Communications in Advanced Mathematical Sciences
ISSN (Online) 2651-4001

Vol. 8, No. 2, 57-69, 2025
https://doi.org/10.33434/cams.1660607
Research Article
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Abstract

In this paper, some Euler-Maclaurin-type inequalities are established by using 2—convex functions involving
Riemann-Liouville fractional integrals. In precisely, using the properties of 4-convex functions, we prove new
Euler-Maclaurin-type inequalities. In addition, we present some Euler-Maclaurin-type inequalities for Riemann-
Liouville fractional integrals by using Hélder inequality. Moreover, some Euler-Maclaurin-type inequalities are
established by using power-mean inequality. Finally, by using the special choices of the obtained results, we
obtain some Euler-Maclaurin-type inequalities.
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1. Introduction

Inequality theory is a well-established and still fascinating field of research, with a wide range of applications across various
areas of mathematics. In mathematical analysis, convex functions play a crucial role in the study of inequalities due to their
distinct geometric and analytical properties.

The author of [1] introduces a novel class of functions called ~-convex functions.

Definition 1.1. Ler i : (0,1) — R be a non-negative function, h # 0. We say that f : I C R — R is an h-convex function, if f is
non-negative and for all x,y € I, t € (0,1) we have

flax+(1=1)y) <h(0)f(x) +h(1 =) f()- (1.1)
If the inequality (1.1) is reversed, then f is said to be h-concave.
By setting
* h(t) =t, Definition 1.1 becomes to convex function [2].
* h(t) =1, Definition 1.1 reduces to s-convex functions [3].

* h(t) =1, Definition 1.1 equals to P-functions [4].
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Theorem 1.2. (Holder inequality). Let p, g > 1 with % + é = 1. If f and g are real functions defined on |a,b] and if | f|", |g|?
are integrable functions on [a,b], then

/abmt)g(t)'dt = </ab|f(t)|pdt>; (/h g(t)|th>;

The power-mean integral inequality, derived from the Holder inequality, can be expressed as follows:

Theorem 1.3. (Power mean integral inequality). Let p > 1 and f, g be two real functions defined on [a,b). If |f|, |f]|g|? are
integrable functions on |a,b) then

[ irwswiars ([1rwlar) - ([0 |g<r>|"dz)’l’

For further information and clarification of the power-mean integral inequality, go to references [5].
Subsequently, mathematicians have become increasingly interested in fractional calculus due to its fundamental properties
and wide-ranging applications. The Riemann—Liouville integrals J¢, f and J* f of order @ > 0 with a > 0 are given by

10 = gy [ =0 0, x> a
and

! /b (t—x)*"' f(r)dt, x<b,

Ty f(x) = m 8

respectively [6,7]. Here, f belongs to L;[a,b] and I'(a) denotes the Gamma function defining as
o) := / e "u®du.
0

The fractional integral coincides with the classical integral for the case of o0 = 1.
The formula for Simpson’s quadrature, commonly referred as Simpson’s 1/3 rule, is as follows:

[t @ (50) <)

Theorem 1.4. Let f : [a,b] — R be a four times differentiable and continuous function on (a,b), and let H f(4)H =

oo

sup ‘ f ’ < oo. Then, the following inequality holds:

x€(a,b)

s lr@rar (“30) v rw)] - L [ reas

In the paper [8], Dragomir provided an estimate for the remainder in Simpson’s formula for functions of bounded variation,
with applications in the theory of special means. For further details on Simpson-type inequalities and other related topics
involving Riemann-Liouville fractional integrals, readers are referred to [9, 10] and its references.

The Newton-Cotes quadrature formula, frequently referred as Simpson’s second formula (also known as Simpson’s 3/8
rule; see [11]), is defined as follows:

[ rwaes "{f() 3f(2““’) 3f(“+2b)+f<b)]

Theorem 1.5. If f : [a,b] — R is a four times differentiable and continuous function on (a,b) , and H @ H sup ’ £ ’
*  x€(ab)

(b—a)*.

< L

oo, then one has the inequality

‘é [f( )+ 3f<2a+b> +3f(a+32b> +f(b)} _bia/abf(x)dx

< gl oo
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In the literature, evaluations for three-step quadrature kernels are frequently referred to as Newton-type results because
the three-point Newton-Cotes quadrature is a rule of Simpson’s second rule. Newton-type inequalities have been extensively
studied by a number of mathematicians. For instance, in paper [12], Erden et al. investigated several Newton-type integral
inequalities for functions whose first derivative is arithmetically-harmonically convex in absolute value at a given power. Please
refer to [13—15] and its references for more details on Newton-type inequality, which includes convex differentiable functions.

The Maclaurin rule, which is derived from the Maclaurin formula (see to [11]), is equivalent to the corresponding dual
Simpson’s 3/8 formula:

/abf(x)dx% {3f<5a+b) 2f<a+b> 3f<a+5b>}

The Maclaurin rule, which is derived from the Maclaurin inequality, is equivalent to the corresponding dual Simpson’s 3/8
formula:

Theorem 1.6. If f : [a,b] — R is a four times differentiable and continuous function on (a,b) , and Hf(“) H = sup ’f '
*  x€(ab)
oo, then the following inequality holds:

’ [3f<5a+b> 2f<a+b> 3f(a+5b>} blalbf(x)dx

Dedic et al. [16] are constructed a set of inequalities using Euler-Maclaurin-type inequalities, and the results were utilized
to derive specific error estimates in the case of the Maclaurin quadrature rules. In the paper [17], these results are applied to
provide error estimates for the Simpson 3/8 quadrature rules. In [18], several Euler-Maclaurin-type inequalities are considered
for differentiable convex functions. Additionally, in [19], several corrected Euler-Maclaurin-type inequalities are established
using Riemann-Liouville fractional integrals. For further information on such types of inequalities, the reader is referred
to [20-22] and the references therein.

_51840Hf H (b—a)*.

2. A Crucial Equality
In this section, we express integral equality in order to demonstrate the main results of the study.

Lemma 2.1. [23]If f : [a,b] — R is an absolutely continuous function (a,b) such that f' € Ly |a,b), then the equality

{3f<5““’>+2f<“;b>+3f(“+65b>]Za;ll,r_(ff)il) T fl@)+T% £ ()]
_b-a

4

[[1 +[2].

is valid. Here,

3. Euler-Maclaurin-type Inequalities for 7-Convex Functions

In this section, we obtain several Euler-Maclaurin-type inequalities for differentiable 4-convex functions by using the
Riemann-Liouville fractional integrals.

Theorem 3.1. Suppose that Lemma 2.1 holds and the function |f’| is h-convex on the interval [a,b]. Then, one can prove
fractional Euler-Maclaurin-type inequality

’é[3f(5a6+b> zf(zH—b) 3f<a+5b>}_2“(;r_(26)1-1) s, ()+Ja+b+f(b)H

<b (1 (azh) + @ (c:1)) [| £ (@) + | (8]
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Here,

S ol

Qi (a;h) :b/t“ {h (%) +h(2;ﬂ dt,

and

1
3 2—
%21 | ( ) h dt.
IG5
Proof. By taking into account the absolute value of Lemma 2.1, one may directly obtain

’ [3f(5a+b> 2f(a+b) 3f<a+5b>}_2a(;l“(2‘);“1) [JM ()+Ja+,,+f(b)H 3.1)
/|fa|{ ( b+l>’+ ’(;a+22_tb)udt
3

Since |f’] is h-convex, it yields

’ {3f(5“+b) 2f(“+b>+3f<“+65b)} za(;r_(j)“) vz (a>+12%,,+f(b>]’

gb;“ /ét“{h(;)|f'(b)|+h<22t)] |+h( )|f )|+h(22t>{f’(b)|]dt
0
t“—ZHh(;) |f’(b)|+h(22t>| |+h( >|f )|+ (22t>|f’(b)|}dr

= 2= (@i (@) + 2 (a) [|f @] +|F )]
which complete the proof of Theorem 3.1. O

Remark 3.2. If we choose h(t) =t in Theorem 3.1, then the following inequality holds:

’; [3f (5“6“’> +of (“;b) 3 (“*65”)} - za(;r(j‘)i D, s+ 1) ’

i@+ v (@) [|f @] +]F )]

3 1 1\ %+
= [t%tr=— |
vi (@) 0/ o <3> ,

and
1 1\o+1 1 ]n(i)
I aTl( -(3) ) 2 0<a<iny,
1//2(05):/ t*—=|dt=
2 3 1+a 1 1y a+1 1 ln(é)
5 e (D) e (3 L w(l) <@

which is established by Gumus et al. in paper [23, Theorem 4].
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Corollary 3.3. Let us consider h(t) = t* in Theorem 3.1. Then, the following Euler-Maclaurin-type inequality for s-convex
functions by using the Riemann-Liouville fractional integrals

’ {3f(5“+”) 2f(“+”)+3f<“+65b)}—za(;r_(:)il) v, (>+J(,+b+f(b)]'

<P r @) +oa(os)) | @) + |7 0]

Here,

and

Corollary 3.4. If we assign h(t) = 1 in Theorem 3.1, then we get the following Euler-Maclaurin-type inequality for P—
functions by using the Riemann-Liouville fractional integrals

’ {3f(5“”’>+zf(“;b)+3f<“+65bﬂ—Za(;r(j)il) e f@+a, f(b)H
b

<= (v (@) + v (@) [|f @]+ )]

Corollary 3.5. If we assign o = 1 in Theorem 3.1, then we can obtain Euler-Maclaurin-type inequality for h-convex functions

[W(”“’)“f(““’)“f(“”b)] S

2@ () + 0 (R) [|F @]+ ®)|],

where

Qi (1:h) = jt {h (%) +h (2;)} dr,
and

Qz(l;/’l) =

z—i‘ [h(;)+h<22 t)]dt.

Remark 3.6. If we choose h(t) =t in Corollary 3.5, then we have the following Euler-Maclaurin-type inequality for h-convex
Sfunctions functions

b
{3f(5a+b> Zf(a+b)+3f<a—:)5bﬂ _bia/f(’)dt
25(b—a)
- 576

u\.—-\_

" @[+ @]

This is established by Hezenci and Budak in paper [18, Corollary 1].
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Corollary 3.7. Let us consider h(t) = t* in Corollary 3.5. Then, we obtain the following Euler-Maclaurin-type inequality for
s-convex functions

[3f(5a+b>+2f(a;b)+3f<a+5b>} ! a/f

L)+ () [|F @]+ ®B)]] -

Here,

0= 0+ (5o st 1+

M )25 o

Corollary 3.8. If we assign h(t) =1 in Corollary 3.5, then we get the following Euler-Maclaurin-type inequality for
P—functions

Elg{3f(5a6+b>+2f(a—2kb>+3f<a+5b)} ! a/f

25(b—a) ,
< BO=9 1)1 | 6]

Theorem 3.9. Let us consider the assumptions in Lemma 2.1 and the function
following Euler-Maclaurin-type inequality holds:

[3f(5a+b>+2f(a42—b>+3f<a+5b)} 2 (e 12, fla >+Ja+b+f(b)]’

6 (b—a)
b—a 1 1\ %7t 7
=73 <<ap+1>(3> )

- 1

A (Fe@mra )i

and

"1, g > 1 is h—convex on [a,b]. Then, the

_ =

QI
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Proof. If we apply Holder’s inequality to (3.1), then we get

’ {3f(5““’> 2f(“+b)+3f<“+65b)}za_(;r_(:)il) T fla)+I%, f(b)H

1
1 1

b 3 3
—a
< t*Pdt /
<1/

0

=
l
==

. 2_ q
dt 7 (tb+ ta) dt

+
»\—‘\. -
NQ
|
|
=
W

==

+

] 317 / o 2—t \|?
o_ 2 A B
/t 1 dt /f<2a+ 5 b) dt
1
3

Taking advantage of the h—convexity | f’

7 we can easily get

' {3f(5““’> 2f(““’) 3f<“+5b)}2a_(;r(2‘)il) e, f@ -+, f(b)H

gb;“ /3t°‘1’dt /(h(; ]"+h< )yf y)
0 0

| 1
7
q

19y /(h(;) |f’(a)]q+h<22_’) 7 (b)\‘f> di

0

+
S —

1 1
P

(rmra(5) )
n /lla—ipdt j<h<;)|f/(a)|q+h<22_t>|f’(b)|">dt

1
3

@)
(h )17 @)+ <22_t) 7 (a)\‘f) dr

3
——| dt
4

+
w\—‘\ -
NQ
=
u\—\ =

==
_=

X
o\w\»—

+ j <h (%) |7 (@)]?+h <22_’) I/ (b)\q) dt
0

q
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Q—

j(h(é)b‘ |"+h< )If I)

1
1 q

|/ (h ()17 @+ (2;) 7 (b)\") dr

1
3

This ends the proof of Theorem 3.9. O

Remark 3.10. If we choose h(t) =t in Theorem 3.9, then the Theorem 3.9 reduces to the result in paper [23, Theorem 5].

Corollary 3.11. Let us consider h(t) = t* in Theorem 3.9. Then, the following Euler-Maclaurin-type inequality for s-convex
functions by using the Riemann-Liouville fractional integrals

' [3f(5“+”)+2f(“;b)+3f<“+65bﬂ—Za(;fj)i”[JM (>+Ja+b+f(b)]‘

< @6

y <f’(b)|q+(65+l—5s+l)|f/(a)q>{1]_1_ <|f/(a)|q+(6s+l—53+l)|f’(b)|q>‘1’
3-65(s+1) 3-6°(s+1)

1

tOC

3-6°(s+1)

1

+ /
1
3

(G @ (5 =3 P G
3-65(s+1)

((3s+1 _ 1) |f/ (b)|q+ (5s+1 733+1) |f’ (a)|Q><11

Corollary 3.12. If we assign h(t) = 1 in Theorem 3.9, then we get the following Euler-Maclaurin-type inequality for
P—functions by using the Riemann-Liouville fractional integrals

Sa+b a+b a+5b 20°10 (@ +1)
’ [3f( ) +2f( - ) +3f< - )} S el AP >+Ja+b+f<b>}'
_b-a 1 (1)“!’“ ;(If’(b)|"+|f’(a)q);
- 2 (ap+1)\3 3
. Y / / 7
fle-3a) (20021
/ 4
Corollary 3.13. Ifwe assign o =1 in Theorem 3.9, then we can obtain Euler-Maclaurin-type inequality
b
Sa+b a+b a+5b 1
o (55) e (52) (5]t from

3
<7 <@im<;yva
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S

Remark 3.14. If we choose h(t) =t in Corollary 3.13, then the following inequality holds:
1 b b b
L5y Sa—+ vy a+ ey a+5 _
8 6
b—a 1 1 p+1 5 p+1 %
< — (= +(=
66 ()
1 1
. [<4|f'<b>‘f+2|f'<a>|‘f>q+ <4|f’(a)l"+2|f’(b)l">"]
9 9

(,:H (;)pH)é [(11|f,(b);]6+|f/(a)q)é+<11|f’(“):6+|f'(b)")"11}7

which is established by Gumus et al. in paper [23, Corollary 1].

+

Corollary 3.15. Let us consider h(t) =t* in Corollary 3.13. Then, the following inequality

;[3f(5a+b> 2 (a+b)+3f<a+65b)} _biaa/bf(t)dt

1 1\ 7! ’
: {<<p+1> (3) )
HE =)@ (@I (6 -5 )l
3 65(s+1) 3-65(s+1)
N 1 17+1 ( 3 >p+l % (35+1 _ 1) |f’ (b)|q+(5s+173s+1) \f’(a)|q é
p+1 12 3.6 (s+1)
. 3s+1 |f/ (5s+1 3S+1) Vi (b)|q>cl1] }
3 6S(s+1) '
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Corollary 3.16. If we assign h(t) = 1 in Corollary 3.13, then we get the following inequality

{3f<5a+b>+2f(a;b>+3f<a+5b)} ! a/f
< b;“{((pil) (;)) (If’( >|q;f/<a>|q>q
(el @) eremsereny}

Theorem 3.17. Assume that the assumptions of Lemma 2.1 satisfy and the function |f'|?, ¢ > 1 is h—convex on [a,b]. Then, we
obtain the following Euler-Maclaurin-type inequality

’ {3f(5““’> 2f(“”’) 3f<“+5b>}2a_(;r_(:);kl) e f@ -+, f(b)H
b—a

< {(qn(a))l—i[[q»a(a;h)|f’<b>|q+<p4<a;h>|f'<a>|"}
T s (h) | (@] + g (ch) | <b>|q]5]

Q=

+ (@ () [[% (a;h)\f’<b>|"+<p6(a;h>lf’(a)\"ﬁ

T [ps(eh) | (@] + g5 ()| £ (5)]] 5} } |

Here,

1
3
a) = 1% — = |dt
(o) = [lio—3
3
1 1\ a+1 1 ln(i)
Tﬂ(l_(§> )—57 0<a<iny,
2 3,1—0—l 1 1ya+1 1 In(3
an(3) e (G HEm L mg;gﬂx

and

Proof. When we apply (3.1) to the power-mean inequality, we have

’ {3f(5“+b> 2f(““’) 3f<“+5b)}—2a_(;r_(2‘)31) e, f@+a, f(b)H
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1— 1

3
b— f t \1|?
< 4a /\t“|dr /\t“| ( b+) dt
0
1 1
J iy 7
+ /|t°‘|dt /|t°‘| (Las 22l "
2 2
0 0
1 1
l‘ 3 1 3 t 2—t \|? '
t%— \dt % — b+ dt
- / 4 / 4 f(z T “)
%
1 1
] 3 T l 3 2 gl
¢ —t
1% —Z\dt 1% — " —a+=—0>b)| dt
* / 4 / 4 f(z“ 2 )
1 1
1 1

19 it follows

’ [3f(5a+b) 2f(“+b)+3f(“+65b)}—Za(;F_<Z‘)Il)[JM (>+Ja+b+f(b)]‘

1 -5 !
Sb;a O/z“dt O/t“[h(; |q+h< )|f w

1—1
q

q

+ jt“dr jt"‘ [h (%) |/ (a)|* 4+ <22_t) f (b)ﬂ dt 5
0 0

_1
=2

-

dt

:h(;)|f yuh( );f |:dt

+
w\—\’_
~
R
IR
w\-—\H
~
S}
\
AW

1 1 _
3 3 t )|
+ /t“—z dt /t“—z _h(§>]f a)| +h( >|f | dt
! !
This finishes the proof of Theorem 3.17. O

4. Summary and Concluding Remarks

In this paper, several Euler-Maclaurin-type inequalities are investigated for differentiable 2—convex functions by using the
Riemann-Liouville fractional integrals. Moreover, by using Holder inequality, we give some Euler-Maclaurin-type inequalities
for Riemann-Liouville fractional integrals. Furthermore, by using the special choices of the obtained results, we obtain the
some Euler-Maclaurin-type inequalities.

In future papers, the ideas and strategies behind our results on Euler-Maclaurin-type inequalities using Riemann-Liouville
fractional integrals may pave the way for new avenues of research in this field. Improvements or generalizations of our results
can be explored by considering different classes of convex functions or other types of fractional integral operators. Additionally,
one could derive Euler-Maclaurin-type inequalities for various function classes with the aid of quantum calculus.
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