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Abstract This study investigated the prediction of winter wheat yield in cultivation regions of Kumkale (Batakovası)
Plain in Çanakkale Province, Türkiye, utilizing Landsat 8-9 imagery-based Vegetation Indices (VIs) along-
side Machine Learning (ML) methodologies. The VIs dataset was created by calculating images collected
during the 2022 and 2023 growth seasons. The resulting dataset was employed in a C4.5 Decision Tree (DT)
algorithm to predict winter wheat yield. The findings indicated that winter wheat yield could be predicted
in April for fields classified as ‘Low Yield, ’Medium Yield,’ and ‘High Yield’ utilizing all indices except for
Enhanced Vegetation Index (EVI) and Soil Adjusted Vegetation Index (SAVI). Interestingly, High Yield’ fields
could also be predicted in March using the EVI index and in February using the SAVI index. In the winter
wheat yield estimation, NDVI with a performance rate of 97.5% was able to determine "High Yield," "Medium
Yield," and "Low Yield" in April (heading-blooming), while the lowest performance was with EVI at 77.50%,
determining "High Yield” in April (heading-blooming), "Medium Yield" (tilling-jointing) in February, and
"Low Yield”. (tilling-jointing) in March. The study concluded that winter wheat yields can be predicted
using VIs independently of climate data. Future research will concentrate on assessing yield predictions
for additional crops by employing various ML algorithms alongside climate data and VIs derived from
higher-resolution satellite imagery.
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Introduction
Vegetation indices (VIs), which are derived from Remote
sensing (RS) data, have become increasingly effective in
monitoring land cover land use and dynamics of plant
phenology over time, as well as in collecting both
physiological and physical characteristics of plants. The
VIs derived from RS data into information that enhances
our understanding of the distribution, characteristics, and
ecological significance of crop production areas and other
vegetation within natural environments (Cai et al., 2010; Naqvi
et al., 2018; Kobayashi et al., 2020; Zhou et al., 2022; Ayub
et al., 2022; Jamali et al., 2023). When RS data transform
into VIs through methodologies such as Machine Learning
(ML), it can be significantly enhanced agricultural production
facilitating prompt and precise decision-making (Naqvi et al.,
2018; Campos et al., 2019; Liu et al., 2022). The VIs include
the Normalized Difference Vegetation Index (NDVI), Green
Normalized Difference Vegetation Index (GNDVI), Enhanced
Vegetation Index (EVI), Renormalized Difference Vegetation
Index (RDVI), Soil Adjusted Vegetation Index (SAVI), Modified
Soil Adjusted Vegetation Index (MSAVI), Modified Chlorophyll
Absorption Reflectance Index (MCARI), and Wide Dynamic
Range Vegetation Index (WDRVI) were extensively utilized to
monitor crop development, and determine the timing and
intensity of phenological events (Naqvi et al., 2018;Toscano et
al., 2019; Segarra et al., 2020; Zhen et al., 2020; Nagy et al.,
2021;Qi et al., 2022; Saad El Imanni et al., 2022;Wang et al., 2022;
Jamali et al., 2023; Khan et al., 2023; Skendzic et al., 2023; Deng
et al., 2022).

The VIs have been shown to predict winter wheat yields
effectively over large areas in many studies and farming
practices, especially when combined with climate data.
These studies mainly used ML methods like Support Vector
Machines (SVM), Artificial Neural Networks (ANN), and Deep
Neural Networks (DNN) along with climate data to improve
predictions of crop yields. Particularly when paired with
climatic data, the VIs have been demonstrated in several
research and farming operations to reasonably forecast winter
wheat yields across considerable regions. This research mostly
used climatic data with ML such as Support Vector Machines
(SVM), Artificial Neural Networks (ANN), and Deep Neural
Networks (DNN) to enhance forecasts of agricultural yields.
While Xi et al. (2019) implemented SVM classification in the
Bardhaman area, Ayub et al. (2022) used Random Forest (RF)
classification in the Faisalabad region of Punjab among the
other techniques used to forecast agricultural productivity.
Goldberg et al. (2021) implemented RF, SVM, Extreme
Gradient Boosting (XGBoost), and Area Under the Curve
(AUC) classification techniques in eastern Mediterranean cost.

Furthermore, Liu et al. (2022) employed both RF and Deep
Learning (DL) classifications in North Henan Province, China.
The study of images from various sources to find out what
influences plant growth and crop yield tracked through plant
growth analysis using ML on Google Earth Engine (GEE) has
greatly enhanced farming outcomes all over the world.

Using the idea of entropy produced from the training dataset,
the application of RS based VIs coupled with the C4.5 Decision
Tree (C4.5-DT), ML approach, for crop yield prediction for
categorization by shows different applications across several
disciplines (Navada et al., 2011). Based on the input data, the
output functions as a decision-support tool that graphically
shows a model in the form of a tree, therefore defining
decisions and their possible results for a target variable
(Gupta et al., 2017). The C4.5-DT algorithm automatically
prunes trees (Mallissery et al., 2013), therefore generating
smaller trees, simpler rules, and better interpretable findings
(Syamala Devi et al., 2016; Deng et al., 2022). High precision
pictures can be difficult even if VIs applied in ML techniques
are judged as appropriate for detecting product patterns
and calculating yields to grasp spatial-temporal variations
(Thieme et al., 2020). Many elements affect the accuracy of
yield prediction models: terrain structure, RS techniques, field
observations, and crop phenological stages depending on
the objectives of research. Literary works abound in evidence
that climate directly affects the phenological stages as well
as plant biological processes (Zhen et al., 2020; Adeniyi et
al., 2020; Qiao et al., 2024). Apart from VIs, Leaf Area Index
(LAI) and other growth indicators influenced by environmental
circumstances can be directly applied in yield prediction
models (Panda et al., 2010). Recently, without considering
climate data, research conducted just using VIs to forecast
agricultural plant yield indicator, LAI. Based just on RS based
VIs without climate data, Qiao et al. (2024) constructed LAI
estimating models for winter wheat, corn, and soybeans.
These results highlight the need of using solely VIs to forecast
agricultural crop yields in order to enable fast and low
cost effective models employing ML algorithms to enable
sustainable agricultural output.

The main objective of this research is to construct predictive
models for winter wheat yield prior to harvest by leveraging
a diverse set of Vis (NDVI, GNDVI, EVI, RDVI, SAVI, MSAVI,
MCARI, and WDRVI) extracted from Landsat 8-9 imagery.
Furthermore, the study seeks to ascertain the optimal
temporal framework for yield prediction, correlating the
VIs with distinct phenological stages, determined monthly.
Notably, climate data has been deliberately omitted from the
ML-enabled C4.5 DT model, thereby emphasizing an analysis
predicated solely on the RS based VIs. This methodological
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framework underscores the potential of RS data to facilitate
precise prediction of agricultural yields, while concurrently
contributing to the advancement of sustainable agricultural
methodologies.

Materials and Methods

Study Area

The selected study area is the Çanakkale/Kumkale-Batak
Plain, located on the Anatolian side of the Çanakkale Strait
(Fig. 1). This region is situated at the mouth of the Aegean Sea
on the Anatolian side of the Çanakkale Strait, approximately
27 km from the provincial center (Inalpulat and Genc, 2019).

Data and pre-processing

Field Data: The study area included 40 parcels planted with
winter wheat, selected from November to December 2022. The
fields were cultivated under both dry and irrigation conditions
and were harvested in June 2023. The yield was calculated
for 9 parcels using randomly selected 1 square meter (sqm)
areas inside the parcels (Table 1 and Figure 2). During the
first 3 weeks of June 2023, we collected field data the day
before farmers started harvesting. The number of stems in 1
sqm of plants and the number of grains in each head were
counted. In the laboratory, 1000 grains from a 1 sqm area
with three replications were randomly selected and weighed.
It was discovered that the calculated yields closely matched
those reported by the farmers (R² = 0,98). Therefore, yield
data for the remaining 40 parcels was added to the database,
considering the farmers' reports. Generally, farmers reported

their winter wheat yield as lower than the actual value due
to harvesting losses of 1-2%. Lucilla and Masaccio are the
common varieties of bread winter wheat grown in the region.

Yield calculations in kilograms (kg) per decare (da) were based
on measured data from the field and samples taken from 9
plots. Three examples are as follows: If the number of heads
per sqm is 410, the number of grains per head is 25, an average
of 10 heads, and the weight of 1000 grains is 42 grams (g) (with
3 repetitions), then the yield is 472 kg/da (compared to the
farmer's statement of 450 kg/da) (Parcel 5). If the number of
heads per sqm is 631, the number of grains per head is 36, an
average of 10 heads, and the weight of 1000 grains is 56 g (with
3 repetitions), then the yield is 1272,09 kg/da (compared to the
farmer's statement of 1250 kg/da). (Parcel 25) If the number
of heads per sqm is 590, the number of grains per head is 33,
an average of 10 heads, and the weight of 1000 grains is 51g
(with 3 repetitions), then the yield is 1031 kg/da (compared to
the farmer's statement of 1000 kg/da). Although the annual
average rainfall in the study area is 625 mm, irrigation was
conducted at least once in 33 plots during the phenology
stages, with the application of Diammonium Phosphate (DAP)
base fertilizer (25 kg/da) and 25 kg/da of urea fertilizer.

Satellite data: Satellite images from Landsat 8-9 for the winter
wheat growing season of 2022-2023 (Figure 3 and Table 2) are
used to generate VIs using user-friendly library adjustments
within the GEE open data source (Aghlmand et al., 2021). The
Landsat images were initially cropped according to the study
area boundaries, and temporal filtering was applied based on
the study period (Esfandabadi et al., 2021). Available images
included the months of December, February, March, April, May,

Figure 1. Study area, Batakovası/Çanakkale, Türkiye (Adopted from Inalpulat and Genc, 2019).
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Figure 2. Sampling size and methods.

and June were used to create the new band combination of
Landsat images (‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, and ‘B7’) for the 2022
and 2023 growing seasons (Figure 3, Table 2). Selected VIs
was calculated using combined time series images over the
study area. The VIs described and formulated in Table 3 are
NDVI, which calculates values using red and near-infrared
bands, ranges from −1 to 1, and is indicative of changes in
the crop growth process (Wang et al., 2022). Similarly, GNDVI
employs the green wavelength instead of the red wavelength
(Jamali et al., 2023). EVI is primarily used to assess the quality
and quantity of vegetation cover (Toscano et al., 2019; Qi
et al., 2022; Saad El Imanni et al., 2022), while RDVI, SAVI,
and MSAVI have been employed in the analysis of various
phenology stages and are often preferred in conjunction
with other indices (Segarra et al., 2020; Nagy et al., 2021;
Skendzic et al., 2023). Additionally, MCARI is frequently utilized
to ascertain chlorophyll density in plants (Zhen et al., 2020;
Khan et al., 2023), and WDRVI enhances the correlation among
plant canopy characteristics by accurately estimating the
relationships within plant canopies (Naqvi et al., 2018) (Table
3).

The VIs values were calculated individually for 40 parcels
by averaging between 1 to 6 pixels, contingent upon the
size of each parcel. This method ensured that the VIs
accurately represented the characteristics of each land parcel.
Subsequently, these averaged VIs values were exported to

create a comprehensive database, facilitating further analysis
and interpretation of the data associated with the winter
wheat phenology stages.

During the acquisition of RS data, reflections from objects
can occasionally yield extreme values due to various
environmental factors (Purwanto et al., 2022). As a result, it
may be necessary to correct pixels with values significantly
deviating from the meaning to ensure suitability for
desired statistical analysis. This process involves applying
mathematical generalizations according to Toscano et al.,
2019 (Eq. 1). Utilizing the adjusted dataset, a comprehensive
database was established comprising 100 training points
derived from the VIs values obtained from selected pixels
across months of interest, within a total of 40 parcels.

Normalized= Indices-Indices(min)
Indices (max) -Indices(min)

 (1)

The phenology of winter wheat is divided into four distinct
phases: seeding-germination, tillering-jointing, heading-
blooming, and maturity-harvesting (Mashonganyika et al.,
2021; Zhou et al., 2022) ( Table 2 and Figure 4). In this
investigation, a time series graph was generated from the
calculated VIs (Figure 4), which allowed for the correlation
of the VIs time series with a variety of phenological phases,
thereby facilitating the characterization of winter wheat
phenology stages (Mashonganyika et al., 2021).
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Table 1. Cadastral and yield information of selected parcels.

Number of
Parcels

Block Parcel No Area (da) Province City Neighborhood Land Use Yield(da)

1 121 1 15330,28 Çanakkale Center Halileli Cultivated 300

2 119 10 24666,84 Çanakkale Center Halileli Cultivated 400

3 121 50 18084,94 Çanakkale Center Halileli Cultivated 500

4 121 51 7091,41 Çanakkale Center Halileli Cultivated 500

5 121 52 5733,59 Çanakkale Center Halileli Cultivated 450

6 145 19 86948,03 Çanakkale Center Halileli Cultivated 550

7 145 20 31684,74 Çanakkale Center Halileli Cultivated 450

8 105 35 26036,05 Çanakkale Center Halileli Cultivated 500

9 174 4 5562,08 Çanakkale Center Kumkale Cultivated 600

10 172 87 10264,67 Çanakkale Center Kumkale Cultivated 550

11 176 3 14454,31 Çanakkale Center Kumkale Cultivated 700

12 146 4 34668,2 Çanakkale Center Kumkale Cultivated 775

13 113 29 6603,91 Çanakkale Center Kumkale Cultivated 1200

14 113 28 3719,82 Çanakkale Center Kumkale Cultivated 1100

15 113 27 3657,19 Çanakkale Center Kumkale Cultivated 1000

16 113 26 9919,89 Çanakkale Center Kumkale Cultivated 1100

17 113 25 17419,04 Çanakkale Center Kumkale Cultivated 1100

18 115 33 4867,09 Çanakkale Center Kumkale Cultivated 1250

19 115 32 7439,64 Çanakkale Center Kumkale Cultivated 1100

20 115 31 14300,16 Çanakkale Center Kumkale Cultivated 1100

21 115 30 6500,07 Çanakkale Center Kumkale Cultivated 1000

22 117 9 26049,1 Çanakkale Center Kumkale Cultivated 900

23 238 26 12006,24 Çanakkale Center Kumkale Cultivated 1000

24 238 27 3630,5 Çanakkale Center Kumkale Cultivated 1000

25 238 28 2585,48 Çanakkale Center Kumkale Cultivated 1000

26 238 57 5334,4 Çanakkale Center Kumkale Cultivated 1050

27 238 58 2229,13 Çanakkale Center Kumkale Cultivated 1050

28 238 59 11157,57 Çanakkale Center Kumkale Cultivated 1050

29 238 137 30407,45 Çanakkale Center Kumkale Cultivated 1025

30 117 4 3754 Çanakkale Center Kalafat Cultivated 1050

31 117 5 3577 Çanakkale Center Kalafat Cultivated 1050

32 117 6 4072 Çanakkale Center Kalafat Cultivated 1050

33 132 25 27852,92 Çanakkale Center Ciplak Cultivated 900

34 196 49 32436,92 Çanakkale Center Ciplak Cultivated 825

35 196 80 2501,26 Çanakkale Center Ciplak Cultivated 850

36 196 88 3045,67 Çanakkale Center Ciplak Cultivated 900

37 196 87 3656,57 Çanakkale Center Ciplak Cultivated 1000

38 196 86 12158,97 Çanakkale Center Ciplak Cultivated 1000

39 - 124 4507 Çanakkale Ezine Pinarbasi Cultivated 900

40 - 123 8309 Çanakkale Ezine Pinarbasi Cultivated 800

Upon analyzing the normalized VIs values within the time
series, it was observed that the lowest values occurred
during the first week of December, as well as in January

and February. These relationships are consistent with the
seeding-germination stage of winter wheat growth, indicating
a direct relationship between the normalized VIs and the
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Table 2. Characteristics of satellite imagery used for VIs and phenological stages.

LANDSAT 8-9 OLI- TIRS

Sensor/Platform Date Resolution (m) Cloud-free rate (%) Phenological Stage

LANDSAT/LC08/C02/T1_TOA 44916 30 40 Seeding-Germination

LANDSAT/LC08/C02/T1_TOA 44971 30 20 Tillering-Jointing

LANDSAT/LC08/C02/T1_TOA 45012 30 20 Tillering-Jointing

LANDSAT/LC09/C02/T1_TOA 45036 30 46,41 Heading-Blooming

LANDSAT/LC09/C02/T1_TOA 45059 30 20 Heading-Blooming

LANDSAT/LC09/C02/T1_TOA 45091 30 20 Maturity-Harvesting

Figure 3. Flow chart of the study.
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Table 3. VIs used to predict winter wheat yield prediction.

Vegetation Index Equations References

NDVI NDVI = NIR − RED
NIR + RED Deng et al., (2022)

EVI EVI = 𝐺 * [((NIR − RED))/ (NIR + 𝐶1 * RED − 𝐶2 * BLUE + 𝐿)] Saad El Imanni et al., (2022)

GNDVI GNDVI = NIR - Green / NIR + Green Jamali et al., (2023)

RDVI RDVI = (NIR − RED) / (NIR + RED) Segarra et al., (2020)

SAVI SAVI = (NIR - RED)/(NIR + RED) + 𝐿 𝑋 (1 + 𝐿) Skendzic et al., (2023)

MSAVI MSAVI = 2𝑥 NIR +1 − sqrt() (2𝑥 NIR +1)2 −8(NIR − Red))/2 Liu et al., (2022)

MCARI MCARI = ((NIR − RED) − 0.2 (NI −  GREEN))𝑥 (NIR /(RED )) Zhen et al., (2020)

WDRVI WDRVI = 0.1 𝑥NIR − RED
NIR + RED Naqvi et al., (2018)

Figure 4. Normalized VI monthly average values and phenological period.

corresponding phenological stage. The end of February and
March represent the tillering-jointing stage and winter wheat
reaches its greenest form at heading-blooming stage end of
March and April, and the VIs values were at their highest
(Khan et al., 2023). Therefore, the months of April and mid-May,
when VIs reach the highest value, are considered the heading-
blooming stage. After the heading-blooming stage, maturity-
harvesting, winter wheat begins to take on a yellowish color
(Campos et al., 2019). During this stage, winter wheat does
not display a healthy plant characteristic as it did during
the heading-blooming stages, and values of VIs began to
decrease. The time series graph of VIs values for the winter
wheat plant in study area for the 2022-2023 season is given
Figure 4.

Decision Tree Classification

A database was created to develop an early yield prediction
model for winter wheat fields. This process involved
processing images using GEE, calculating VIs to determine
time series data, and obtaining real yield values as
described earlier. To construct a predictive model, C4.5 DT
classification algorithms were utilized to develop methods

for classifying VIs values based on actual yield. The results
of the C4.5 DT classification algorithms were analyzed to
determine the month in which they could predict ‘Low Yield,’
‘Medium Yield,’ and ‘High Yield’ in different phenology stages.
Furthermore, the development of C4.5 DT algorithms and the
evaluation of their performance accuracy were carried out.
When the studies conducted based on previous classifiers
for classification methods in knowledge acquisition were
examined, it was observed that algorithms with high detection
rates and low false alarm rates were C4.5 DT and RF (Chauhan
et al., 2013; Mallissery et al., 2013; Aggarwal and Sharma,
2015). Furthermore, visualizing the trees produced assistance
in comprehension alongside studying, and both numerical
and categorical data can be analyzed through the C4.5 DT
algorithm (Gupta et al., 2017). Consequently, the C4.5 DT
information retrieval algorithm was selected for this research.
The prediction model for calculating winter wheat parcel
yield values based on VIs was established using the C4.5 DT
algorithm within RapidMiner Studio software (Yucebas et al.,
2022).

VIs time series values were used as numerical data, while
yield values were used as categorical data (Table 4). For the
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categorical data set, the unit value was divided into three
classes: ‘Low Yield,’ ‘Medium Yield,’ and ‘High Yield.’ Values
between 300 and 552 were categorized as low, values between
553 and 1117 were categorized as medium, and values between
1118 and 1250 were categorized as high in the specified classes.
The formulas provided below were utilized in determining the
class labels Eq. (2-4) (Yucebas et al., 2022).

Low = [ MinUnit_Yield , MinUnit_yield + σ] (2)

Medium = [ MinUnit_Yield + σ+1, xx̄+ σ] (3)

High = [xx̄+ σ+1, MaxUnit_Yield ] (4)

Standard deviation (σ) and mean (�x̄ ) were used for the value
range. The depths of the created trees were set to 10 (Table
4). A pruning algorithm was employed to minimize repeated
paths. It was observed that the 'Gini Index' tree type exhibited
the highest accuracy in classification in the study (Cai et al.,
2010). Therefore, it was chosen for use in the study.

Results

Prediction of the Winter Wheat Yield – Vis

In the assessment of performance accuracy for the C4.5
DT algorithm, the predictive capacity of individual indices
was analyzed using a data subset comprising 10% or more
of the entire dataset. Upon examining the yield prediction
results presented in Figure 5 and Table 4, C4.5 DT models
demonstrated a classification accuracy of 97,50% in April,
which is critical for the prediction of the yield for the study
area in the 2023 season. It was noticed that C4.5 DT was able
to accurately predict the yield of parcels by categorizing NDVI
values, and it was found that April is a crucial month for NDVI.
If the NDVI value is less than or equal to 0,913, the parcel yield
will be predicted as ‘Low Yield’ (300-552 kg/da). If the NDVI
value is greater than 0,913, the NDVI values for April will be
reevaluated. In the second node of the DT, if the NDVI value
is greater than 0,925, the parcel yield is predicted as ‘High
Yield’ (1118-1250 kg/da). Otherwise, the parcel yield will be
predicted as ‘Medium Yield’ (553-1117 kg/da).

The C4.5 DT model resulted that April as the critical time
for yield prediction with a classification accuracy of 77,50%.
According to this, the yield can be estimated as ‘Low Yield’
parcels when EVI is less than or equal to 1,010 in April. If EVI is
greater than 1,010, the values of March were checked and EVI
is greater than 1,071, parcel yield is predicted as ‘High Yield’. If
EVI value is less than or equal to 1,071, the EVI value of June
should be checked. In June, when EVI is less than or equal to
0,068, a decision could not be made, and control was carried
out in May. In May, when EVI is greater than 0,923, in February
when EVI is greater than 0,725, parcels with ‘Medium Yield’
were predicted (Figure 5). Similarly, GNDVI also determined

April as the critical time for predicted yield with an 87,50%
accuracy. In April, if GNDVI is greater than or equal to 0,863,
it is predicted as ‘Low Yield’. If GNDVI is less than or equal to
0,875, the parcel is predicted as ‘Medium Yield,’ and if GNDVI
is greater than 0,875, GNDVI values for the December node
should be checked. In the December node, if GNDVI is less
than 0,650, the April node is reevaluated. Greater than 0,877 in
April, the parcel is predicted as ‘High Yield’ for GNDVI. In April,
the starting note was identified as having 97,50% accuracy for
the RDVI classification. If the RDVI value in April is equal to or
less than 0,913, it is predicted as ‘Low Yield.’ If the RDVI value
is greater than 0,913, the values are reevaluated in April, and if
the RDVI value is equal to or less than 0,925, it is predicted as
“Medium Yield.” If the RDVI value is greater than 0,925 in April,
‘High Yield’ parcels can be predicted (Figure 5). Furthermore,
the analysis showed that MSAVI had a classification accuracy
of 82,50% in April. When MSAVI is less than or equal to 0,836,
the parcel is predicted as ‘Low Yield’. If MSAVI is less than
or equal to 0,865, the parcel is predicted as ‘Medium Yield,’
and if MSAVI is greater than 0,865, then the MSAVI value from
the February node is examined. The MSAVI value is greater
than 0,588, the MSAVI value from April is reevaluated, and
parcels with MSAVI values over 0,873 are predicted as ‘High
Yield’ (Figure 5). The results indicated that April also played
a significant role in predicting winter wheat yield using the
MCARI, with an accuracy rate of 85,0%. When the MCARI index
is analyzed, April also played a significant role in predicting
winter wheat yield using the MCARI, with an accurate rate of
85,0% (Table 4). If the MCARI value was equal to or less than
2,336 in April, it was classified as ‘Low Yield.’ If the MCARI
value was greater than 2,336 but less than or equal to 2,931
in April, the parcel indicates "Medium Yield". The MCARI value
was greater than 2,931 in April, then the values for the March
node were examined. The MCARI value in March was greater
than 1,871, it could indicate ‘High Yield’ parcels. The analysis
revealed that April is a crucial period for predicting winter
wheat yield using the WDRVI index with 97,50% accuracy. In
April, if the WDRVI is less than or equal to 0,510, the parcel
was classified as ‘Low Yield’. If the WDRVI was greater than
0,510, it should be reassessed in April. Furthermore, if the
WDRVI was less than or equal to 0,550 in April, it was classified
as ‘Medium Yield’, while a value greater than 0,550 indicated
‘High Yield’ for the parcels (Figure 5). The SAVI index, with a
classification accuracy of 75,0%, also indicated that April is the
most important period to predicted wheat yield (Table 4). It
was determined that if the SAVI value was equal to or lower
than 0,815 in April, the parcel was predicted as a ‘Low Yield.’
However, the SAVI value was greater than 0,815 in April, further
examination was required. In this case, the SAVI value was less
than or equal to 0,843 in the December node, the parcel was
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Figure 5. Combination of sub-decision trees for yield prediction of vegetation indices.

Table 4. Performance accuracy values of winter wheat yield prediction based on C4.5-DT.

Tree Name Performance Accuracy
Analysis (%)

Month of best prediction
‘Low Yield’

Month of best prediction
‘Medium Yield’

Month of best prediction
‘High Yield’

NDVI 97,50 April April April

EVI 77,50 April February March

GNDVI 87,50 April April April

RDVI 97,50 April April April

MSAVI 82,50 April April April

MCARI 85,00 April April April

WDRVI 97,50 April April April

SAVI 75,00 April December February

predicted to have a ‘Medium Yield’. Moreover, if the SAVI value
was greater than 0,544 in December, a ‘Medium Yield’ parcel
was predicted. Additionally, it was observed that parcels were
identified as ‘High Yield’ if the SAVI value was higher than 0,843
in April and greater than 0,599 in February (Figure 5).

All VIs generated from Landsat 8-9 data can be used to
predict ‘Low Yield’ in April, which is the heading-blooming

period of winter wheat. Additionally, ‘Medium Yield’ can be
predicted in April using NDVI, GNDVI, RDVI, MACARI, MSAVI, and
WDRVI, but EVI in February and SAVI in December. Furthermore,
EVI can predict ‘High Yield’ parcels in March, which is the
tillering-jointing period of winter wheat phenology, and SAVI
can forecast ‘High Yield’ in February, marking the end of the
seeding-germination period (Table 4, Figure 5). All other VIs
also predicted ‘High Yield’ in April.
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Discussion and Conclusion
This study aimed to find the best times to predict 'Low
Yield,' 'Medium Yield,' and 'High Yield' areas by looking at
the VIs of winter wheat during its growth stages and using
the C4.5 DT classification algorithm. Overall findings indicated
that April is a critical month for yield prediction during the
heading-blooming stages. During this time, yield predictions
made using the NDVI, EVI, GNDVI, RDVI, MSAVI, MCARI, WDRVI,
and SAVI indices showed high accuracy rates between 75.50%
and 97.50%. It has been shown in research that April is a
good time to predict winter wheat yield using RS data in
semi-arid regions, especially during the heading-blooming
stage. Similarly, Song et al. (2016) stated that the use of
Landsat 8-derived NDVI during the heading-blooming stage
for predicting winter wheat yield is valuable information for
agricultural sectors. The results of our study are consistent
with similar studies in literature (Castaldi et al., 2015; Song et
al., 2016; Ma et al., 2022; Newete et al., 2024; Xiao et al., 2024;
Du et al., 2025; Raza et al., 2025). Ma et al. (2022) mentioned
that using the Simple Yield Prediction Algorithm (SAFY) model,
which combines RS data and biomass data at the beginning of
the blooming period, is important for predicting yield because
key factors are at their peak during this time. Although the
model is different, we have found a comparable result.

Similarly, in a supporting study by Newete et al. (2024), the
optimum suitable period for yield forecast in South Africa
was discovered to be the heading -blooming phase of wheat
prediction. This study also reveals that the ideal time to
estimate wheat output in northwest Turkey is the heading-
blooming period, more notably, the peak flowering phase in
April. The overall results of the research suggest that VIs can
independently of climatic data highlight physiological and
structural changes in plants. Independent of climate data, this
condition has revealed the remarkable precision with which
VIs can identify wheat phenological stages. By means of a R²
value of 0.77 using the Multiple Linear Regression model (Faqe
Ibrahim et al., 2023), this method validates earlier studies
showing a good correlation between wheat yield and VIs from
Landsat 8. This paper reveals that simply VIs enable one to
precisely project the winter wheat output without integrating
climate data such temperature, precipitation, and Growing
Degree Days (GDD). The outcome suggests that, provided the
plants are healthy and free from diseases, elements like
temperature, rainfall, and sunlight influence how well a plant
develops; so, using VIs helps one to estimate growth and yield
using only RS-based VIs. This result implies that we should
create simpler models using just RS data as a substitute and
that the link between VIs and projecting wheat yield might
be stronger than we thought. Segarra et al. (2020) also found

that the heading-blooming stage in April is the optimal time
to anticipate winter wheat yield using climate factors (such as
precipitation, temperature, and GDD) paired with RDVI (R² =
0.84) and MSAVI (R² = 0.83).

Ashfaq et al. (2024), who claimed that the use of just VIs can
help in the prediction of wheat yield, validated our results.
Their study showed that more accurate forecasts (R² = 0.78–
0.88) arise from the combination of climate and RS data
than from models based just on restricted data (R² = 0.65–
0.732) or RS data (R² = 0.49–0.70). Without using any climate
data, this study generated extremely accurate predictions
for "High Yield" winter wheat in April using NDVI (97.50%),
GNDVI (87.50%), RDVI (97.50%), MSAVI (82.50%), MCARI (85.00%),
and WDRVI (97.50%). Using an ML technique known as C4.5-
DT While SAVI (75.50%) expected this in the early stages of
seeding-germination (December), EVI (77.5%) expected "High
Yield" throughout the seeding-germination (February) phases.
Thayanandeswari et al. (2024) examined how effectively
multiple ML approaches, including SVM, DT, and RF, may
predict crop production using vegetation indices and climate
data. With an accuracy of 98% and more constant forecasts
of wheat yield, the DT-RF algorithm was the best. Research
on using VIs with ML found that the XGBoost and RF models
considerably improved prediction accuracy, with scores of R²
= 0.81 and R² = 0.60. Based on these studies, simply using VIs
yields accuracy rates between 75.50% and 97.50% and the C4.5-
DT-based model is a good and dependable way to anticipate
wheat output. Unlike simpler DT and other ML methods, the
results indisputably reveal that for limited areas integrating
RS data with the C4.5 -DT model produces rather accurate yield
projections. The use of climate data remains limited, despite
its capacity to alleviate challenges related to the continuous
monitoring of plots.

This difference is important because satellite imagery allows
for a comprehensive assessment of the effects of climate on
plant characteristics. It was developed a rapid, cost-effective,
and simple method for predicting agricultural yields during
the phenological mid-stages, which aligns with the United
Nations Sustainable Development Goal 2, "Zero Hunger."
A C4.5-DT-based ML model using only RS data indicates
that April is a critical time for predicting winter wheat
production in northern Turkey. Title: Flowering periods can
vary significantly depending on the physical characteristics
of different countries (elevation, location, topography, etc.)
and should be recognized as an important tool not only
for Türkiye but also for assessing the adequacy of global
winter wheat stocks. The independent use of RS allows
researchers and practitioners to improve yield predictions,
which facilitates access to information, especially in regions
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where traditional data collection, such as climate data, is
difficult. We encourage the use of high-resolution satellite
images, surface temperatures, and images obtained from VIs
as effective tools for covering large areas, which facilitates
the faster assessment of agricultural conditions. The study's
results indicate that RS-based VIs are accurate and reliable
compared to C4.5-DT-based ML methods, indicating that there
is room for enhancements in future research. Future studies
should integrate environmental variables such as climate
data and soil properties, evaluate the model using extended
datasets, and adapt it for other scales and contexts. By using
the appropriate VIs and ML methods along with thorough
research, we can create models that consider environmental
factors, which will help us better analyze agricultural
productivity. Future studies could enhance its effectiveness by
examining the applicability of this approach to different crops
and locations. In summary, this study demonstrates that yield
predictions obtained solely from VIs are accurate and shows
the impact of external factors such as weather on plant health.
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