% 56.10% v 22.90% v 55.60% v
XGBoost  78.30% 68.30% v 78.20% v 75.10% v
ET 84.90% 74.90% v 75.00% v 66.90% v

CatBoost  85.00% 81.70% v 78.30% v 73.50% v
summary  (v/*/") (12/0/0) (12/0/0) (12/0/0)

5.2. Analysis of results under different sizes of sliding window blocks

To rigorously evaluate the performance of the proposed algorithm, sliding window blocks
with five distinct dimensions (%“T, %y), (3%, %y), (4{, %y), (%‘U, %), and (%”C, %y) were applied,
with the stride parameter \ uniformly configured as (%‘l, ¥5%) during sliding window op-
erations. To eliminate interference from classifier performance variations, the classification
accuracy of all algorithms was computed using the ET classifier. This classifier demon-
strated superior stability in preliminary experiments (see Table 4), thus ensuring that the
experimental results (see Figure 7) directly reflect the robustness of the MFPR algorithm
under varying window sizes. As shown in Figure 7, the MFPR algorithm consistently
outperforms the others in all sliding window sizes, demonstrating superior robustness and
performance. Moreover, the choice of window size significantly impacts the quality of the
extracted feature sets.

In general, the experimental analysis in Section 5 demonstrates that the MFPR algo-

rithm exhibits significant advantages over the original, GE, and SFPR algorithms in all
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Figure 7. Classification accuracy of four algorithms with various window sizes
using the ET classifier.

evaluation metrics. The MFPR algorithm outperforms superior performance based on
metric-based fuzzy positive regions compared to similarity-based fuzzy positive regions,
enabling a more accurate selection of segmentation blocks with greater decision relevance.
Furthermore, the classification results for the varying sizes of the sliding windows re-
veal that the feature data sets extracted using the MFPR algorithm consistently achieve
higher classification accuracy. These results also indicate that locally enhancing segmen-
tation blocks with high decision relevance effectively improves the feature quality of the
data set.

6. Conclusion

Enhancing the accuracy of the brain tumor MRI classification is crucial to improving
patient survival rates. Farly and precise diagnosis and classification allow physicians to
develop more effective treatment plans and reduce the risk of recurrence. Therefore, the
development of efficient image feature optimization algorithms is essential for the early
diagnosis of brain tumors.

This paper presents an MFPR-based optimization algorithm for MRI feature extraction
from brain tumors. The algorithm addresses the limitations of traditional methods in both
feature extraction and image enhancement while simultaneously increasing classification
performance. By evaluating the significance of each window block through the MFPR
metric, it accurately identifies the optimal regions for enhancement. Regions with higher
fuzzy positive region values typically contain more decision-critical details; enhancing these
areas significantly improves image contrast and detail representation. The experimental
results confirm that the proposed algorithm not only enhances the quality of the features
but also outperforms the original, GE, and SFPR algorithms in terms of classification
accuracy and stability. Consequently, this algorithm offers valuable insights for clinicians
and serves as a reliable decision-support tool for early brain tumor diagnosis. Further-
more, its capability to enhance decision-critical regions while maintaining computational
efficiency makes it particularly advantageous in scenarios with limited training data, a
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common challenge in medical imaging. However, further refinement and expansion of the
algorithm remain promising directions for future research.

Firstly, since the performance of this algorithm is highly dependent on the configuration
of the sliding window size and step length, different tumor types may require specific sliding
window parameters to ensure optimal feature extraction and enhancement. Therefore,
future research could focus on developing more refined methods for tuning the sliding
window parameters, tailored to different types of tumors. For instance, exploring adaptive
window adjustment techniques or dynamic parameter optimization strategies based on
image content could enhance the algorithm’s adaptability and robustness across diverse
applications.

Secondly, while this study has focused on the optimization of features for brain tumor
MRI images, the potential clinical applications of the proposed approach are not limited
to MRI. Future research could explore its application in other medical imaging modalities,
such as CT scans, X-ray images, and histopathology images. Adapting the algorithm to
these modalities could address the unique challenges posed by different imaging techniques
and further enhance diagnostic accuracy in a broader range of clinical settings. This
extension would not only provide a more comprehensive evaluation of the versatility of
the algorithm but would also contribute to the integration of multimodal imaging data in
clinical decision making.

Finally, machine learning is inherently limited in handling complex high-dimensional
data, so the proposed algorithm is generally not superior to deep learning-based brain tu-
mor classification algorithms in terms of time efficiency and classification accuracy. How-
ever, deep learning algorithms rely on large amounts of input data, which is a limiting
factor when sample data is scarce. In contrast, the MFPR algorithm excels at analyzing
differences between elements in images with ambiguous and incomplete information, which
is a key advantage. Future research could integrate the strengths of the MFPR algorithm
with the highly efficient automated processing capabilities of deep learning. This approach
has the potential to reduce the reliance of deep learning on extensive labeled data sets and
facilitate the development of more advanced brain tumor classification or segmentation
algorithms.
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