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Abstract 
Early and accurate detection of plant diseases and pests is critical to preventing yield and quality 
losses, supporting sustainable agriculture, and ensuring food security. In this study, a novel 
dataset of 6,081 field images showing disease and pest symptoms on apricot (Prunus armeniaca) 
plants was created. Three pre-trained convolutional neural networks (CNNs), namely AlexNet, 
GoogLeNet, and ResNet-50, were fine-tuned for the classification task. Instead of a standard 
labeling strategy, a detailed labeling method was proposed, which considers both symptom type 
and the affected plant organ. The CNNs were trained on two datasets: a traditional 7-class version 
and a 13-class version generated using the proposed method. All models were evaluated using 
5-fold cross-validation. Among all model and dataset combinations, the highest accuracy of 
93.9% was achieved by the ResNet-50 model on the 7-class dataset. Although the proposed 
labeling method resulted in a slight decrease in classification accuracy, the performance 
difference remained small even with more classes. These findings indicate that the method is 
dependable and suitable for practical applications. 
Key Words: Apricot (Prunus armeniaca), Plant disease and pest detection, Convolutional neural 
networks (CNNs), Transfer learning, Detailed labeling 
 

İnce Ayarlanmış CNN’ler ve Belirti-Organ Düzeyinde Etiketleme ile 
Arazi Görüntülerinden Kayısı Bitkisi Hastalık ve Zararlılarının 
Tespiti 

Özet 
Bitki hastalık ve zararlılarının erken ve doğru tespiti, verim ve kalite kayıplarının önlenmesi, 
sürdürülebilir tarımın desteklenmesi ve gıda güvenliğinin sağlanması açısından kritik öneme sahiptir. 
Bu çalışmada, kayısı (Prunus armeniaca) bitkilerinde hastalık ve zararlı semptomlarını gösteren 6.081 
adet arazi görüntüsünden oluşan özgün bir veri seti oluşturulmuştur. Ön-eğitimli evrişimsel sinir ağı 
(CNN) modelleri AlexNet, GoogLeNet ve ResNet-50 sınıflandırma görevi için ince-ayarlanmıştır. 
Standart bir veri etiketleme stratejisi yerine, hem belirti türünü hem de etkilenen bitki organını dikkate 
alan ayrıntılı bir etiketleme yöntemi önerilmiştir. CNN modelleri, biri geleneksel 7-sınıflı, diğeri ise 
önerilen yöntemle oluşturulan 13-sınıflı olmak üzere iki ayrı veri seti üzerinde eğitilmiştir. Tüm 
modeller beş-katlı çapraz-doğrulama yöntemi ile değerlendirilmiştir. Tüm model ve veri seti 
kombinasyonları arasında en yüksek doğruluk oranı olan %93,9’a, ResNet-50 modelinin 7-sınıflı veri 
seti üzerinde elde ettiği sonuçla ulaşılmıştır. Önerilen etiketleme yöntemi sınıflandırma doğruluğunda 
küçük bir düşüşe neden olsa da, sınıf sayısının artmasına rağmen performans farkı düşük kalmıştır. Bu 
bulgular, yöntemin güvenilir olduğunu ve pratik uygulamalar için uygunluğunu göstermektedir. 
Anahtar kelimeler: Kayısı (Prunus armeniaca), Bitki hastalık ve zararlı tespiti, Evrişimsel sinir ağları 
(CNN), Transfer öğrenme, Ayrıntılı etiketleme. 
 
 

Introduction 
Plant diseases and pests cause significant yield 
and quality losses in agricultural production. 
These losses vary depending on the spread and 
stage of the diseases and the population of the 
pests, and can reach up to 100%, even resulting in 
plant deaths. Furthermore, due to the damage they 
inflict on various plant organs, they can negatively 
impact the productivity of subsequent years, not 
just the current year’s yield. Preventing these 
losses and increasing the success of agricultural 
pest and disease management can be achieved by 
accurately diagnosing diseases in their early 
stages or before the pest population exceeds the 
economic threshold for damage (Mohanty et al., 
2016). 
Diagnosing plant diseases and pests is a task that 
requires both time and expertise. The symptoms 

may vary depending on the plant’s phenological 
stage and environmental conditions. This further 
complicates the diagnosis of plant diseases and 
pests. Diagnoses made by plant protection experts 
are not always accurate. This situation can lead to 
delayed or incorrect treatments, which may result 
in more severe crop damage. Due to these 
challenges, artificial intelligence (AI) solutions 
have become a necessity to support fast and 
accurate diagnoses. AI-powered plant disease and 
pest diagnosis systems support sustainable 
agriculture and contribute to food security in the 
long term. 
In this study, the aim is to detect diseases and 
pests on apricot (Prunus armeniaca) plants using 
deep learning methods with images obtained 
under field conditions. In this regard, a novel 
image dataset has been created, which includes 
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disease symptoms at different stages, the levels of 
damage caused by pests, and the effects on various 
plant organs. As prediction models, commonly 
used pre-trained CNN architectures such as 
AlexNet (Krizhevsky et al., 2017), GoogLeNet 
(Szegedy et al., 2015), and ResNet-50 (He et al., 
2016) were fine-tuned and adapted to the 
problem. Additionally, an alternative labeling 
strategy based on combinations of diseases/pests 
and plant organs has been proposed, and the 
effects of this detailed labeling structure on 
classification performance have been evaluated. 
In recent years, the number of deep learning-
based approaches for detecting plant diseases and 
pests has been increasing (Ahmad et al., 2023; Liu 
and Wang, 2021; Shoaib et al., 2025; Tugrul et al., 
2022). Deep learning-based models, which are 
widely used in this field, exhibit superior 
performance in image classification and object 
detection tasks. In particular, adapting CNN-based 
architectures to different datasets with transfer 
learning enables working with limited examples 
and increases the overall performance of the 
model (Altuntaş et al., 2019; Turkoglu et al., 2022; 
Yao et al., 2024). 
Ferentinos (2018) classified various plant 
diseases using different CNN architectures and 
achieved very successful results on the 
PlantVillage dataset. Similarly, Mohanty et al. 
(2016) demonstrated the advantages of transfer 
learning by retraining pre-trained networks 
instead of training CNN models directly. 
Turkoglu et al. (2020) proposed a CNN model for 
apricot disease detection. They examined how 
different convolution filter sizes affected 
classification performance. The highest accuracy, 
98.20%, was achieved using a 9×9 kernel. 
Falaschetti et al. (2022) developed a lightweight 
CNN-based plant disease detection system 
running on a low-cost, low-power embedded 
device. The system was tested on both binary and 
multi-class classification tasks. It achieved 
accuracy rates of 98.10% and 95.24%, 
respectively. Yao et al. (2024) utilized data 
augmentation and transfer learning in their work 
on tea leaf blight detection. They particularly 
stressed that under conditions of limited samples, 
relying solely on data augmentation might prove 
inadequate, and that transfer learning offers 
notable advantages. Shafik et al. (2024)  
introduced a pair of new models for detection 
plant diseases. They put to use fine-tuned CNN 
models for extracting deep features. Their trials, 
carried out on PlantVillage dataset, uncovered 
that both the early fusion and ensemble learning 
models demonstrated strong predictive 
performance, achieving 96.74% and 97.79% 
accuracy rates. In their study, Ashurov et al. 
(2024) introduce a modified depthwise CNN 

architecture that incorporates squeeze-and-
excitation blocks along with improved residual 
skip connections for plant disease detection. 
According to the authors, the model achieves 98% 
accuracy across diverse plant species and disease 
types. Perumal et al. (2024) proposed an CNN-
based approach for detecting plant diseases. They 
optimized model parameters and used visual 
interpretation techniques to better understand 
the network’s decisions. The method achieved 
strong classification performance and showed 
promise for real-time use in agriculture. 
Within the scope of transfer learning, fine-tuned 
CNN models have been successfully applied on 
different datasets. However, in addition to using 
these models directly for classification, their use 
as feature extractors has also found a response in 
the literature. For example, Too et al. (2019) 
combined deep features with traditional methods 
by classifying the intermediate layer features 
extracted from various CNN architectures with 
Support Vector Machines (SVM). Altuntaş and 
Kocamaz, (2021) combined the deep features 
obtained from 3 CNN models and classified them 
with SVM and managed to detect tomato diseases 
and pests with high performance. 
However, a significant portion of existing studies 
has been conducted with limited datasets and 
mostly under controlled laboratory conditions 
(Moupojou et al., 2023). This study aims to analyze 
apricot diseases and pests in a more realistic  
scenario using a unique dataset created from 
images obtained under field conditions. 
In this context, the study makes the following 
original contributions: (i) A novel image dataset of 
apricot diseases and pests obtained under field 
conditions has been created. (ii) The impact of 
detailed class labels based on disease/pest and 
plant organ combinations on classification 
performance has been investigated. (iii) AlexNet, 
GoogLeNet, and ResNet-50 CNN models have been 
fine-tuned and adapted to the apricot plant 
disease and pest detection problem, and their 
performance has been evaluated. 
The remaining sections of this paper are organized 
as follows. The technical details of the proposed 
model are presented in the Materials and Methods 
section. The experimental results are reported in 
the Results section. Discussion, general 
conclusions and recommendations for future 
work are provided in the Discussion and 
Conclusion section. 
 
Materials and Methods 
Dataset collection 
The study was conducted during the 2021–2022 
period through fieldwork in producer orchards 
located in the Malatya, Kayseri, and Aksaray 
provinces of Türkiye, primarily in the trial and 
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production orchards of the Apricot Research 
Institute Directorate. The objective was to create a 
unique image dataset for use in disease and pest 
detection studies. Healthy and disease or pest 
infected apricot orchards were surveyed, and 
images of visible disease symptoms and pest 
damage on various plant organs were collected. 
Images were captured under natural field 
conditions using digital cameras and smartphones 
of different brands and models, resulting in 
variations in lighting, framing, and distance. Care 
was taken to ensure that disease symptoms and 
pest damage were clearly visible and, where 
possible, centered in the frame. All collected 

images were labeled by a subject expert through 
visual diagnosis. 
The dataset comprises images showing disease 
symptoms and pest damage on apricot leaves, 
fruits, shoots, branches, and stones. It includes 
examples from different developmental stages of 
three diseases (shot hole, monilia, and sharka) and 
three pest types (aphids, plum scale, and leaf 
blister mite). In total, the dataset contains 6,081 
images. The detailed distribution of images across 
diseases, pests, plant organs, and classes is 
provided in Table 1, offering an overview of the 
dataset's structure and balance. 

 
Table 1. Detailed information of the dataset, including class and organ-specific image counts 
Çizelge 1. Sınıf ve organ bazlı görüntü sayılarını içeren veri setine ait ayrıntılı bilgiler 

Class Name Scientific Name Leaf Fruit Shoot / Branch Stone Total Images 

Aphid Myzus persicae 420 0 0 0 420 

Healthy - 449 665 86 204 1,404 

Leaf Blister Mite Acalitus phloeocoptes 515 0 0 0 515 

Monilia Monilinia laxa 0 0 336 0 336 

Plum Scale Parthenolecanium corni 0 0 739 0 739 

Sharka Plum pox virus (PPV) 398 375 0 143 916 

Shot Hole Wilsonomyces carpophilus 974 777 0 0 1,751 

Total Images  2,756 1,817 1,161 347 6,081 

The leaf images consist of samples of shot hole and 
sharka diseases, as well as aphid and leaf blister 
mite pests, along with healthy ones. Shot hole 
disease presents as round, red lesions surrounded 
by a light-colored halo on young leaves. These 
lesions gradually turn brownish-centered, 
reddish-brown spots, and after 5-10 days, they fall 
off, creating holes in the leaf. Sharka disease 
causes scattered line and halo-shaped symptoms 
around the secondary veins of the leaves. Aphids 
cause the leaves they feed on to curl and form red 
spots. Leaf blister mites form round or oval horn-
like galls on the undersurface of the leaves. The 
gall tissue on the underside of the leaf causes 
irregular, raised, yellowish-green to reddish spots 
on the upper side (Tarım ve Orman Bakanlığı , 
2022). Example images of the relevant classes are 
presented in Figure 1. 
The fruit images consist of samples of shot hole 
and sharka diseases, along with healthy ones. Shot 
hole disease creates depressions on the fruit 
surface, accompanied by lesions with a light-
colored halo around them. The symptoms of 
sharka disease on fruits are bright yellow rings or 
deep wounds extending to the stone (Tarım ve 
Orman Bakanlığı, 2022). Example fruit images 
from the dataset are presented in Figure 2. 
Shoot and branch images include samples of 
monilia disease and plum scale pest, along with 

healthy individuals. Shoots infected with monilia 
disease turn brown; thin shoots dry completely, 
while thicker ones develop sunken, elliptical or 
elongated cracks. The plum scale pest forms 
visible colonies on the trunks and thicker 
branches (Tarım ve Orman Bakanlığı, 2022). 
Example shoot/branch images from the dataset 
are presented in Figure 3. 
Stone images consist of samples of sharka disease, 
along with healthy ones. Dark spots surrounded 
by yellow or cream-colored rings on the stone are 
typical symptoms of sharka disease (Tarım ve 
Orman Bakanlığı, 2022). Healthy stones have 
smooth and uniform surfaces. Example stone 
images from the dataset are presented in Figure 4.  
 
Data preprocessing 
Among the pre-trained CNN models used in this 
study, AlexNet requires input images of 227×227 
pixels, whereas GoogLeNet and ResNet-50 require 
224×224 pixels. Therefore, the original images in 
the dataset, which had varying resolutions, were 
first cropped to a square format while preserving 
their aspect ratio. During cropping, equal portions 
were removed from both ends of the longer side, 
based on the difference in length between the two 
dimensions. Subsequently, the cropped images 
were resized to meet the input requirements of 
the respective models. 
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Figure 1. Images of sample leaves from the dataset, visually depicting symptoms and damage caused by 
aphids (top-left), leaf blister mites (top-right), shot hole (bottom-left), and sharka (bottom-middle). A 
healthy one is also presented (bottom-right). 
Şekil 1. Yaprak biti (sol-üst), yaprak uyuzu (sağ-üst), çil (sol-alt) ve şarka (orta-alt) hastalık ve zararlılarının 
sebep olduğu simptom ve belirtileri gösteren veri setine ait örnek yaprak görüntüleri. Sağlıklı bir yaprak da 
sunulmuştur (sağ-alt). 
 

   
Figure 2. Sample fruit images. These display symptoms of shot hole (left) and sharka (middle) diseases, 
alongside a healthy one (right). 
Şekil 2. Örnek meyve görüntüleri. Bu görsellerde çil (sol) ve şarka (orta) hastalıklarına ait simptomlar ile 
birlikte sağlıklı bir meyve (sağ) gösterilmektedir. 
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Figure 3. Shoot and branch images illustrating symptoms of monilia disease (left) and plum scale pest 
infestation (middle), plus a healthy sample (right).  
Şekil 3. Monilya hastalığına ait semptomları (sol) ve erik koşnili zararlısı belirtilerini (orta) gösteren sürgün 
ve dal görüntülerinin yanı sıra sağlıklı bir örnek (sağ). 
 

  
Figure 4. Apricot stone images. Symptoms of sharka disease are visible on the left, shown with a healthy 
stone on the right. 
Şekil 4. Kayısı çekirdeği görüntüleri. Şarka hastalığına ait simptomlar sol tarafta görülmekte, sağda ise 
sağlıklı bir çekirdek gösterilmektedir. 
 
CNN Architectures and fine-tuning approach 
Convolutional Neural Network (CNN) 
architectures, which demonstrate superior 
performance in solving computer vision problems 
such as image classification, object recognition, 
and object tracking, differ from traditional neural 
networks by incorporating convolutional blocks, 
where features are discovered, and pooling layers, 
which reduce the dimensionality of the data 
(Lecun et al., 2015). 
In CNN architectures, feature extraction is 
performed through convolution, activation 
functions, and pooling layers. This process enables 
the extraction of meaningful features from raw 
data. In the convolutional layer, the image is 
processed using specific filters, resulting in visual 
features such as horizontal, vertical, and angular 
edges, as well as smoothed and sharpened 
versions of the image. The pooling operation, on 
the other hand, reduces the image size using 
functions like average or maximum value pooling. 
This process increases the computational 

efficiency of the network, thereby improving 
overall performance. 
The extracted features are then transformed into 
vector form and classified through the fully 
connected layer. In the final stage, the error value 
calculated at the network's output is used in the 
backpropagation algorithm to update the 
convolutional filters and the weights of the fully 
connected layer. Through this process, the model 
gains the ability to make more accurate 
predictions during the learning process. 
CNN models require large amounts of data as they 
automatically learn the representation of the data 
(He et al., 2019). Additionally, training these 
models requires high computational costs 
(Kornblith et al., 2019). To overcome these 
disadvantages, transfer learning techniques have 
been developed. Transfer learning is a machine 
learning method in which the knowledge gained 
by solving one problem is reused as a starting 
point to solve a different problem. Pre-trained 
CNN models are used as starting points for solving 
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different problems, allowing high classification 
performance to be achieved on smaller datasets 
with lower computational costs (Altuntaş and 
Kocamaz, 2021; Kornblith et al., 2019). 
A brief overview of the CNNs employed in this 
study is presented below: AlexNet considered one 
of the foundational architectures in deep learning. 
It consists of a total of eight layers, including five 
convolutional layers for feature extraction and 
three fully connected layers for classification. Its 
relatively simple structure laid the groundwork 
for later CNN advancements. 
GoogLeNet introduced the innovative Inception 
module, which enables the network to capture 
multi-scale features within a single layer by 
combining multiple convolutional operations. 
Although it comprises 22 layers, GoogLeNet 
maintains efficiency through the strategic use of 
1×1 convolutions for dimensionality reduction. 
ResNet-50 is a deep residual network with 50 
layers, specifically designed to overcome the 
vanishing gradient problem often encountered in 
very deep architectures. By employing residual 
connections, it facilitates more effective gradient 
flow and faster convergence. ResNet-50 is widely 
adopted in transfer learning due to its balance of 
depth, performance, and computational efficiency. 
 
Data labeling approach 
The image data obtained in this study were 
diagnosed by the subject matter expert within our 
research team. During the data labeling phase, 
each image was labeled according to the disease 
symptoms or pest indications it showed. Disease 
and pest names were used as class labels, resulting 
in a dataset with 7 classes: 3 diseases, 3 pests, and 
1 healthy class. 
Diseases and pests can cause symptoms and 
damage on multiple plant organs. These 
symptoms and damages may visually differ 
significantly depending on the plant organ. To 
ensure that the dataset aligns with real-world 
conditions, images were collected from different 
plant organs. Therefore, each image was 
categorized based on which plant organ the 
primary feature belonged to. The dataset consists 
of images obtained from 4 main plant organs: leaf, 
fruit, shoot/branch, and stone. 
Since some diseases and pests cause symptoms 
and damage on multiple plant organs, visual 
differences appear between these symptoms and 
damages. This results in high intra-class variance. 
High intra-class variance can make it challenging 
for the model to make accurate predictions (Wei 
et al., 2022). Therefore, to improve the 
classification performance of the deep learning-
based prediction models (fine-tuned CNN), a 
second data labeling approach was proposed with 
detailed data labeling. In the first dataset, 7 classes 

were created using disease and pest names, while 
in the second dataset, 13 classes were formed by 
combining disease and pest names with plant 
organs (disease-pest x plant organ). This data 
labeling strategy aims to increase inter-class 
variance while reducing intra-class variance. 
 
Experimental setup 
To measure the classification performance of the 
CNN models used in the study, the k-fold cross-
validation procedure was applied. In the hold-out 
validation procedure, performance evaluation 
based on a single training-test split can be either 
fortunate or unfortunate. k-fold cross-validation 
reduces the variance caused by data splitting by 
including all the samples in the test set once. In 
addition, results may vary even on the same data 
split due to factors such as dropout layers in CNN 
architectures, random weight initialization, or the 
order of mini-batches. Evaluating the models with 
different folds creates random training conditions, 
allowing the changes resulting from the stochastic 
nature of deep learning to be reflected in the 
average. The results are presented as mean and 
standard deviation values. In this way, a more 
reliable performance evaluation can be made. In 
this study, the number of folds was set to 5, 
considering the number of samples and their class 
distribution. 
An evaluation framework is proposed to compare 
the predictive performance of CNN models and to 
fairly evaluate the effects under different data 
labeling approaches. This evaluation framework 
ensures that all models are trained with the same 
training, validation and test samples on different 
data labeling approaches. In this framework, the 
13-class labeled dataset is divided into 5 folds. In 
order to prevent underrepresented classes from 
being left out by chance, the partitioning process 
is carried out by taking into account the class 
ratios in each fold. Then, each fold is divided into 
two subsets, 75% of the samples in the fold are for 
training and 25% of the samples in the fold are for 
validation. First, the entire first fold was used as 
the test set, while the training subsets of the 
remaining four folds were combined to form the 
training set, and their validation subsets were 
merged to form the validation set. The training 
process was then carried out using these sets. 
Then, the entire second fold was used as the test 
set, while the training subsets of the remaining 
four folds were merged to create the training set, 
and their validation subsets were combined to 
form the validation set. The training process was 
then carried out using these sets. This process is 
repeated five times, each time using a different 
fold for testing. Thus, it is guaranteed that each 
model is trained with the same training, validation 
and test sets. 

Apricot Plant Disease and Pest Detection… 



 
 
 

94 

 

After the training of all CNN models used in the 
study was completed on the 13-class labeled 
dataset, the five folds created for the 13-class 
dataset were converted into folds for the 7-class 
version. The detailed class labels within each fold 
were mapped back to their original categories. For 
example, SharkaXFruit, SharkaXLeaf, and 
SharkaXStone classes were converted to Sharka 
class. The same process was applied to other 
detailed classes. Model trainings were repeated 
for each fold as explained above. Thus, not only 
CNN models but also data labeling approaches 
were partitioned with the same training, 
validation and test sets. 
Training models for a fixed number of epochs may 
lead to overfitting or, conversely, underfitting. 
Therefore, an early stopping procedure was 
adopted as a regularization technique. Models 
were evaluated on the validation set in each epoch. 
Training was stopped if no improvement in 
validation accuracy was observed during five 
consecutive epochs. 
 
Evaluation metrics 
In this study, accuracy (Acc.), precision (Pre.), 
recall (also known as sensitivity), and F1 score 
performance metrics were used to evaluate and 
compare the classification performances of the 
fine-tuned CNN models. These metrics are 
calculated using the values of True Positive (TP), 
False Positive (FP), False Negative (FN), and True 
Negative (TN) obtained from the confusion matrix. 
The confusion matrix summarizes the number of 
correct and incorrect predictions made by the 
model on the test set. 
In multi-class classification problems, 
performance metrics are calculated separately for 
each class. For the class under evaluation, correct 
predictions are considered as TP, while incorrect 
predictions for that class are counted as FN. All 
other classes are treated as negative. Among these, 
instances that do not belong to the positive class 
and are correctly not predicted as such are 
classified as TN. Conversely, instances from 
negative classes that are incorrectly predicted as 
positive are counted as FP. 
The mathematical formulas for the performance 
metrics used in this study are given below. 
 

𝐴𝑐𝑐. =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (1) 

 

𝑃𝑟𝑒. =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 
 

 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 
In addition, the overall performance of the model 
is assessed using the overall accuracy metric, 
whose formula is also provided below.  
 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙  𝐴𝑐𝑐. =  
∑ 𝑇𝑃𝑖

𝑁
𝑖=1

∑ (𝑇𝑃𝑖 +  𝐹𝑃𝑖)𝑁
𝑖=1

 (5) 

 
Here, N refers to the number of classes, while TPi 
and FPi represent the number of correct and 
incorrect positive predictions for the ith class, 
respectively. 
 
Results 
All procedures in this study were conducted using 
MATLAB© R2020b. The computer used for the 
study was equipped with a 2.6 GHz i5 processor, a 
512 GB SSD hard drive, 8 GB DDR4 system 
memory, and a 4 GB graphics card. 
This study aimed to accurately detect apricot 
diseases and pests from images of different plant 
organs captured under field conditions using fine-
tuned CNN models. To support this goal, two 
different labeling strategies were employed: a 
conventional 7-class structure and a more 
detailed 13-class structure that incorporates both 
disease-pest types and affected plant organs. The 
dataset was evaluated using stratified 5-fold 
cross-validation. Each model was evaluated using 
the same data partitions across folds, ensuring a 
fair basis for comparison between models and 
labeling methods. The results are reported as the 
mean and standard deviation of performance 
metrics across all folds. 
Stochastic Gradient Descent with Momentum 
(SGDM) was used as the optimization method for 
fine-tuning the CNN architectures (Murphy, 
2012). The hyperparameters were set as follows: 
The final fully connected layers of the models were 
replaced with fully connected layers having 
output sizes of 7 and 13, respectively, to match the 
number of classes in each dataset. The maximum 
number of epochs was set to 100, the mini-batch 
size to 32, and the learning rate to 10⁻⁴.  
The validation procedure was performed once at 
the end of each epoch. If no improvement in 
validation performance was observed for five 
consecutive validation runs, training was 
terminated early. Table 2 summarizes the total 
training time and total number of epochs spent 
across the five folds, along with the mean and 
standard deviation of validation accuracy for each 
model and dataset. 
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Table 2. Total training time, total number of epochs, and validation accuracy (mean ± standart deviation) 
obtained from the models after fine-tuning procedure 
Çizelge 2. Modellerin ince-ayarlama işlemi sonrasında elde edilen toplam eğitim süresi, toplam eğitim 
döngüsü sayısı ve doğrulama başarımı (ortalama ± standart sapma) 

Model Dataset Total Training Time Total Epochs 
Val. Accuracy 

(%, Mean ± SD) 

AlexNet 
7-class 3 hr 28 min 59 sec 91 88.28±0.63 

13-class 3 hr 16 min 23 sec 85 87.48±0.81 

GoogLeNet 
7-class 11 hr 48 min 24 sec 105 91.87±0.60 

13-class 10 hr 48 min 36 sec 102 91.60±0.83 

ResNet-50 
7-class 36 hr 37 min 22 sec 133 94.35±0.34 

13-class 32 hr 31 min 28 sec 128 93.51±0.64 

 
Table 3. Classification results of the fine-tuned AlexNet model 
Çizelge 3. İnce-ayarlanmış AlexNet modeline ait sınıflandırma sonuçları 

DataSet Class Name TP FP FN TN 
Acc. 
(%) 

Pre. 
(%) 

Recall 
(%) 

F1 scr 
(%) 

Overall 
Acc. (%) 

7-class 

Aphid 361 30 59 5,631 
98.54 
±0.48 

92.48 
±4.67 

85.95 
±4.64 

89.02 
±3.60 

88.80±0.66 

Healthy 1,211 179 193 4,498 
93.88 
±0.55 

87.14 
±1.41 

86.25 
±1.94 

86.68 
±1.24 

Leaf Blister Mite 423 81 92 5,485 
97.16 
±0.31 

83.95 
±2.31 

82.13 
±1.48 

83.03 
±1.76 

Monilia 304 38 32 5,707 
98.85 
±0.16 

89.00 
±2.55 

90.48 
±3.88 

89.66 
±1.48 

Plum Scale 705 60 34 5,282 
98.45 
±0.29 

92.18 
±1.32 

95.40 
±2.11 

93.75 
±1.25 

Sharka 775 137 141 5,028 
95.43 
±0.32 

85.02 
±2.04 

84.61 
±1.92 

84.79 
±1.05 

Shot Hole 1,621 156 130 4,174 
95.30 
±0.65 

91.22 
±1.06 

92.58 
±1.53 

91.89 
±1.14 

13-class 

Aphid 358 38 62 5,623 
98.36 
±0.38 

90.49 
±3.63 

85.24 
±3.53 

87.74 
±2.84 

88.18±0.64 

HealthyXBranch 59 8 27 5,987 
99.42 
±0.15 

89.76 
±10.50 

68.56 
±10.80 

76.93 
±6.68 

HealthyXFruit 592 90 73 5,326 
97.32 
±0.41 

86.90 
±3.06 

89.02 
±2.16 

87.91 
±1.76 

HealthyXLeaf 334 86 115 5,546 
96.70 
±0.46 

79.69 
±4.23 

74.37 
±5.70 

76.81 
±3.59 

HealthyXStone 196 3 8 5,874 
99.82 
±0.07 

98.56 
±2.14 

96.07 
±2.20 

97.27 
±1.03 

Leaf Blister Mite 439 75 76 5,491 
97.52 
±0.31 

85.56 
±3.54 

85.24 
±2.70 

85.34 
±1.72 

Monilia 303 23 33 5,722 
99.08 
±0.27 

93.00 
±3.16 

90.18 
±2.70 

91.55 
±2.45 

Plum Scale 713 56 26 5,286 
98.65 
±0.35 

92.73 
±1.15 

96.48 
±2.54 

94.55 
±1.47 

SharkaXFruit 318 58 57 5,648 
98.11 
±0.54 

85.17 
±7.05 

84.80 
±3.48 

84.79 
±3.63 

SharkaXLeaf 317 94 81 5,589 
97.12 
±0.46 

77.18 
±3.97 

79.64 
±2.80 

78.38 
±3.30 

SharkaXStone 138 8 5 5,930 
99.78 
±0.05 

94.65 
±2.62 

96.53 
±3.45 

95.51 
±0.91 

Shot HoleXFruit 695 71 82 5,233 
97.48 
±0.24 

90.85 
±2.33 

89.45 
±3.86 

90.06 
±1.17 

Shot HoleXLeaf 900 109 74 4,998 
96.99 
±0.42 

89.38 
±3.61 

92.40 
±2.49 

90.79 
±1.02 
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Table 4. Classification results of the fine-tuned GoogLeNet model 
Çizelge 4. İnce-ayarlanmış GoogLeNet modeline ait sınıflandırma sonuçları 

DataSet Class Name TP FP FN TN 
Acc. 
(%) 

Pre. 
(%) 

Recall 
(%) 

F1 scr 
(%) 

Overall 
Acc. (%) 

7-class 

Aphid 388 33 32 5,628 
98.93 
±0.33 

92.28 
±3.55 

92.38 
±3.33 

92.27 
±2.36 

91.43±0.74 

Healthy 1,245 127 159 4,550 
95.30 
±0.51 

90.76 
±0.77 

88.67 
±2.79 

89.68 
±1.29 

Leaf Blister Mite 456 69 59 5,497 
97.89 
±0.52 

86.93 
±3.36 

88.54 
±4.63 

87.67 
±3.16 

Monilia 307 24 29 5,721 
99.13 
±0.30 

92.74 
±2.34 

91.37 
±3.58 

92.03 
±2.84 

Plum Scale 714 35 25 5,307 
99.02 
±0.28 

95.35 
±1.15 

96.62 
±2.48 

95.96 
±1.21 

Sharka 788 142 128 5,023 
95.56 
±0.73 

84.88 
±3.79 

86.03 
±2.01 

85.40 
±2.09 

Shot Hole 1,662 91 89 4,239 
97.04 
±0.54 

94.83 
±1.53 

94.92 
±0.74 

94.87 
±0.92 

13-class 

Aphid 391 27 29 5,634 
99.08 
±0.34 

93.58 
±2.77 

93.10 
±3.08 

93.32 
±2.45 

91.30±0.67 

HealthyXBranch 71 12 15 5,983 
99.56 
±0.11 

87.34 
±9.90 

82.49 
±10.29 

83.94 
±4.00 

HealthyXFruit 620 78 45 5,338 
97.98 
±0.34 

88.92 
±2.31 

93.23 
±4.01 

90.95 
±1.64 

HealthyXLeaf 387 89 62 5,543 
97.52 
±0.50 

81.49 
±4.73 

86.19 
±1.33 

83.73 
±2.90 

HealthyXStone 199 5 5 5,872 
99.84 
±0.10 

97.58 
±1.65 

97.56 
±2.99 

97.54 
±1.54 

Leaf Blister Mite 444 49 71 5,517 
98.03 
±0.44 

90.23 
±3.87 

86.21 
±3.78 

88.10 
±2.54 

Monilia 307 22 29 5,723 
99.16 
±0.07 

93.34 
±1.18 

91.36 
±1.97 

92.32 
±0.71 

Plum Scale 711 36 28 5,306 
98.95 
±0.28 

95.27 
±2.42 

96.21 
±2.73 

95.69 
±1.18 

SharkaXFruit 318 35 57 5,671 
98.49 
±0.11 

90.17 
±1.76 

84.80 
±3.60 

87.34 
±1.21 

SharkaXLeaf 322 72 76 5,611 
97.56 
±0.41 

82.07 
±5.53 

80.91 
±1.53 

81.38 
±2.40 

SharkaXStone 139 6 4 5,932 
99.84 
±0.10 

95.99 
±3.51 

97.24 
±2.89 

96.56 
±2.01 

Shot HoleXFruit 730 38 47 5,266 
98.60 
±0.37 

95.10 
±2.22 

93.95 
±1.96 

94.50 
±1.45 

Shot HoleXLeaf 913 60 61 5,047 
98.01 
±0.11 

93.92 
±2.23 

93.74 
±2.57 

93.78 
±0.40 

 
Table 3 presents the classification outcomes of the 
fine-tuned AlexNet model on the 7-class and 13-
class datasets. Confusion matrix values are shown 
as totals across all five folds, while the 
performance metrics are summarized using mean 
and standard deviation. 
Table 4 summarizes the results obtained with the 
fine-tuned GoogLeNet model for both labeling 
approaches. The confusion matrices reflect total 
counts across the five folds, and the performance 
values are reported as averages with standard 
deviations. 
Table 5 provides the classification performance of 
the ResNet-50 model using the two labeling 
schemes. Confusion matrix totals are based on all  
 

five folds, and the associated metrics are 
expressed as mean and standard deviation. 
 
Discussion and Conclusion 
This study aimed to accurately detect apricot 
diseases and pests from images of different plant 
organs captured under field conditions using fine-
tuned CNN models. For this purpose, our research 
team constructed an original dataset consisting of 
6,081 images including healthy samples and 
samples affected by three diseases and three 
pests. In addition to the 7-class dataset, a second 
13-class dataset was created by combining 
disease-pest types with plant organ labels through 
a detailed labeling approach. 
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Table 5. Classification results of the fine-tuned ResNet-50 model 
Çizelge 5. İnce-ayarlanmış ResNet-50 modeline ait sınıflandırma sonuçları 

DataSet Class Name TP FP FN TN 
Acc. 
(%) 

Pre. 
(%) 

Recall 
(%) 

F1 scr 
(%) 

Overall 
Acc. (%) 

7-class 

Aphid 402 19 18 5,642 
99.39 
±0.44 

95.60 
±4.45 

95.72 
±2.74 

95.63 
±3.15 

93.90±0.39 

Healthy 1,312 125 92 4,552 
96.43 
±0.43 

91.32 
±1.26 

93.45 
±1.31 

92.36 
±0.94 

Leaf Blister Mite 463 28 52 5,538 
98.68 
±0.25 

94.39 
±2.74 

89.90 
±2.79 

92.05 
±1.54 

Monilia 304 21 32 5,724 
99.13 
±0.29 

93.62 
±3.88 

90.46 
±2.30 

91.99 
±2.60 

Plum Scale 717 40 22 5,302 
98.98 
±0.23 

94.76 
±1.93 

97.02 
±1.77 

95.86 
±0.93 

Sharka 831 94 85 5,071 
97.06 
±0.45 

90.02 
±3.74 

90.72 
±2.22 

90.30 
±1.26 

Shot Hole 1,681 44 70 4,286 
98.12 
±0.24 

97.46 
±1.11 

96.00 
±0.71 

96.72 
±0.40 

13-class 

Aphid 403 21 17 5640 
99.37 
±0.37 

95.17 
±3.84 

95.95 
±3.22 

95.51 
±2.65 

93.27±1.18 

HealthyXBranch 64 13 22 5982 
99.42 
±0.19 

83.01 
±2.54 

74.38 
±14.83 

77.89 
±9.08 

HealthyXFruit 628 69 37 5347 
98.25 
±0.60 

90.33 
±4.82 

94.43 
±2.17 

92.26 
±2.49 

HealthyXLeaf 401 61 48 5571 
98.21 
±0.52 

86.84 
±4.06 

89.30 
±3.47 

88.03 
±3.50 

HealthyXStone 198 6 6 5871 
99.80 
±0.13 

97.10 
±2.53 

97.05 
±2.07 

97.06 
±1.84 

Leaf Blister Mite 465 27 50 5539 
98.73 
±0.22 

94.62 
±2.57 

90.29 
±3.29 

92.34 
±1.34 

Monilia 305 24 31 5721 
99.10 
±0.17 

92.79 
±2.81 

90.77 
±1.97 

91.74 
±1.52 

Plum Scale 711 39 28 5303 
98.90 
±0.12 

94.82 
±1.11 

96.21 
±1.77 

95.50 
±0.55 

SharkaXFruit 338 25 37 5681 
98.98 
±0.24 

93.13 
±2.08 

90.13 
±2.60 

91.59 
±1.99 

SharkaXLeaf 358 42 40 5641 
98.65 
±0.27 

89.54 
±2.61 

89.94 
±2.83 

89.71 
±2.10 

SharkaXStone 137 6 6 5932 
99.80 
±0.15 

95.79 
±2.94 

95.79 
±4.53 

95.75 
±3.25 

Shot HoleXFruit 737 30 40 5274 
98.85 
±0.36 

96.10 
±1.62 

94.85 
±1.98 

95.46 
±1.44 

Shot HoleXLeaf 927 46 47 5061 
98.47 
±0.24 

95.31 
±1.77 

95.17 
±1.18 

95.23 
±0.71 

The motivation behind this detailed labeling was 
to reduce intra-class variance and increase inter-
class variance, thereby improving classification 
performance. Accordingly, the AlexNet, 
GoogLeNet, and ResNet-50 CNN architectures 
were fine-tuned and adapted to the problem, and 
their performances were compared. The results 
showed that these three models achieved overall 
accuracy rates of 88.80%, 91.43%, and 93.90%, 
respectively, on the 7-class dataset. On the 13-
class dataset, the models achieved 88.18%, 
91.30%, and 93.27% accuracy, respectively. All 
three models produced highly successful results. A 
trend was observed where deeper architectures 
outperformed shallower ones in terms of 

classification accuracy, suggesting a potential 
advantage of increased representational capacity. 
However, when tested on the 13-class labeled 
dataset created through detailed labeling, each 
model exhibited a slight, statistically insignificant 
drop in classification performance. One potential 
reason for this decline is the increased visibility of 
class imbalance as the number of classes 
increased. Furthermore, although the images 
were labeled based on plant organs, they were 
captured under real field conditions, often 
containing multiple plant parts in a single image. 
The background complexity and the presence of 
different plant organs together may be other 
contributing factors to the performance drop.  
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In future studies, it is planned to create a more 
balanced dataset by incorporating additional 
images or applying data augmentation techniques. 
To improve the classification performance of the 
detailed 13-class dataset, the use of attention 
mechanisms or hierarchical classification 
approaches will be considered. Additionally , 
hybrid or ensemble learning methods that 
combine the feature extraction capabilities of 
different CNN architectures will be explored to 
further enhance classification success. 
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