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Abstract: In this paper, the concept of unidefiners is introduced as a unified aggre-
gation framework on the interval [0, ∞]  that generalizes both 𝑡 − definers and 
𝑡 − codefiners. Traditional aggregation operators, typically defined on [0,1] , are 
deemed inadequate for applications where data naturally extends beyond the unit 
interval. Motivated by challenges in multi‑criteria decision-making and fuzzy logic, 
unidefiners are defined as binary operations on [0, ∞] equipped with a neutral ele-
ment and characterized by associativity, commutativity, and monotonicity. It is 
shown that when the neutral element is set to 0, a 𝑡 −definer is obtained, whereas 
choosing ∞ yields a 𝑡 −codefiner; a strong duality and transformation methods are 
established accordingly. The proposed framework is argued to enhance the theoret-
ical understanding of aggregation on unbounded domains and to expand its practi-
cal applicability. 
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Öz: Bu çalışmada, hem 𝑡 −belirleyicileri hem de 𝑡 −eşbelirleyicileri genelleyen, [0, ∞] 
aralığında tanımlı birleşik bir toplulaştırma çerçevesi olarak unibelirleyici kavramı tanıtıl-
mıştır. Geleneksel toplulaştırma işlemleri genellikle [0,1] aralığında tanımlandığından, 

verilerin birim aralığı aşabildiği uygulamalar için yetersiz kalmaktadır. Çok ölçütlü karar 

verme ve bulanık mantık gibi alanlardaki zorluklardan hareketle, unibelirleyiciler; bir bi-

rim elemana sahip, birleşmeli, değişmeli ve monoton olan, [0, ∞] üzerinde tanımlı ikili 

işlemler olarak tanımlanmıştır. Birim eleman 0 olarak alındığında bir 𝑡 −belirleyici, ∞ 

olarak alındığında ise bir 𝑡 −eşbelirleyici elde edildiği gösterilmiş; bu iki yapı arasında 

güçlü bir dualite ve dönüşüm yöntemleri ortaya konulmuştur. Önerilen çerçevenin, sınır-
sız aralıklar üzerindeki toplulaştırma işlemlerinin kuramsal kavranışını geliştirdiği ve uy-

gulama alanını genişlettiği savunulmuştur. 
  

1. Introduction 
 

Aggregation operators are widely used in diverse 
fields, including fuzzy logic, probabilistic metric 
spaces, and multi-criteria decision-making. However, 
most existing studies focus on aggregation operators 
defined on the bounded interval [0,1], leaving a gap in 
the literature for models that operate on unbounded 
domains. This paper introduces a novel framework 
(unidefiners) which unifies 𝑡 −definers and 𝑡 −code-
finers on the interval [0, ∞], thereby addressing prac-
tical issues where data and metrics naturally extend 
beyond the unit interval. 

The motivation behind this research stems from the 
need for a unified aggregation framework that is both 
mathematically robust and versatile enough for a wide 
scientific audience. In many real-world applications, 
such as decision-making systems and clustering algo-
rithms, the underlying data is not confined to [0,1] but 
spans the entire non-negative real axis. By extending 
the well-established concept of uninorms to the [0, ∞] 
interval via unidefiners, this work offers a more flexi-
ble approach that can capture both 'union-like' and 'in-
tersection-like' behaviors in a single framework. 

Despite the extensive body of research on uninorms 
and related operators on bounded intervals, there is a 
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notable absence of a general theory that covers aggre-
gation on unbounded domains. The development of 
unidefiners not only fills this theoretical gap but also 
provides new insights and tools for practical applica-
tions that require more general aggregation methods. 

A uninorm is a binary operation on the unit interval 
[0, 1] with a neutral element 𝑒 ∈  [0, 1], which is asso-
ciative, commutative, and monotonic, and is known for 
yielding a 𝑡 − conorm when 𝑒 =  0  and a 𝑡 − norm 
when 𝑒 =  1 [12, 13]. This flexibility unifies both “in‑
tersection-like” and “union-like” behaviors under one 
framework, offering broad applicability in practical 
scenarios. 

Since their introduction, uninorms have garnered sig-
nificant interest, have been extensively studied, and 
remain a subject of active research across various do-
mains, including characterization [16, 27], construc-
tion [4, 5, 6], decomposition [20, 25], distributivity 
[32], direct product operations [1], idempotency prop-
erties [24], induced order relations [2], migrativity 
[18], modularity [28], ordinal sum representations 
[11], and topological aspects [21, 22]. 

Furthermore, various related function classes, includ-
ing 2 − uninorms [3], micanorms [29], nuninorms 
[10], null-uninorms [17, 31], nullnorms [9], 
pseudo−uninorms [26], 𝑆 −uninorms [30], semi-un-
inorms [8],  unima [14], uni−nullnorms [17, 19, 31], 
and uninorm-like parametric activation functions [7], 
have also been studied extensively in diverse frame-
works. 

However, in certain applications, one may need to 
work with metric or quasi−metric structures defined 
on [0, ∞], for instance, ⋆ −metric spaces or other gen-
eralized distance concepts. 

In this context, the notion of a unidefiner comes into 
play: a unidefiner is a binary operation on [0, ∞] , 
equipped with a neutral element (𝑒 ∈ [0, ∞]), and is 
associative, commutative, and monotonic. This struc-
ture has two special cases: 

𝑡 −definer (𝑒 =  0): A generalization of operations re-
sembling addition or maximum. 

𝑡 −codefiner (𝑒 =  ∞): A generalization of operations 
resembling minimum or other behaviors at the oppo-
site extreme. 

Between these two endpoints lies a value e that leads 
to the so-called proper unidefiner, situated between 
𝑡 − definer and 𝑡 − codefiner. Much like uninorms 
(where 𝑒 ∈  (0, 1) ), unidefiners (with 𝑒 ∈ (0, ∞) ) 
continue to offer a unified approach to aggregation 
and provide the flexibility needed in many different 
applications. 

The Unidefiners paper presents this approach in de-
tail, demonstrating a duality relationship between t-
definer and 𝑡 −codefiner, thus laying the theoretical 
groundwork for unidefiners. 

Similar to t-norm/uninorm theory, it is thereby possi-
ble to design a wide array of aggregation operations 
on [0, ∞] by selecting different identity elements. 

In summary, the main contributions of this paper are: 
(i) the introduction of the unidefiner as a generalized
aggregation operator on [0, ∞], (ii) the establishment
of a strong duality between 𝑡 −definers and 𝑡 −code-
finers through this new framework, and (iii) the
demonstration of how proper unidefiners can be
transformed into both 𝑡 −definers and 𝑡 −codefiners,
thereby broadening the scope of aggregation tech-
niques applicable to various scientific fields.

The remainder of the paper is organized as follows. 
Section 2 provides the fundamental definitions and 
properties of 𝑡 −definers and 𝑡 −codefiners. Section 3 
introduces the concept of unidefiners, details their 
theoretical properties, and discusses the duality rela-
tionships. Finally, Section 4 outlines potential applica-
tions of the proposed framework and offers sugges-
tions for future research directions. 

2. Material and Method

In this section, we provide some basic definitions re-
garding t-definers. More detail can be 
found in [23, 15]. 
We point out that the t-definers in [23] are assumed to 
be continuous by definition. Here, we consider a more 
general case where continuity is not required. 

Definition 2.1. [23] An operation ⋆ on [0, ∞] that sat-
isfies the following conditions for all 
𝑎, 𝑏, 𝑐 ∈  [0, ∞] is called a 𝑡 −definer. 

(D0)  𝑎 ⋆  0 =  𝑎 
(D1)  𝑎 ⋆  (𝑏 ⋆  𝑐)  =  (𝑎 ⋆  𝑏)  ⋆  𝑐 
(D2)  𝑎 ⋆  𝑏 =  𝑏 ⋆  𝑎 
(D3) 𝑎 ≤  𝑏 ⇒  𝑎 ⋆  𝑐 ≤  𝑏 ⋆  𝑐 

In particular, if the condition 
(D4)  ⋆ is continuous in its first component,  

is satisfied, we call this a continuous 𝑡 −definer. 

Note that ∞ always behaves as an absorbing element 
for a 𝑡 −definer, because the identity0 and monotonic-
ity imply that for every 𝑎 ∈  [0, ∞] , ∞ =  0 ⋆  ∞ ≤
 𝑎 ⋆  ∞, which gives 𝑎 ⋆  ∞ =  ∞. 

Example 2.2. The following are examples of 𝑡 −defin-
ers on [0, ∞]. 

1. 𝑎 ⋆  𝑏 =  𝑎 +  𝑏
2. 𝑎 ⋆  𝑏 =  𝑚𝑎𝑥(𝑎, 𝑏)
3. 𝑎 ⋆  𝑏 =  𝑎 +  𝑏 +  𝑎𝑏

4. 𝑎 ⋆  𝑏 =  √𝑎2 + 𝑏2

5. 𝑎 ⋆  𝑏 = (√𝑎 + √𝑏)
2
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The 𝑡 −definers in Example 2.2 are illustrated in Fig-
ure 1. 

 Example 2.2 (1) 

 Example 2.2 (2) 

 Example 2.2 (3) 

 Example 2.2 (4) 

Example 2.2 (5) 
Figure 1. Some examples of 𝑡 −definers 

Building upon the foundational concepts introduced 
above, we now shift our focus to the detailed proper-
ties of unidefiners, establishing their relationship with 
existing aggregation operators. 

3. Results

In this section, the concepts of 𝑡 −codefiner and uni-
definer are defined, and the relevant results and their 
interrelations are presented. 

Definition 3.1. An operation ⋇ on [0, ∞] that satisfies 
the following conditions is called a 𝑡 −codefiner.  

 (C0)  𝑎 ⋇   ∞ =  𝑎 
(C1)  𝑎 ⋇  (𝑏 ⋇  𝑐)  =  (𝑎 ⋇  𝑏)  ⋇  𝑐 
(C2)  𝑎 ⋇  𝑏 =  𝑏 ⋇  𝑎 
(C3) 𝑎 ≤  𝑏 ⇒  𝑎 ⋇  𝑐 ≤  𝑏 ⋇  𝑐 

Dual to 𝑡 −definers, for a 𝑡 −codefiner, 0 is always 
an absorbing element. Indeed, since ∞ is 
the identity element and by monotonicity, for every 
𝑎 ∈  [0, ∞], 
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𝑎 ⋇  0 ≤  ∞ ⋇  0 =  0, 
which gives 𝑎 ⋇  0 =  0. 
 
The following theorem establishes the duality be-
tween 𝑡 − definers and 𝑡 − codefiners. This result is 
important as it not only shows the intrinsic connection 
between these two operations but also provides a sys-
tematic way to generate one from the other, thereby 
enhancing our understanding of aggregation opera-
tors on [0, ∞]. 
 
Theorem 3.2.  If ⋆ is a 𝑡 −definer on [0, ∞], then the 
operation ⋇ defined by 

𝑎 ⋇  𝑏 =
1

1

𝑎
⋆

1

𝑏

 

is a 𝑡 − codefiner on [0, ∞] . Conversely, if ⋇  is a 
𝑡 −codefiner, then the operation ⋆ defined by 

𝑎 ⋆  𝑏 ==
1

1

𝑎
⋇

1

𝑏

 

is a 𝑡 −definer. 
 
Proof: We will show that if ⋆ is a t-definer, then the op-
eration 

𝑎 ⋇  𝑏 =
1

1

𝑎
⋆

1

𝑏

 

is a 𝑡 −codefiner. The transition from 𝑡 −codefiners to 
𝑡 −definers is quite similar. 
Assume that ⋆ is a 𝑡 −definer. 

(C0)    𝑎 ⋇  𝑏 =
1

1

𝑎
⋆

1

𝑏

=
1

1

𝑎
⋆0

=
1
1

𝑎

= 𝑎 

(C1)    𝑎 ⋇  (𝑏 ⋇  𝑐) = 𝑎 ⋇
1

1

𝑏
⋆

1

𝑐

=
1

1

𝑎
⋆

1
1

1
𝑏

⋆
1
𝑐

 

                                      =
1

(
1

𝑎
⋆

1

𝑏
)⋆

1

𝑐

= (𝑎 ⋇  𝑏) ⋇ 𝑐 

 

 (C2) 𝑎 ⋇  𝑏 = 
1

1

𝑎
⋆

1

𝑏

=
1

1

𝑏
⋆

1

𝑎

= 𝑏 ⋇ 𝑎 

 (C3) 𝑎 ≤  𝑏 ⟹ 
1

𝑏
 ≤

1

𝑎
⟹

1

𝑏
⋆

1

𝑐
≤

1

𝑎
⋆

1

𝑐
 

                          ⟹
1

1

𝑎
⋆

1

𝑐

≤
1

1

𝑏
⋆

1

𝑐

⟹ 𝑎 ⋇  𝑐 ≤ 𝑏 ⋇  𝑐. 

 
Example 3.3. The following are examples of 𝑡 −code-
finers on [0, ∞], each of which is the dual of those in 
Example 2.2 in context of Theorem 3.2. 
 
For brevity, the formulas are presented in a simple 
form; however, if either a or b is ∞, it is assumed to act 
as a neutral element, which is also observed in the 
limit case. As a result to simplify the expressions, in-
stead of writing the formulas as piecewise functions 
for the sake of ∞, we adopt the convention that when-
ever a 𝑡 −codefiner is given, ∞ functions as a 
neutral element. 

1. 𝑎 ⋇  𝑏 =
𝑎𝑏

𝑎 + 𝑏
  

2.  𝑎 ⋇  𝑏 =  𝑚𝑖𝑛(𝑎, 𝑏) 

3.  𝑎 ⋇  𝑏 =
𝑎𝑏

 𝑎 + 𝑏 + 1
 

4.  𝑎 ⋇  𝑏 =
𝑎𝑏

 √𝑎2+ 𝑏2
  

5.  𝑎 ⋇  𝑏 =
𝑎𝑏

 (√𝑎+ √𝑏)
2 

 
The 𝑡 −codefiners in Example 3.2 are illustrated in 

Figure2.

 
                                Example 3.2 (1)  

 
Example 3.2 (2) 

 
                                Example 3.2 (3)  
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                                Example 2.2 (4) 
                               
 

 

Example 2.2 (5) 
Figure 2. Some examples of 𝑡 −codefiners 

 
We note that the construction given in Theorem 3.2 is 
not the only nontrivial way to obtain 𝑡 −codefiners 
from 𝑡 −definers. For any 𝑘 ∈  (0, ∞), the operation 

𝑎 ⋇  𝑏 =
𝑘

𝑘

𝑎
⋆

𝑘

𝑏

 

also serves the same purpose. 
 

For instance, taking 𝑘 =  2 and ⋆ defined by  
 𝑎 ⋆  𝑏 =  𝑎 +  𝑏 +  𝑎𝑏, we obtain 

𝑎 ⋇  𝑏 =
2

2

𝑎
⋆

2

𝑏

=
2

2

𝑎
+

2

𝑏
+

2

𝑎

2

𝑏

=
2

2𝑎+2𝑏+4

𝑎𝑏

=
𝑎𝑏

𝑎+𝑏+2
,  

 
which differs from the one given in Example 3.3 (3). Of 
course, as before, we do not directly apply the formula 

when ∞ is involved but instead use the fact that it acts 
as a neutral element. 
 
Now, we introduce the concept of unidefiner, which 
unifies t-definers and 𝑡 −codefiners under a common 
framework. 
 
Definition 3.4 An operation ∗ on [0, ∞] that satisfies 
the following conditions is called a unidefiner.  
     (U0)  There exists an 𝑒 ∈ [0, ∞], such that  𝑎 ⋆  𝑒 =
 𝑎 for all 𝑎 ∈  [0, ∞]. 
     (U1)  𝑎 ∗  (𝑏 ∗  𝑐)  =  (𝑎 ∗  𝑏)  ∗  𝑐  for all 𝑎, 𝑏, 𝑐 ∈
[0, ∞]. 
     (U2)  𝑎 ∗  𝑏 =  𝑏 ∗  𝑎 for all 𝑎, 𝑏 ∈  [0, ∞]. 
     (U3) 𝑎 ≤  𝑏 ⇒  𝑎 ⋆  𝑐 ≤  𝑏 ⋆  𝑐  for all 𝑎, 𝑏, 𝑐 ∈
 [0, ∞]. 
 
In this case, a unidefiner ∗ is an operation on the set 
[0, ∞]  that is unital, associative, commutative, and 
monotonic; in other words, ([0, ∞],∗)  is an ordered 
commutative monoid. A 𝑡 −definer is simply a unide-
finer whose identity element is 0, whereas a 𝑡 −code-
finer is a unidefiner whose identity element is ∞ . A 
unidefiner that is neither a 𝑡 −definer nor a 𝑡 −code-
finer is called a proper unidefiner. 
 
Example 3.5. The operation ∗ on [0, ∞] defined by 

𝑎 ∗ 𝑏 = {

0, 𝑎, 𝑏 < 𝑒
max(𝑎, 𝑏) , 𝑎, 𝑏 ≥ 𝑒

min(𝑎, 𝑏) , otherwise
 

is an example of a unidefiner, with an arbitrary unit 
𝑒 ∈ (0, ∞), which is not a 𝑡 −definer, nor a 𝑡 −code-
finer. 
 
Example 3.6. The operation ∗ given by 

𝑎 ∗ 𝑏 = {
min (𝑎, 𝑏), 𝑎, 𝑏 ≤ 𝑒

∞ 𝑎, 𝑏 > 𝑒
max(𝑎, 𝑏) , otherwise

 

is a unidefiner with the unit 𝑒, where 𝑒 ∈ (0, ∞). 
 
Theorem 3.7. If ∗ is a unidefiner, then 0 ∗  ∞ is an ab-
sorbing element. 
 
Proof: Let 𝑒  be the identity element of ∗ . If 𝑎 ≤  𝑒 , 
then from 𝑎 ∗  0 ≤  𝑒 ∗  0 =  0, we get 
𝑎 ∗  0 =  0 . Thus, we obtain  𝑎 ∗  (0 ∗  ∞)  =  (𝑎 ∗
 0)  ∗  ∞ =  0 ∗  ∞.  
On the other hand, if 𝑎 >  𝑒, then 𝑎 ∗  ∞ ≥  𝑒 ∗  ∞ =
 ∞ , which gives 𝑎 ∗  ∞ =  ∞ . Using commutativity 
and associativity, we again obtain 𝑎 ∗  (0 ∗  ∞)  =
 (𝑎 ∗  ∞)  ∗  0 =  0 ∗  ∞.  
 
We can further refine our understanding of 0 ∗ ∞ be-
yond just being an absorbing element: 

 
Theorem 3.8. For a unidefiner ∗, we have either 0 ∗
 ∞ =  0 or 0 ∗  ∞ =  ∞. 
 
Proof: First, if 𝑒 is the identity element of ∗, then 0 ∗
 ∞ ≠  𝑒, since Theorem 3.5 states 
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that 0 ∗  ∞ is an absorbing element and thus cannot 
be equal to the identity. 

If 0 ∗  ∞ <  𝑒, then by Theorem 3.5 and monotonicity, 
we have 
0 ∗  ∞ =  (0 ∗  ∞)  ∗  0 ≤  𝑒 ∗  0 =  0, 
which implies 0 ∗  ∞ =  0. 

Conversely, if 0 ∗  ∞ >  𝑒, then 
0 ∗  ∞ =  (0 ∗  ∞)  ∗  ∞ ≥  𝑒 ∗  ∞ =  ∞, 
which implies 0 ∗  ∞ =  ∞.  

The result above shows that unidefiners can be classi-
fied into two distinct types. If a unidefiner satisfies 0 ∗
 ∞ =  0, then it resembles 𝑡 −codefiners due to 0 be-
ing an absorbing element, and such a unidefiner is 
called disjunctive. If instead, 0 ∗  ∞ =  ∞, the unide-
finer is said to be conjunctive. 

Example 3.9. For the unidefiner given in Example 3.5., 
0 ∗ ∞ = 0, hence it is a disjunctive unidefiner. On the 
other hand, 0 ∗ ∞ = ∞ for the unidefiner in Example 
3.6, and therefore it is conjunctive. 

From any proper unidefiner, one can obtain both a 
𝑡 −definer and a 𝑡 −codefiner, as described 
in the following theorems. 

Theorem 3.10. Let ∗  be a proper unidefiner with 
identity element 𝑒. Then, the operation ⋆ defined by 

𝑎 ⋆  𝑏 =  ((𝑎 +  𝑒)  ∗  (𝑏 +  𝑒))  −  𝑒 
is a 𝑡 −definer. 

Proof: First, we ensure that this operation is closed on 
[0, ∞] . Since 𝑒 ≤  𝑎 +  𝑒  and 𝑒 ≤ 𝑏 + 𝑒 , by mono-
tonicity we obtain 

𝑎 ⋆ 𝑏 = ((𝑎 + 𝑒) ∗ (𝑏 + 𝑒)) − 𝑒 ≥ (𝑒 ∗ 𝑒) − 𝑒 = 0. 

Thus, we have 𝑎 ⋆  𝑏 ≥  0, ensuring that the operation 
remains within [0, ∞]. 

(D0)    𝑎 ⋆ 0 = ((𝑎 + 𝑒) ∗ (0 + 𝑒)) − 𝑒 

= ((𝑎 + 𝑒) ∗ 𝑒) − 𝑒=(𝑎 + 𝑒) − 𝑒 = 𝑎. 

(D1)    𝑎 ⋆  (𝑏 ⋆  𝑐) = 𝑎 ⋆ (((𝑏 + 𝑒) ∗ (𝑐 + 𝑒)) − 𝑒) 

 = ((𝑎 + 𝑒) ∗ (((𝑏 + 𝑒) ∗ (𝑐 + 𝑒)) − 𝑒)) − 𝑒 

= ((𝑎 + 𝑒) ∗ ((𝑏 + 𝑒) ∗ (𝑐 + 𝑒))) − 𝑒 

= (((𝑎 + 𝑒) ∗ (𝑏 + 𝑒)) ∗ (𝑐 + 𝑒)) − 𝑒 

 = (𝑎 ⋆ 𝑏)  ⋆ 𝑐 

 (D2) 𝑎 ⋆ 𝑏 = ((𝑎 + 𝑒) ∗ (𝑏 + 𝑒)) − 𝑒 

 = ((𝑏 + 𝑒) ∗ (𝑎 + 𝑒)) − 𝑒 

 =  𝑏 ⋆ 𝑎 
 (D3) If 𝑎 ≤ 𝑏 ⟹  then 𝑎 + 𝑒 ≤ 𝑏 + 𝑒 , and this easily 
yields 𝑎 ⋆ 𝑐 ≤ 𝑏 ⋆ 𝑐 for all 𝑐 ∈ [0, ∞].  

Example 3.11. Consider the unidefiner in Example 
3.5. Then, in the notation of Theorem 3.10, we have 

𝑎 ⋆  𝑏 =  ((𝑎 +  𝑒) ∗  (𝑏 +  𝑒))  −  𝑒 

= max(𝑎 + 𝑒, 𝑏 + 𝑒) − 𝑒 
= max(𝑎, 𝑏). 

as 𝑎 + 𝑒, 𝑏 + 𝑒 ≥ 𝑒. This is the 𝑡 −definer in Example 
2.2 (2). 

Example 3.12. For the unidefiner given in Example 
3.6, we consider two cases. If both 𝑎  and 𝑏  are non-
zero, then 𝑎 + 𝑒, 𝑏 + 𝑒 > 𝑒 and 

𝑎 ⋆  𝑏 =  ((𝑎 +  𝑒) ∗  (𝑏 +  𝑒))  −  𝑒 = ∞ − 𝑒 = ∞. 

If either 𝑎 or 𝑏 is zero, say 𝑏 = 0, then  

𝑎 ⋆  0 =  ((𝑎 +  𝑒) ∗  𝑒)  −  𝑒 

= max(𝑎 + 𝑒, 𝑒) − 𝑒 = 𝑎 
for 𝑎 ≠ 0, and 

0 ⋆  0 =  (𝑒 ∗  𝑒)  −  𝑒 = min(𝑒, 𝑒) − 𝑒 = 0 
for 𝑎 = 0. This gives the 𝑡 −definer 

𝑎 ⋆ 𝑏 = {
𝑏, 𝑎 = 0
𝑎 𝑏 = 0

∞, otherwise
which we call drastic 𝑡 −definer, in analogy with the 
drastic 𝑡 −norm. 

Theorem 3.13. If ∗ is a proper unidefiner with iden-

tity 𝑒 , then 𝑎 ⋆ 𝑏 =
1

(
1+𝑎𝑒

𝑎
)∗(

1+𝑏𝑒

𝑏
)−𝑒

 defines a 𝑡 −code-

finer. 

Proof: By Theorem 3.7, 𝑎 ⋆ 𝑏 = ((𝑎 + 𝑒) ∗ (𝑏 + 𝑒)) −

𝑒  gives a 𝑡 −definer and by Theorem 3.2 𝑎 ⋇ 𝑏 =
1

1

𝑎
⋆

1

𝑏

 

gives a 𝑡 −codefiner, and 

𝑎 ⋇  𝑏 =
1

1

𝑎
⋆

1

𝑏

=
1

((
1

𝑎
+ 𝑒) ∗ (

1

𝑏
+ 𝑒)) − 𝑒

=
1

((
1+𝑎𝑒

𝑎
) ∗ (

1+𝑏𝑒

𝑏
)) − 𝑒

The reduction of the expression in this final result, re-
veals a compact form that underscores the inherent 
symmetry in the operation, making it more accessible 
for further theoretical exploration and practical appli-
cation. 

Example 3.14. For the unidefiner in Example 3.5, the 
𝑡 −codefiner described in Theorem 3.13 is obtained as 

𝑎 ⋇  𝑏 =
1

((
1

𝑎
+ 𝑒) ∗ (

1

𝑏
+ 𝑒)) − 𝑒

=
1

max (
1

𝑎
+ 𝑒,

1

𝑏
+ 𝑒) − 𝑒

=
1

max (
1

𝑎
,

1

𝑏
)

= min(𝑎, 𝑏), 
the 𝑡 −codefiner in Example 3.3 (2). 

4. Discussion and Conclusion

In this paper, we introduced unidefiners, a novel 
framework that unifies 𝑡 −definers and 𝑡 −codefiners 
on the interval [0, ∞]. By establishing a strong duality 
between these operators, we bridge the gap between 
classical uninorm theory and aggregation methods ap-
plicable to unbounded domains. 
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Selecting appropriate identity elements enables 
unidefiners to act as either disjunctive or conjunctive 
operators. This versatility makes them suitable for ap-
plications in multi-criteria decision-making, cluster-
ing, and fuzzy logic. 
 
Future research should explore additional properties 
such as idempotency, continuity, and local behavior, 
along with practical implementations. Overall, unide-
finers represent both a theoretical advancement and a 
promising tool for developing new aggregation tech-
niques. 
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