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Abstract: Covid-19 is a viral infection that affects the respiratory tract and causes serious 

health problems on a global scale. Due to the high contagiousness of the disease, early detection 

and accurate classification are of great importance. In this study, a novel orthogonal 

regularization method is proposed to improve the detection accuracy of Covid-19 disease from 

X-ray images. The proposed regularization method, evaluated using ResNet110, improves the 

classification accuracy compared to traditional Orthogonal regularization approaches. In the 

experimental studies, the proposed method is compared with various regularization techniques 

and the highest classification success rate is achieved by increasing the test accuracy rate to 

96.52%. In addition, it is observed that the proposed method optimizes the learning curve of 

the model, especially in the later stages of the training process, and increasing the test accuracy. 

In addition, compared to the existing orthogonal regularization methods for Covid-19 

detection, the proposed approach improved the test classification performance by 

approximately 1% in accuracy, F1-score, sensitivity, recall and specificity metrics. 

 

 

Yeni bir Orthogonal Düzgünleştirme Kullanan Artık Yapay Sinir Ağı ile X-Ray 

Görüntülerinden Covid-19 Tespiti 
 

 

Anahtar 

Kelimeler 

Derin öğrenme, 

Artık ağ, 

Ortagonal 

düzgünleştirme, 

Covid-19 

Öz: Covid-19, solunum yollarını etkileyen ve küresel ölçekte ciddi sağlık sorunlarına neden 

olan viral bir enfeksiyondur. Bulaşıcılığı nedeniyle hastalığın erken teşhis ve doğru 

sınıflandırılması büyük önem taşımaktadır. Bu çalışmada, X-ışını görüntülerinden Covid-19 

hastalığının tespit doğruluğunu artırmak için yeni bir ortogonal düzgünleştirme yöntemi 

önerilmiştir. ResNet110 ağına uygulanan yöntem, geleneksel ortogonal düzgünleştirme 

yaklaşımlarına kıyasla sınıflandırma doğruluğunu artırılmaktadır. Deneysel çalışmalarda, 

önerilen yöntem çeşitli düzgünleştirme teknikleriyle karşılaştırılmış ve test doğruluk oranını 

%96,52'ye çıkarılarak en yüksek sınıflandırma doğruluğu elde edilmiştir. Önerilen yöntemin 

özellikle eğitim sürecinin sonraki aşamalarında modelin öğrenme eğrisini optimize ettiği ve 

test doğruluğunu artırdığı da görülmüştür. Ayrıca, Covid-19 tespiti için mevcut ortogonal 

düzgünleştirme yöntemleriyle karşılaştırıldığında, önerilen yaklaşım test sınıflandırma 

performansını doğruluk, F1 puanı, duyarlılık, keskinlik ve özgüllük metriklerinde yaklaşık %1 

oranında iyileşme sağlanmıştır. 

 

1. INTRODUCTION 

 

Covid-19 is a new mutated form of coronaviruses, a 

ribonucleic virus [1]. It, which has affected many 

countries of the world in recent years, spreads rapidly by 

human-to-human transmission [2]. According to the 

report published by the World Health Organization, 776.8 

million confirmed cases and more than 7 million deaths 

have been reported [3]. Patients infected with this new 

coronavirus have symptoms such as fever, fatigue, 
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headache, shortness of breath [4]. The rapid spread and 

progression of the disease increases the importance of 

early diagnosis. In advanced stages, it can lead to serious 

complications up to pneumonia in the lungs. 

Covid-19 is primarily diagnosed using Reverse 

Transcription Polymerase Chain Reaction (RT-PCR) test. 

However, the PCR test has an accuracy rate of 

approximately 70% in correctly identifying the disease 

[5]. Therefore, in addition to the RT-PCR test, X-ray and 

computed tomography (CT) imaging are commonly 

utilized by physicians [6]. CT is a widely used technique 

for disease detection; however, obtaining CT images is an 

expensive procedure. Given the rapid global spread of the 

disease, particularly in underdeveloped countries, the 

implementation of a more cost-effective diagnostic 

method is crucial. Although the sensitivity of detecting 

COVID-19 from chest X-ray images is below 70%, its 

affordability makes it a valuable tool in disease diagnosis 

when further developed and optimized [7,8]. 

 

Artificial intelligence applications are widely utilized in 

the medical field. Narin et al. implemented a hybrid deep 

learning approach on X-ray images to detect pneumonia 

caused by the Covid-19 [9]. In their study, COVID-19 

pneumonia was identified with an accuracy of 98.0% 

using the InceptionV3 convolutional neural network, 

alongside ResNet50. Another study conducted by Wang 

et al. achieved a sensitivity of 91% in detecting COVID-

19 using their proposed deep learning architecture [10]. 

Similarly, Horry et al. employed CT, X-ray, and 

ultrasound imaging for COVID-19 detection. They 

applied VGG19, a deep learning architecture, to these 

images, achieving a sensitivity of 86% for X-ray images, 

100% for ultrasound images, and 84% for CT images [11]. 

Loey et al. utilized CT images to detect COVID-19. To 

enhance the performance of the deep learning 

architecture, the dataset containing a limited number of 

samples was augmented using a Convolutional 

Generative Adversarial Network (CGAN). Subsequently, 

the architectures were trained on both classical and 

CGAN-based augmented data using AlexNet, VGG16, 

VGG19, GoogleNet, and ResNet50 networks. Among 

these, the ResNet50 architecture achieved the highest 

accuracy of 82% with classical data augmentation [12]. 

 

In this study, a novel orthogonal regularization (OR) 

method is proposed. This method is subsequently applied 

to the ResNet110 network for the detection of COVID-19. 

The second section of the study outlines the materials and 

methods. The third section presents the experimental 

results and compares the performance of the proposed 

method with existing approaches. Finally, the fourth 

section discusses the obtained results and provides 

suggestions for future research. 

 

2. MATERIAL AND METHOD 

 

2.1. Covid-19 Dataset   

 

The dataset consists of chest X-ray images of pneumonia 

caused by the COVID-19 virus, which has significantly 

impacted the world in recent years. It includes a total of 

three classes: normal, other pneumonia, and COVID-19 

pneumonia [13,14]. The dataset contains 1,200 COVID-

19, 1,341 normal, and 1,345 other pneumonia X-ray 

images. A total of 80% of the data was used for training, 

while the remaining 20% was allocated for testing. Figure 

1 shows sample images of the Covid-19 dataset. 

 

 
Figure 1. Covid-19 dataset X-ray images. 

 

2.2. Residual Neural Network  

 

Residual Neural Network (ResNet) is an architecture 

proposed to address the gradient vanishing problem [15]. 

Residual layers (residual blocks) enhance training 

efficiency by utilizing the output of a previous layer as an 

input to subsequent layers. The architecture of a residual 

layer is illustrated in Figure 2(a). The literature contains 

ResNet architectures with varying depths and widths. In 

this study, ResNet110 (Figure 2(b)) is used. This 

architecture incorporates bottleneck residual layers, and 

its depth is given by the formula p = 9n + 2, where n 

represents the total number of convolutions and 𝑝 denotes 

the total depth. Thus, ResNet110 consists of 1.7 million 

parameters. 

 

 
Figure 2. ResNet architectures. (a) Basic residual block, (b) Residual 
block used for ResNet110. 

 

2.3. Orthogonal Regularization 

 

Regularization is one of the key elements of deep 

learning, a subfield of machine learning. Regularization is 
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usually applied as a penalty function added to the loss 

function [16]. The penalty function is defined as a method 

that aims to reduce the test error in the learning model but 

does not reduce the training error [17]. This definition is 

a restrictive statement for deep architectures. Because 

methods such as weight both training and test error [18]. 

As a result, all techniques used for better generalization 

and test accuracy of the neural network are called 

regularization. 

 

One of the most significant challenges in artificial neural 

networks (ANN) is the vanishing or exploding gradients 

as the depth of the network increases. To address this 

issue, it has been proposed that the parameter matrix 

should approximate the Gram matrix [19]. While the 

stability of forward propagation is achieved through batch 

normalization, the uniform distribution of the error cannot 

be ensured in the backpropagation process [20]. An 

alternative approach to address this issue is the OR 

method [21–23]. OR methods in the literature have been 

proposed as an alternative to the classical weight decay 

regularization approach. 

 

Orthogonality is defined as 𝑥, 𝑦 being two vectors, 𝑥, 𝑦 ∈
𝑅𝑛  for 𝑥 ∙  𝑦 =  0 →  𝑥 ⊥  𝑦. Unit orthogonality 

(orthonormality) forces the vector norms to be equal to 

one: ‖𝑥‖ = 1  𝑎𝑛𝑑 ‖𝑦‖ = 1. After this a priori 

information, it is necessary to mention how orthogonality 

is used in the ANN training process. In the feed-forward 

algorithm of ANN, 𝑘𝑡ℎ  layer output vector 𝑥  is 

transformed 𝑦 =  𝑊𝑇𝑥  while moving to the (𝑘 +
 1)𝑡ℎ layer input. 

 

where 𝑊  is called the linear transformation matrix 

(Equation 1). The condition that the norms of 𝑥 and 𝑦 are 

equal to each other during this transformation is called 

Norm-Preservation and is shown in Equations 1 and 2. 

 

𝑊 = [
| | |

𝑤1 … 𝑤𝑛

| | |
]

𝑚𝑥𝑛

 (1) 

‖𝑦‖ = √𝑦𝑇𝑦 = √𝑥𝑇𝑊𝑊𝑇𝑥 = √𝑥𝑇𝑥
= ‖𝑥‖,   𝑒ğ𝑒𝑟 𝑊𝑊𝑇 = 𝐼 

(2) 

 

Orthogonal vectors are needed to preserve vector norm 

values. Therefore, the distance of the 𝑊𝑊𝑇  result to the 

unit matrix is obtained as the cost value. Bansal et al. 

proposed to classify four different categories of methods 

for regularization this cost value [21]. These are Soft 

Orthogonal (SO), Double Soft Orthogonal (DSO), Mutual 

Coherence (MC) and Spectral Restricted Isometry 

Property (SRIP) orthogonal regularization [20,24–27]. 

 

SO, the column vectors of the matrix 𝑊 are required to be 

perpendicular to each other and have unit length. 

Accordingly, the regularization cost (𝑅) is calculated by 

multiplying the distance of the result 𝑊𝑇𝑊 ∈ 𝑅𝑛𝑥𝑛 from 

the unit matrix [𝐼]𝑛𝑥𝑛by a coefficient 𝜆 .The mathematical 

form of the SO method is given in Equation 3. 

 

𝐷(𝑊) = 𝜆‖𝑊𝑇𝑊 − 𝐼‖𝐹
2  (3) 

The cost gradient is calculated as 4𝜆𝑊(𝑊𝑇𝑊 − 𝐼) and is 

used in the back propagation algorithm to update the 

parameters. 𝑊 a matrix with rows 𝑚 and columns 𝑛. The 

rank of the matrix is 𝑚 if it is greater than or equal to 𝑚, 𝑛. 

This situation is called under complete matrix. In such 

cases, an orthogonality relation can be established. 

However, if it is greater than or equal to 𝑛, 𝑚, even if the 

rank of the matrix is 𝑚, this is called an over complete 

matrix. 𝑊𝑇𝑊 ∈ 𝑅𝑛𝑥𝑛  may not be identified from these 

matrices. To overcome these shortcomings, approaches 

have been developed that divide the weight matrix 𝑊 into 

subspaces such as Stiefel manifold or Jakobi. These 

approaches reduce the columns of the over complete 𝑊 

matrix to lower dimensional subspaces, making the matrix 

easier to process and analyze [24]. 

 

DSO, the column vectors of the matrix 𝑊 are required to 

be perpendicular to each other in two different vector 

spaces (𝑊𝑇𝑊 ∈ 𝑅𝑛𝑥𝑛  ve 𝑊𝑊𝑇 ∈ 𝑅𝑚𝑥𝑚 ) and to be of 

unit length [21]. Accordingly, the cost function is defined 

as follows: 

 

𝐷(𝑊) = (‖𝑊𝑇𝑊 − 𝐼‖𝐹
2 + ‖𝑊𝑊𝑇 − 𝐼‖𝐹

2 ) (4) 

 

where 𝑊 is weight matrix and has 𝑚 rows and 𝑛  

columns. 𝑚 is greater than 𝑛, the regularization loss is 

calculated according to the formula 𝜆‖𝑊𝑇𝑊 − 𝐼‖𝐹
2  , n is 

greater than or equal to m, the formula 𝜆‖𝑊𝑊𝑇 − 𝐼‖𝐹
2  is 

used. 

 

Another OR method is MC. 𝑊 the MC value between the 

column vectors of the parameter matrix is calculated as 

shown in Equation 5 [26]. 

 

𝜇𝑊 = 𝑚𝑎𝑥𝑖≠𝑗 =
|〈𝑤𝑖 , 𝑤𝑗〉|

‖𝑤𝑖‖ + ‖𝑤𝑗‖
 (5) 

 

For the MC method, 𝑤𝑖  is the column vector 𝑖𝑡ℎ of 𝑊. 

𝜇𝑊 , is seen that in the range [0,1] and in the case of 

ortagonality, it approaches 0, and in other cases it 

approaches 1. The use of 𝐿∞ is preferred because it is the 

vector element with the highest absolute value and plays 

the biggest role in increasing the consistency value [26]: 

 

𝐷(𝑊) = 𝜆‖𝑊𝑡𝑊 − 𝐼‖∞ (6) 

 

For MC 𝐿∞  returns the largest value in the vector 

elements. 

 

Regularization methods developed using spectral 

restricted isometry property (SRIP) give better results in 

statistical metrics and execution time than other 

methods[27,28].The regularization cost function used in 

this approach is as shown in Equation 7. 

 

𝐷(𝑊) = 𝜆 ∙ 𝜎(𝑊𝑇𝑊 − 𝐼) (7) 

 

where 𝜆 is the regularization coefficient. 𝜎(𝑊𝑇𝑊 − 𝐼) 

function returns the spectral norm of the 𝑊𝑇𝑊 − 𝐼 matrix 

and is calculated as shown in Equation 8. 
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𝑢 ← (𝑊𝑡𝑊 − 𝐼)𝑣 

𝑣 ← (𝑊𝑡𝑊 − 𝐼)𝑢 

𝜎(𝑊𝑡𝑊 − 𝐼) ←
‖𝑣‖

‖𝑢‖
 

(7) 

 

where 𝑣  is a vector starting with random values in 𝑅𝑛 

space. Then the vector 𝑢  and again  𝑣 are computed 

iteratively. The spectral norm is obtained by the ratio of 

both vector norms. 

 

2.4. Proposed Orthogonal Regularization Method 

 

Orthogonal regularization approaches generally aim to 

approximate the weight matrix 𝑊  as a Gram matrix. 

However, this approach weakens the regularization effect 

in overcomplete cases and negatively impacts the 

performance of the network. Furthermore, enforcing all 

weights to be orthogonal vectors hinders the model’s 

convergence towards an optimal learning curve [27]. The 

proposed OR approach is based on enforcing column 

vectors to be binary while modulating orthogonality 

transitions.  

 

In this context, Figure 3 presents the parameter images 

(filter/mask images) in the layers of three different CNN 

architectures (AlexNet [29], VGG16 [30], and ResNet50 

[15]) trained on the ImageNet dataset. A careful analysis 

of the figure reveals that numerous binary images within 

the layers are nearly orthogonal to each other. This 

observation supports the hypothesis that the training 

process inherently seeks orthogonal pairs of binary 

images [31]. 

 

 
Figure 3. Hidden layer weight visualization (a) AlexNet,(b) ResNet50, 
(c) VGG16. 

 

While classical regularization approaches force all 

parameter vectors in the layer to be orthogonal to each 

other by 𝑊𝑇𝑊 −  𝐼 operation, in the proposed approach, 

only binary vector pairs are forced to be orthogonal. The 

cost function of the proposed regularization approach is 

given below:  

 

𝐷(𝑊) = 𝜆 ∑(𝑤𝑖
𝑇𝑤𝑖+1 − 1), 

  𝑖 ∈ {1, 3, 5 … } 
(9) 

 

where 𝜆 is the regularization rate and 𝑤𝑖 is the column 

vector 𝑖 of 𝑊 . The total loss function observed in the 

training/testing activities of the datasets is calculated as 

shown in Equation 10. 

 

𝐻(𝑊) = 𝛼 ∗ 𝐾 (𝑊) + (1 − 𝛼) ∗ 𝐷(𝑊) (10) 

 

𝐾 is the loss function and the cross entropy error value. 𝐷 

is the regularization loss. In the experiments 𝐷 cost varies 

and the effect of regularization is analyzed. 𝐻(𝑊) is the 

total loss function. The total loss function of the proposed 

algorithm contains loop and condition expressions. This 

process forces the weights of the network to perform OR 

in binary layers, not in general. The main reason for this 

is to avoid the overcomplete situation. For these reasons, 

the derivative of the proposed method and the loss 

function are calculated by automatic derivative methods 

[32]. 

 

2.5. Performance Evaluation Metrics 

 

In this study, the metrics Acc, Pre, Recall, F1-score and 

Spe and the confusion matrix are used to measure the 

experimental performance of the proposed models. In the 

confusion matrix, TP and TN values indicate the number 

of correctly classified samples, FP and FN indicate the 

number of incorrect predictions of the model. These 

metrics are given mathematically below [33,34]. 

 

𝐴𝑐𝑐 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
∗ 100 

(11) 

𝑃𝑟𝑒 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (12) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (13) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = (2 ∗ 𝑃𝑟𝑒 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒
+ 𝑅𝑒𝑐𝑎𝑙𝑙) 

(14) 

𝑆𝑝𝑒 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) ∗ 100 (15) 

 

where Acc, Pre, Recall, Spe and F1-score are derived 

from the confusion matrix. Acc is the ratio of the number 

of correctly predicted images for each class to the total 

number of images. Pre and Recall are the precision and 

sensitivity values of class detection, respectively. The 

higher these values are, the better the images belonging to 

the class are detected. F1-score is the harmonic mean of 

Pre and Recall. 

 

The confusion matrix gives information about the actual 

and predicted classes in a classifier. The class 

performance of a model is evaluated using the matrix 

values in Figure 4 [33,35]. 

 

 
Figure 4. Confusion matrix. 

 

3. EXPERIMENTAL RESULTS  

 

In this section, the effect of regularization on training and 

testing using the COVID-19 dataset with the ResNet110 

architecture is analyzed. The training parameters utilized 

for ResNet110 are presented in Table 1. The Adam 

optimizer is employed, with the learning rate set to  

10−2and the number of epochs set to 200. The obtained 

results are presented in Table 2. 
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Additionally, Figure 5 presents the accuracy curve of the 

proposed approach (ResNet110+OR) and the ResNet110 

architecture during training. 

 
Table 1. Training parameters of ResNet110 

Parameters ResNet110 

Input layer 32x32x3 

Intermediate 

layer 

12 residual blocks and fully connected 

classifier 

Output layer 10 

Activation ReLU 

Optimization Adam 

Package size 128 

Epoch 200 

Learning rate 0.01 

 

(a)

(b)

ResNET110_Covid19

 
Figure 5. ResNet110 accuracy/epoch for Covid-19 dataset. 

 

In Table 2, when the proposed OR method is compared 

with orthogonal regularization methods in the literature, 

the results indicate that the proposed method 

demonstrates an improvement in statistical metrics. While 

the accuracy of ResNet110 (a model without 

regularization) is reported as 96.01%, this increases to 

96.54% with the proposed OR method. Precision (Pre) 

and Recall are measured at 96.52% and 96.51%, 

respectively, indicating that the proposed approach 

achieves better class discrimination compared to other 

methods. Furthermore, a specificity (Spe) of 98.27% was 

achieved with the proposed approach, demonstrating 

improved performance in reducing false positives. 
 

Table 2. Test results obtained with ResNet110 architecture using 
different OR techniques 

Method 
Dog 

(%) 

Pre 

(%) 

Recall 

(%) 

Spe 

(%) 

F1 

(%) 

ResNet110 96.01 95.98 95.97 98.01 95.97 

ResNet110+SO 96.24 96.25 96.22 98.13 96.24 

ResNet110+DSO 96.14 96.12 96.09 98.07 96.10 

ResNet110+MC 96.24 96.25 96.22 98.13 96.24 

ResNet110+SRIP 96.41 96.38 96.36 98.20 96.37 

Proposed OR 96.54 96.52 96.51 98.27 96.51 

 

The proposed OR method provides a significant 

improvement in both classification accuracy and other 

key performance metrics. Specifically, the test accuracy 

improves by approximately 1%. 

 

As shown in Figure 5, the effect of regularization is 

limited during the initial 25 iterations. However, after the 

50th iteration, the effect of regularization becomes more 

pronounced in the model’s test performance. These 

findings confirm that the proposed approach enhances 

classification accuracy by approximately 1%. 

 

4. DISCUSSION AND CONCLUSION 

 

In this study, the effectiveness of a new orthogonal 

regularization method developed for COVID-19 detection 

is investigated. The proposed OR method, which is added 

to the loss function of the ResNet110 architecture, aims to 

optimize the hidden layer weights as binary orthogonal 

vectors. Experimental results indicate that the 

regularization effect is limited during the first 25 

iterations of training, but a significant performance gain 

is observed after the 50th iteration. In addition, the 

proposed method achieves 96.52% classification accuracy 

in detecting COVID-19 from X-ray images, 

demonstrating superior performance compared to 

orthogonal regularization approaches such as SO, DSO, 

MC, and SRIP. It is shown that the unified regularization 

approach improves learning efficiency by enhancing the 

classification performance of neural networks and can be 

utilized in detecting critical diseases such as COVID-19. 

 

In future studies, the applicability of the method for 

detecting other diseases will be investigated by testing it 

on different deep learning architectures and larger 

datasets. Furthermore, by evaluating its performance in 

real-time applications within clinical environments, this 

study aims to contribute to the broader and more effective 

adoption of AI-driven medical imaging technologies for 

disease detection. 
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