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Abstract 

Automated physiological affect recognition is vital, but supervised learning on labeled datasets such as the Wearable Stress and Affect 
Detection (WESAD) may miss underlying nuances. This study used unsupervised Hierarchical Agglomerative Clustering with Ward's 
linkage to explore inherent structures in chest-worn sensor data, including electrocardiography, electrodermal activity, respiration, 
and body temperature, collected from 15 WESAD participants. Comprehensive features, including detailed heart rate variability 
metrics derived via the NeuroKit2 library, were extracted. Clustering was applied to standardized features, yielding four distinct 
groups defined by unique multivariate signatures in electrodermal activity, temperature, respiration, and key heart rate variability 
indices, such as the root mean square of successive differences and the low-frequency/high-frequency ratio. These data-driven groups 
showed partial alignment but also significant divergence from the original WESAD experimental labels (baseline, stress, amusement, 
meditation), revealing physiological heterogeneity within predefined conditions. Findings demonstrate the efficacy of hierarchical 
clustering in identifying physiologically interpretable groups potentially representing distinct autonomic nervous system states, such 
as stress, relaxation or engagement, and alert rest. This underscores the value of unsupervised learning for complementing supervised 
methods in affective computing, enabling data-driven discovery of physiological state taxonomies beyond experimental labels, and 
offering valuable insights for developing nuanced artificial intelligence tools for mental health monitoring and adaptive human-
computer interaction. 
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1. Introduction 

The automated recognition of human affective states through physiological signals is increasingly vital across diverse Artificial 
Intelligence (AI) domains, enhancing human-computer interaction, health monitoring, personalized medicine, and mental well-being 
tools [1]. While behavioral cues offer insights, physiological signals originating from the autonomic nervous system (ANS)such as 
electrocardiography (ECG), electrodermal activity (EDA), respiration (RESP), and body temperature (TEMP)provide a more objective 
window into underlying emotional and stress responses, less susceptible to conscious manipulation [2], [3]. The proliferation of 
wearable sensors makes continuous multi-modal physiological data collection feasible, yet interpreting these complex, noisy, high-
dimensional, and temporally dependent streams pose significant challenges. AI, particularly machine learning (ML) and deep learning 
(DL), offers essential methodologies for processing these signals, extracting features, and identifying patterns indicative of affective 
states, facilitating a shift towards continuous, ecologically valid monitoring [4]. 

A critical resource enabling this research is the Wearable Stress and Affect Detection (WESAD) dataset, a publicly available benchmark 
comprising multi-modal physiological data—including ECG, EDA, electromyography (EMG), RESP, TEMP, blood volume pulse (BVP), 
and acceleration (ACC)—recorded from chest and wrist devices during experimentally induced neutral, amusement, and stress states. 
Although WESAD has spurred development of numerous supervised ML/DL models achieving high classification accuracy for these 
predefined labels, inherent complexities remain, including data dimensionality, noise, artifacts, and significant inter-subject variability. 
Furthermore, relying solely on supervised learning, which optimizes predicting discrete experimental labels, risks creating models 
that, while accurate on task, may not fully capture the nuanced spectrum of underlying physiological states or the data's inherent 
structure [5]. This potential simplification, masked by the high performance of diverse supervised models, necessitates 
complementary approaches. Consequently, unsupervised learning methods, like clustering, present a valuable alternative for 
exploring latent structures directly from the data without reliance on a priori label, potentially revealing physiologically meaningful 
groupings that refine or diverge from experimental conditions [6]. 

Therefore, this study applies Hierarchical Agglomerative Clustering (HAC), using Ward's linkage, to explore the structure within multi-
modal physiological data derived exclusively from the high-fidelity chest-worn sensors (ECG, EDA, RESP, TEMP) in the WESAD dataset. 
A central focus is placed on comprehensive feature engineering, notably incorporating a detailed suite of time-domain, frequency-
domain, and non-linear Heart Rate Variability (HRV) metrics extracted from the ECG signal using NeuroKit2[7]. The contribution lies 
in leveraging this established unsupervised AI technique, combined with detailed physiological feature engineering, for an exploratory, 
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data-driven discovery of physiological states related to affect and stress within this widely studied dataset [6]. Contrasting with the 
predominant focus on supervised classification, this approach aims to move beyond label prediction towards a more nuanced 
understanding of the underlying physiological state space associated with effect, demonstrating the utility of unsupervised AI for 
revealing inherent patterns in complex biological systems [8]. 

2. Materials and Methods 

2.1 Dataset 

This study utilized the publicly available WESAD dataset [9]. WESAD contains physiological and motion data recorded from subjects 
undergoing a laboratory study designed to elicit different affective states. The original study involved 17 participants; however, data 
from two subjects (S1 and S12) were excluded by the dataset creators due to sensor malfunctions, resulting in data from 15 subjects 
(mean age 27.5 ± 2.4 years; 7 female, 8 male; all right-handed) being used in this analysis. The original data collection received ethical 
approval from the Institutional Review Board of the University of Kaiserslautern, Germany, and all participants provided written 
informed consent. 

2.2 Data Acquisition and Synchronization 

Physiological and motion data were collected using two devices: a chest-worn device (RespiBAN Professional, Plux Wireless Biosignals 
S.A.) and a wrist-worn device (Empatica E4, Empatica Inc.) placed on the subject's non-dominant arm. The RespiBAN recorded ECG, 
EDA, electromyography (EMG), temperature ('Temp'), 3-axis ACC, and respiration (RESP) at a sampling rate of 700 Hz. The Empatica 
E4 recorded blood volume pulse (BVP, 64 Hz), EDA (4 Hz), temperature (4 Hz), and 3-axis ACC (32 Hz). 

For this analysis, we used the pre-processed, synchronized data provided within the WESAD dataset in the .pkl file format for each 
subject. These files contain data streams from both devices aligned to a common time axis, sampled at 700 Hz, along with condition 
labels. This study focused primarily on the chest-mounted sensor data due to its higher sampling rate and the availability of the ECG 
signal for robust HRV analysis. 

2.3 Experimental Protocol and Data Segmentation 

The WESAD protocol included several conditions designed to elicit different affective states. For this analysis, we focused on segments 
corresponding to four core conditions labeled in the dataset: baseline (label 1), stress (label 2), amusement (label 3), and meditation 
(label 4). Transient periods (label 0) and other conditions (labels 5-7) were excluded from this analysis. 

Data segmentation was performed based on the condition labels provided at 700 Hz within each subject's .pkl file. Contiguous blocks 
of data points corresponding to one of the included condition labels (1, 2, 3, or 4) were identified and extracted as distinct segments 
for feature calculation. 

2.4 Feature Extraction 

For each extracted data segment corresponding to a specific condition, a set of physiological features was calculated, primarily from 
the chest-worn RespiBAN data. 

2.4.1 Signal Statistics: Basic statistical features were calculated for the EDA, Temperature (accessed using the key 'Temp'), and 
Respiration (RESP) signals. If a signal channel was present for a given segment and its duration was at least 10 seconds, the mean, 
standard deviation, minimum, and maximum values were computed. If a signal channel was missing or the segment was too short, 
corresponding features were assigned Not-a-Number (NaN). 

2.4.2 HRV: HRV features were derived from the ECG signal. ECG data segments were included for HRV analysis only if their 
duration was at least 60 seconds. Processing was performed using the NeuroKit2 Python library[7]. The raw ECG signal was first 
cleaned using neurokit2.ecg_clean. R-peaks were then detected using neurokit2.ecg_peaks with artifact correction enabled. If fewer 
than 30 R-peaks were detected (indicating poor signal quality or very short valid duration), HRV features were assigned NaN. 
Otherwise, standard time-domain and frequency-domain HRV metrics were calculated using neurokit2.hrv, including: * Time-domain: 
Mean NN interval (MeanNN), standard deviation of NN intervals (SDNN), root mean square of successive differences between NN 
intervals (RMSSD), and percentage of successive NN intervals differing by more than 50 ms (pNN50). * Frequency-domain: Power in 
the low-frequency band (LF, 0.04-0.15 Hz), power in the high-frequency band (HF, 0.15-0.4 Hz), and the ratio of LF to HF power 
(LF/HF). In case of errors during ECG processing, HRV features were assigned NaN. 

2.4.3 Feature Aggregation: The calculated features (signal statistics and HRV metrics) for each valid segment were aggregated 
into a single dataset, along with the corresponding subject ID and original condition label (baseline, stress, amusement, meditation). 
Segments shorter than the minimum duration required for specific feature types (10s for basic stats, 60s for HRV) resulted in NaN 
values for those features. This process yielded a feature matrix where each row represented a single condition segment from a specific 
subject, and columns represented the extracted physiological features. 

2.5 Data Preparation for Clustering 

Prior to clustering, the aggregated feature matrix underwent two preparation steps. First, missing values (NaNs), which arose from 
short segments, missing signal keys (e.g., if 'Temp' was absent), or HRV calculation issues, were imputed using the mean value of the 
respective feature column across all segments. This imputation was performed using the SimpleImputer class from the scikit-learn 
library. Second, the imputed features were standardized to have zero mean and unit variance using the StandardScaler from scikit-
learn. Standardization ensures that features with larger value ranges do not disproportionately influence the clustering process, which 
relies on distance calculations. 
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2.6 Hierarchical Clustering and Validation 

To explore whether the extracted physiological features could reveal meaningful groupings corresponding to affective states, we 
performed Hierarchical Agglomerative Clustering (HAC) on the standardized feature matrix. The analysis was conducted using the 
scipy.cluster.hierarchy and scikit-learn libraries in Python. We employed Ward’s linkage method (linkage='ward'), which iteratively 
merges clusters to minimize total within-cluster variance. The input feature space included standardized values of EDA, temperature, 
respiration, and HRV metrics. Euclidean distance was used as the default dissimilarity measure. 

An initial dendrogram was generated to visualize the hierarchical structure of the data. Based on visual inspection and exploratory 
intent, the tree was initially cut to form four clusters using the maxclust criterion. However, subsequent evaluation using Silhouette 
Score analysis revealed that this configuration resulted in suboptimal separation of clusters. 

2.7 Cluster Characterization and Interpretation 

To understand the physiological characteristics distinguishing the derived clusters, descriptive statistics (mean and standard 
deviation) were calculated for each standardized feature within each cluster. These profiles were compared across clusters to identify 
defining features. Boxplots were generated using the seaborn library to visualize the distribution of key features within each cluster. 

Furthermore, the relationship between the data-driven clusters and the original experimental conditions (baseline, stress, amusement, 
meditation) was examined using cross-tabulation. This allowed for assessing the extent to which the emergent physiological clusters 
corresponded to the intended affective states induced by the study protocol. 

2.8 Principal Component Analysis 

To further explore the structure of the physiological feature space and to assess the separability of the unsupervised clusters, Principal 
Component Analysis (PCA) was performed on the standardized dataset. The input consisted of the entire set of extracted 
physiological features (EDA, temperature, respiration, and HRV metrics), preprocessed with zero-mean and unit-variance scaling 
using StandardScaler from scikit-learn. 

PCA was conducted using the PCA implementation from the sklearn.decomposition module, retaining the first two principal 
components (PC1 and PC2) to enable 2D visualization. These components represent orthogonal linear combinations of the original 
features that capture the highest variance in the data. The PCA results were then visualized in a two-dimensional scatterplot, with data 
points color-coded according to the three-cluster solution previously derived using Ward’s hierarchical clustering. 

2.9 Software 

All data processing and analysis were performed using Python (v. 3.10.11). Key libraries utilized included pandas (v. 2.1.3) for data 
manipulation, NumPy (v. 3.1.1) for numerical operations, NeuroKit2 (v. 0.2.10) for physiological signal processing (especially HRV), 
SciPy (v. 1.10.1) for hierarchical clustering, scikit-learn (v. 1.3.2) for data preprocessing (imputation and scaling), and Matplotlib (v. 
3.7.2)/Seaborn (v. 0.13.0) for data visualization.  

3. Results and Dicussion 

3.1 Dataset Overview 

A total of 128 condition-specific segments were analyzed from 15 subjects (7 female, 8 male; mean age 27.5 ± 2.4 years) across four 
experimental conditions: baseline, stress, amusement, and meditation. Segments varied in duration depending on protocol timing 
and signal quality requirements, ranging from 60 to over 1100 seconds (mean: 446.2 ± 228.3 seconds). 

3.2 Feature Distribution Across Conditions 

Descriptive statistics of core physiological features highlighted distinct trends among the experimental conditions: 

• EDA: Mean EDA was highest during baseline (1.93 μS ± 0.90) and stress (1.66 μS ± 0.72), while meditation and 

amusement showed lower values (0.88 μS ± 0.54 and 0.81 μS ± 0.41 respectively). This trend was consistent across 

minimum and maximum values, indicating increased sympathetic activity under baseline vigilance and stress. 

• Skin Temperature: Mean temperature was lowest during baseline (29.63°C ± 0.81), and increased during stress (31.49°C 

± 0.47), meditation (31.95°C ± 0.39), and peaked during amusement (32.18°C ± 0.40), consistent with peripheral 

vasodilation under positive affect. 

• Respiration Variability: Standard deviation of the respiratory signal (Resp_std) was highest during stress (3.01 ± 0.71), 

reflecting rapid, irregular breathing. Lower values were observed during baseline (2.30 ± 0.81), amusement (2.15 ± 0.89), 

and meditation (1.69 ± 0.67). 

• HRV: 

o MeanNN (inter-beat interval) was lowest during stress (771.4 ms), suggesting higher heart rate, and highest 

during amusement and meditation (∼905 ms). 

o RMSSD and pNN50, reflecting parasympathetic tone, were significantly reduced during stress (RMSSD = 39.4 ms; 

pNN50 = 15.0%) and elevated during meditation (RMSSD = 63.2 ms; pNN50 = 42.7%). 
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o LF/HF ratio, a proxy for sympathovagal balance, peaked during stress (mean = 6.93) and was lowest during 

meditation (mean = 1.22), indicating a shift toward vagal dominance in relaxed states. 

3.3 Hierarchical Clustering Analysis 

To explore underlying patterns in physiological responses, HAC was performed on standardized features using Ward’s variance 
minimization method. 

Figure 1 presents the dendrogram derived from this analysis. Based on visual inspection and variance distance, the dendrogram was 
cut to yield four distinct clusters. This number balances resolution and interpretability, capturing meaningful physiological variation. 

 

Figure 1. Hierarchical clustering dendrogram using Ward’s method. Each leaf represents a condition segment. Vertical axis denotes 
Ward distance (intra-cluster variance increase) at merge points. 

To quantitatively determine the optimal number of clusters, we computed the Silhouette Score, which measures how well a sample 
fits within its assigned cluster relative to other clusters. Scores range from -1 to 1, with higher values indicating better-defined clusters. 

Silhouette Scores were calculated for cluster counts ranging from 3 to 7, as shown below in Table 1. 

 

Table 1. Silhouette Score 

NUMBER OF CLUSTERS SILHOUETTE SCORE 

3 0.231 

4 0.165 

5 0.174 

6 0.194 

7 0.167 

 

The highest Silhouette Score was observed for 3 clusters, indicating that this configuration achieved the best balance of cohesion and 
separation. As a result, the 3-cluster solution was adopted as the final model, replacing the earlier 4-cluster exploratory result. The 
revised cluster assignments were used in all downstream analyses to characterize physiological states. 

 

3.4 Cluster Composition and Condition Alignment 

Cross-tabulation revealed meaningful alignment between unsupervised clusters and original condition labels. 
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Table 2. Feature summary based on 3-cluster 

Cluster Likely State HRV RMSSD LF/HF EDA Mean Interpretation 

0 Mild Stress / Alert 52.6 ms 5.45 3.37 μS Elevated sympathetic tone, moderate arousal 

1 Relaxed / Meditative 95.8 ms 3.04 9.36 μS High vagal tone, parasympathetic dominance 

2 Outlier / Ambiguous 64.7 ms 2.91 8.36 μS Possibly noisy or unique single case 

 

3.5 Quantitative Cluster Profiles 

Following the identification of the optimal cluster count (n=3) via Silhouette Score analysis, physiological characteristics were 

summarized across the three data-driven clusters. Below is a detailed breakdown of the cluster-specific profiles: 

Cluster 0 – Moderate Arousal / Stress-Aligned Profile 

This cluster exhibited moderate electrodermal activity (mean EDA: 3.37 μS) with low variability (EDA std: 0.18), suggesting a 

consistently elevated sympathetic tone. Heart rate variability (HRV) measures were also indicative of a stress-aligned state, with 

an intermediate RMSSD of 52.6 ms and a pNN50 of 21.1%, both reflecting reduced parasympathetic modulation. The LF/HF ratio 

was high (5.45), further supporting a shift toward sympathetic dominance. Respiration variability was moderate, and skin 

temperature averaged around 32 °C. 

Interpretation: This cluster most likely corresponds to mild stress or cognitive effort, characterized by physiological arousal, 

lower vagal tone, and increased sympathetic activity. It may also encompass vigilant baseline segments with sustained attentional 

demand. 

Cluster 1 – Relaxed / Parasympathetic Dominance 

Cluster 1 demonstrated the highest EDA levels (mean: 9.36 μS), which may reflect highly reactive individuals rather than overall 

stress. However, HRV metrics clearly pointed to a parasympathetic-dominant state, with RMSSD averaging 95.8 ms and pNN50 

reaching 42.7%. The LF/HF ratio was 3.04, indicating a relatively balanced autonomic state with a tilt toward vagal activity. 

Temperature was elevated (33.8 °C), and respiration variability was lower than in Cluster 0. 

Interpretation: This profile is consistent with relaxation, such as during meditation or amusement, where high vagal modulation 

and autonomic balance are expected. The combination of high HRV and stable respiration suggests a state of restorative 

engagement. 

Cluster 2 – Outlier / Unstable Classification 

Cluster 2 included only one segment, making its feature summary statistically unstable. This segment showed relatively high EDA 

(8.36 μS) and RMSSD of 64.7 ms, with a LF/HF ratio of 2.91. However, standard deviations were not computable for most features 

due to the insufficient sample size. 

Interpretation: This cluster likely represents an outlier or subject-specific deviation, possibly due to unique individual 

physiology or recording irregularities. It should be interpreted with caution and may warrant reassignment or exclusion in future 

analyses. 

3.6 Principal Component Analysis Results 

The first two principal components captured a substantial proportion of the variance in the dataset, allowing for a meaningful two-

dimensional projection of the physiological feature space. When plotted, the clusters exhibited partially distinct groupings, with 

observable structure along PC1 and PC2. 
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Figure 2. Principal Component Analysis Results 

• Cluster 0 formed a compact region, partially overlapping with Cluster 1 but distinguishable along the horizontal axis (PC1). 

• Cluster 1 displayed moderate spread and appeared shifted along both PC1 and PC2, consistent with greater internal 

variance in parasympathetic metrics. 

• Cluster 2, comprising a single outlier segment, was clearly separable and distant from the main cluster bodies. 

Although some overlap between clusters was observed, expecting the continuous nature of physiological responses—the PCA 

confirmed that the unsupervised clusters exhibit meaningful variation in a reduced-dimensional space. 

Discussion 

The application of HAC to high-resolution, chest-worn physiological signals from the WESAD dataset enabled unsupervised 

partitioning of the multivariate feature space into three physiologically distinct clusters. This final clustering solution was not 

determined solely by visual inspection of a dendrogram, but instead validated using Silhouette Scores, with the 3-cluster 

configuration yielding the best cohesion and separation (Silhouette score = 0.231). These data-driven groupings were further 

examined using PCA, which confirmed their separability in a reduced-dimensional space, supporting the internal structure of the 

clustering solution. 

Each cluster exhibited a distinct multivariate signature, most prominently differentiated by EDA, respiration variability, body 

temperature, and multiple HRV indices, including RMSSD and the LF/HF ratio. Psychophysiological interpretation of these signatures 

suggests distinct patterns of autonomic regulation: one cluster aligned with sympathetic dominance, characteristic of stress or 

cognitive effort; a second reflected parasympathetic dominance, suggestive of relaxation or recovery; and a third, statistically 

unstable cluster likely captured a physiological outlier. This corrected 3-cluster solution replaced an earlier, less optimal 4-cluster 

configuration initially derived from dendrogram-based selection. 

Comparing the data-driven clusters to the WESAD ground-truth labels (stress, amusement, baseline, meditation) revealed partial but 

inconsistent alignment. While certain experimental conditions were enriched in specific clusters, there was considerable label 

mixing within clusters and splitting of single labels across clusters. This reflects both inter-subject variability in physiological 

response patterns and intra-condition heterogeneity, such as differing coping mechanisms during stress or varying levels of 

engagement during amusement. These findings underscore the limitations of categorical affective labeling and highlight the value 

of unsupervised clustering for discovering latent physiological phenotypes that may not align neatly with predefined conditions. 

Methodologically, the analysis benefited from the inclusion of time-domain and frequency-domain HRV features, comprehensive signal 

preprocessing, and interpretability through PCA projection. However, the current imputation strategy—mean imputation using 

SimpleImputer—may have influenced feature relationships, particularly in segments with missing or short-duration signals. 

Alternative imputation methods, such as K-nearest neighbors (KNN) imputation or multivariate iterative approaches (e.g., 
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MICE), could provide more accurate reconstructions by leveraging relationships between correlated features. Future iterations should 

consider comparative evaluation of these techniques to enhance methodological transparency. 

While the study leverages objective sensor data, detailed HRV profiling, and unsupervised learning for exploratory modeling, certain 

limitations remain. These include the modest sample size (N = 15), the exclusion of wrist-worn sensor modalities, the static treatment 

of physiological signals despite their dynamic nature, and the absence of temporal modeling. Moreover, the controlled laboratory 

context limits ecological generalizability. 

Future directions should aim to: 

• Validate cluster reproducibility in larger and ambulatory cohorts. 

• Explore alternative clustering algorithms, including deep clustering frameworks that combine representation learning 

with partitioning. 

• Integrate temporal modeling (e.g., HMMs, dynamic time warping, sequence-aware clustering). 

• Investigate trait-level predictors of cluster membership (e.g., personality, baseline autonomic profiles). 

• Combine multi-modal signals, including behavioral and contextual data, for a more holistic characterization of affective 

states. 

Together, these findings and refinements reinforce the utility of unsupervised learning in affective computing. Such approaches 

complement supervised models by revealing latent structure, challenging label-based assumptions, and enabling personalized 

physiological modeling that bridges experimental control and real-world complexity. 

 

Conclusion 

This study demonstrated the successful application of HAC to multi-modal physiological data (ECG, EDA, RESP, TEMP) from the chest-
worn sensors in the WESAD dataset, effectively identifying four distinct and physiologically interpretable clusters. These clusters 
appear to represent different underlying states of autonomic nervous system activity, potentially corresponding to conditions such as 
stress, relaxation, and baseline neutrality. Analysis revealed both meaningful correspondences and informative divergences between 
these data-driven clusters and the original experimental affective labels, underscoring the unsupervised method's capacity to uncover 
structural nuances within the physiological signals that may not perfectly align with predefined experimental categories. The central 
conclusion is the confirmed utility of unsupervised AI techniques as powerful tools for exploratory analysis, pattern discovery, and 
hypothesis generation within complex psychophysiological datasets characteristic of affective computing. Such data-driven 
approaches provide a valuable complement to supervised learning, particularly where ground truth labels may be complex or coarse, 
by enabling the identification of intrinsic physiological state representations. Ultimately, advancing AI's ability to discern these 
nuanced physiological states through unsupervised methods holds significant potential for informing the development of more 
sophisticated and personalized applications in areas such as mental health monitoring and adaptive human-computer interaction 
systems. 
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