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Abstract
Early and accurate detection of plant diseases and pests is critical to preventingyield and quality
losses, supporting sustainable agriculture, and ensuring food security. In this study, a novel
datasetof 6,081 field images showing disease and pest symptoms on apricot ( Prunus armeniaca)
plants was created. Three pre-trained convolutional neural networks (CNNs), namely AlexNet,
GoogLeNet, and ResNet-50, were fine-tuned for the classification task. Instead of a standard
labeling strategy, a detailed labeling method was proposed, which considers both symptom type
and the affected plant organ. The CNNs were trained on two datasets: a traditional 7-class version
and a 13-class version generated using the proposed method. All models were evaluated using
5-fold cross-validation. Among all model and dataset combinations, the highest accuracy of
93.9% was achieved by the ResNet-50 model on the 7-class dataset. Although the proposed
labeling method resulted in a slight decrease in classification accuracy, the performance
difference remained small even with more classes. These findings indicate that the method is
dependable and suitable for practical applications.
Key Words: Apricot (Prunus armeniaca), Plant disease and pest detection, Convolutional neural
networks (CNNs), Transferlearning, Detailed labeling

Ince Ayarlanmis CNN'ler ve Belirti-Organ Diizeyinde Etiketleme ile
Arazi Goriintillerinden Kayis1 Bitkisi Hastalik ve Zararhlarmin
Tespiti

Ozet
Bitki hastalik ve zararlilarinin erken ve dogru tespiti, verim ve kalite kayiplarinin énlenmesi,
siirdiiriilebilir tarimin desteklenmesi ve gida giivenliginin saglanmasi agisindan kritik 6neme sahiptir.
Bu calismada, kayis1 (Prunus armeniaca) bitkilerinde hastalik ve zararli semptomlarini gosteren 6.081
adet arazi goriintiisiinden olusan 6zgiin bir veri seti olugturulmustur. On-egitimli evrisimsel sinir ag
(CNN) modelleri AlexNet, GoogLeNet ve ResNet-50 siniflandirma gorevi i¢in ince-ayarlanmigstir.
Standart bir veri etiketleme stratejisi yerine, hembelirti tiirtinii hem de etkilenen bitki organini dikkate
alan ayrintil bir etiketleme yontemi 6nerilmistir. CNN modelleri, biri geleneksel 7-smifly, digeri ise
onerilen yontemle olusturulan 13-smifli olmak tizere iki ayr1 veri seti tizerinde egitilmistir. Tiim
modeller bes-katll ¢apraz-dogrulama yontemi ile degerlendirilmistir. Tim model ve veri seti
kombinasyonlari arasinda en ytiksek dogruluk oran olan %93,9’a, ResNet-50 modelinin 7-sinifh veri
seti tizerinde elde ettigi sonugla ulasiimistir. Onerilen etiketleme yéntemi siniflandirma dogrulugunda
kii¢iik bir diistise neden olsa da, sinif sayisinin artmasina ragmen performans farki diisiik kalmistir. Bu
bulgular, yontemin giivenilir oldugunu ve pratik uygulamalar i¢in uygunlugunu gostermektedir.
Anahtar kelimeler: Kayis1 (Prunus armeniaca), Bitki hastalik ve zararh tespiti, Evrisimsel sinir aglan
(CNN), Transfer 6grenme, Ayrintili etiketleme.

Introduction

may vary depending on the plant’s phenological

Plant diseases and pests cause significant yield
and quality losses in agricultural production.
These losses vary depending on the spread and
stage of the diseases and the population of the
pests, and can reach up to 100%, even resulting in
plant deaths. Furthermore, due to the damage they
inflict on various plant organs, they can negatively
impact the productivity of subsequent years, not
just the current year’s yield. Preventing these
losses and increasing the success of agricultural
pest and disease management can be achieved by
accurately diagnosing diseases in their early
stages or before the pest population exceeds the
economic threshold for damage (Mohanty et al,
2016).

Diagnosing plant diseases and pests is a task that
requires both time and expertise. The symptoms

stage and environmental conditions. This further
complicates the diagnosis of plant diseases and
pests. Diagnoses made by plant protection experts
are not always accurate. This situation canlead to
delayed or incorrect treatments, which may result
in more severe crop damage. Due to these
challenges, artificial intelligence (AI) solutions
have become a necessity to support fast and
accurate diagnoses. Al-powered plant disease and
pest diagnosis systems support sustainable
agriculture and contribute to food security in the
long term.

In this study, the aim is to detect diseases and
pests on apricot (Prunus armeniaca) plants using
deep learning methods with images obtained
under field conditions. In this regard, a novel
image dataset has been created, which includes
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disease symptoms at different stages, the levels of
damage caused by pests, and the effects on various
plant organs. As prediction models, commonly
used pre-trained CNN architectures such as
AlexNet (Krizhevsky et al, 2017), GoogLeNet
(Szegedy et al, 2015), and ResNet-50 (He et al,
2016) were fine-tuned and adapted to the
problem. Additionally, an alternative labeling
strategy based on combinations of diseases/pests
and plant organs has been proposed, and the
effects of this detailed labeling structure on
classification performance have been evaluated.
In recent years, the number of deep learning-
based approaches fordetecting plant diseases and
pests has been increasing (Ahmad et al.,, 2023; Liu
and Wang, 2021; Shoaib et al,, 2025; Tugrul et al.,
2022). Deep learning-based models, which are
widely used in this field, exhibit superior
performance in image classification and object
detection tasks. In particular, adapting CNN-based
architectures to different datasets with transfer
learning enables working with limited examples
and increases the overall performance of the
model (Altuntas et al., 2019; Turkoglu et al., 2022;
Yao et al., 2024).

Ferentinos (2018) classified various plant
diseases using different CNN architectures and
achieved very successful results on the
PlantVillage dataset. Similarly, Mohanty et al.
(2016) demonstrated the advantages of transfer
learning by retraining pre-trained networks
instead of training CNN models directly.

Turkoglu et al. (2020) proposed a CNN model for
apricot disease detection. They examined how
different convolution filter sizes affected
classification performance. The highest accuracy,
98.20%, was achieved using a 9x9 Kkernel.
Falaschetti et al. (2022) developed a lightweight
CNN-based plant disease detection system
running on a low-cost, low-power embedded
device. The system was tested on both binary and
multi-class  classification tasks. It achieved
accuracy rates of 98.10% and 95.24%,
respectively. Yao et al. (2024) utilized data
augmentation and transfer learning in their work
on tea leaf blight detection. They particularly
stressed that under conditions of limited samples,
relying solely on data augmentation might prove
inadequate, and that transfer learning offers
notable advantages. Shafik et al. (2024)
introduced a pair of new models for detection
plant diseases. They put to use fine-tuned CNN
models for extracting deep features. Their trials,
carried out on PlantVillage dataset, uncovered
that both the early fusion and ensemble learning
models  demonstrated strong  predictive
performance, achieving 96.74% and 97.79%
accuracy rates. In their study, Ashurov et al.
(2024) introduce a modified depthwise CNN
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architecture that incorporates squeeze-and-
excitation blocks along with improved residual
skip connections for plant disease detection.
According to the authors, the model achieves 98%
accuracy across diverse plant species and disease
types. Perumal et al. (2024) proposed an CNN-
based approach for detecting plant diseases. They
optimized model parameters and used visual
interpretation techniques to better understand
the network’s decisions. The method achieved
strong classification performance and showed
promise for real-time use in agriculture.

Within the scope of transfer learning, fine-tuned
CNN models have been successfully applied on
different datasets. However, in addition to using
these models directly for classification, their use
as feature extractors has also found a response in
the literature. For example, Too et al. (2019)
combined deep features with traditional methods
by classifying the intermediate layer features
extracted from various CNN architectures with
Support Vector Machines (SVM). Altuntas and
Kocamaz, (2021) combined the deep features
obtained from 3 CNN models and classified them
with SVM and managed to detect tomato diseases
and pests with high performance.

However, a significant portion of existing studies
has been conducted with limited datasets and
mostly under controlled laboratory conditions
(Moupojou et al., 2023). This study aims to analyze
apricot diseases and pests in a more realistic
scenario using a unique dataset created from
images obtained under field conditions.

In this context, the study makes the following
original contributions: (i) Anovel image dataset of
apricot diseases and pests obtained under field
conditions has been created. (ii) The impact of
detailed class labels based on disease/pest and
plant organ combinations on classification
performance has been investigated. (iii) AlexNet,
GoogLeNet, and ResNet-50 CNN models have been
fine-tuned and adapted to the apricot plant
disease and pest detection problem, and their
performance has been evaluated.

The remaining sections of this paper are organized
as follows. The technical details of the proposed
model are presented in the Materials and Methods
section. The experimental results are reported in
the Results section. Discussion, general
conclusions and recommendations for future
work are provided in the Discussion and
Conclusion section.

Materials and Methods

Dataset collection

The study was conducted during the 2021-2022
period through fieldwork in producer orchards
located in the Malatya, Kayseri, and Aksaray
provinces of Tirkiye, primarily in the trial and
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production orchards of the Apricot Research
Institute Directorate. The objective was to create a
unique image dataset for use in disease and pest
detection studies. Healthy and disease or pest
infected apricot orchards were surveyed, and
images of visible disease symptoms and pest
damage on various plant organs were collected.

Images were captured under natural field
conditions using digital cameras and smartphones
of different brands and models, resulting in
variations in lighting, framing, and distance. Care
was taken to ensure that disease symptoms and
pest damage were clearly visible and, where
possible, centered in the frame. All collected

images were labeled by a subject expert through
visual diagnosis.

The dataset comprises images showing disease
symptoms and pest damage on apricot leaves,
fruits, shoots, branches, and stones. It includes
examples from different developmental stages of
three diseases (shot hole, monilia, and sharka) and
three pest types (aphids, plum scale, and leaf
blister mite). In total, the dataset contains 6,081
images. The detailed distribution ofimages across
diseases, pests, plant organs, and classes is
provided in Table 1, offering an overview of the
dataset's structure and balance.

Table 1. Detailed information of the dataset, including class and organ-specific image counts
Cizelge 1. Sinif ve organ bazh gériintii sayilarini iceren veri setine ait ayrintili bilgiler

Class Name Scientific Name Leaf Fruit Shoot / Branch Stone Total Images
Aphid Myzus persicae 420 0 0 0 420
Healthy - 449 665 86 204 1,404
Leaf Blister Mite Acalitus phloeocoptes 515 0 0 0 515
Monilia Monilinia laxa 0 336 336
Plum Scale Parthenolecanium corni 0 0 739 0 739
Sharka Plum poxvirus (PPV) 398 375 0 143 916
Shot Hole Wilsonomyces carpophilus 974 777 0 0 1,751
Total Images 2,756 1,817 1,161 347 6,081

The leaf images consist of samples of shot hole and
sharka diseases, as well as aphid and leaf blister
mite pests, along with healthy ones. Shot hole
disease presents as round, red lesions surrounded
by a light-colored halo on young leaves. These
lesions  gradually turn brownish-centered,
reddish-brown spots, and after 5-10 days, they fall
off, creating holes in the leaf. Sharka disease
causes scattered line and halo-shaped symptoms
around the secondary veins of the leaves. Aphids
cause the leaves they feed on to curl and form red
spots. Leaf blister mites form round or oval horn-
like galls on the undersurface of the leaves. The
gall tissue on the underside of the leaf causes
irregular, raised, yellowish-green to reddish spots
on the upper side (Tarim ve Orman Bakanlgi,
2022). Example images of the relevant classes are
presented in Figure 1.

The fruit images consist of samples of shot hole
and sharka diseases, along with healthy ones. Shot
hole disease creates depressions on the fruit
surface, accompanied by lesions with a light-
colored halo around them. The symptoms of
sharka disease on fruits are bright yellow rings or
deep wounds extending to the stone (Tarim ve
Orman Bakanligi, 2022). Example fruit images
from the dataset are presented in Figure 2.

Shoot and branch images include samples of
monilia disease and plum scale pest, along with
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healthy individuals. Shoots infected with monilia
disease turn brown; thin shoots dry completely,
while thicker ones develop sunken, elliptical or
elongated cracks. The plum scale pest forms
visible colonies on the trunks and thicker
branches (Tarim ve Orman Bakanlg, 2022).
Example shoot/branch images from the dataset
are presented in Figure 3.

Stone images consist of samples of sharka disease,
along with healthy ones. Dark spots surrounded
by yellow or cream-colored rings on the stone are
typical symptoms of sharka disease (Tarim ve
Orman Bakanligi, 2022). Healthy stones have
smooth and uniform surfaces. Example stone
images from the dataset are presented in Figure 4.

Data preprocessing

Among the pre-trained CNN models used in this
study, AlexNet requires input images of 227x227
pixels, whereas GoogLeNet and ResNet-50 require
224x224 pixels. Therefore, the original images in
the dataset, which had varying resolutions, were
first cropped to a square format while preserving
their aspect ratio. During cropping, equal portions
were removed from both ends of the longer side,
based on the difference in length between the two
dimensions. Subsequently, the cropped images
were resized to meet the input requirements of
the respective models.
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Figure 1. Images of sample leaves from the dataset, visually depicting symptoms and damage caused by
aphids (top-left), leaf blister mites (top-right), shot hole (bottom-left), and sharka (bottom-middle). A
healthy one is also presented (bottom-right).

Sekil 1. Yaprak biti (sol-iist), yaprak uyuzu (sag-iist), ¢il (sol-alt) vesarka (orta-alt) hastalik ve zararlilarinin
sebep oldugu simptom ve belirtileri gosteren veri setine ait 6rnek yaprak goriintiileri. Saghkl bir yaprak da
sunulmustur (sag-alt).

Figure 2. Sample fruit images. These display symptoms of shot hole (left) and sharka (middle) diseases,
alongside a healthy one (right).
Sekil 2. Ornek meyve goriintiileri. Bu gorsellerde il (sol) ve sarka (orta) hastaliklarina ait simptomlar ile

birlikte saglikli bir meyve (sag) gosterilmektedir.
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Figure 3. Shoot and branch images illustrating symptoms of monilia disease (left) and plum scale pest

infestation (middle), plus a healthy sample (right).

Sekil 3. Monilya hastaligina ait semptomlar1 (sol) ve erik kosnili zararlisi belirtilerini (orta) gosteren stirgiin
ve dal goriintiilerinin yani sira saglikli bir 6rnek (sag).

Figure 4. Apricot stone images. Symptoms of sharka disease are visible on the left, shown with a healthy

stone on the right.

Sekil 4. Kayisi cekirdegi goriintiileri. Sarka hastaligina ait simptomlar sol tarafta goriilmekte, sagda ise

saglikl bir ¢ekirdek gosterilmektedir.

CNN Architectures and fine-tuning approach
Convolutional Neural Network (CNN)
architectures, which demonstrate superior
performance in solving computer vision problems
such as image classification, object recognition,
and object tracking, differ from traditional neural
networks by incorporating convolutional blocks,
where features are discovered, and pooling layers,
which reduce the dimensionality of the data
(Lecun etal, 2015).

In CNN architectures, feature extraction is
performed through convolution, activation
functions, and pooling layers. This process enables
the extraction of meaningful features from raw
data. In the convolutional layer, the image is
processed using specific filters, resulting in visual
features such as horizontal, vertical, and angular
edges, as well as smoothed and sharpened
versions of the image. The pooling operation, on
the other hand, reduces the image size using
functions like average or maximum value pooling.
This process increases the computational
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efficiency of the network, thereby improving
overall performance.

The extracted features are then transformed into
vector form and classified through the fully
connected layer. In the final stage, the error value
calculated at the network's output is used in the
backpropagation algorithm to update the
convolutional filters and the weights of the fully
connected layer. Through this process, the model
gains the ability to make more accurate
predictions during the learning process.

CNN models require large amounts of data as they
automatically learn the representation of the data
(He et al, 2019). Additionally, training these
models requires high computational costs
(Kornblith et al, 2019). To overcome these
disadvantages, transfer learning techniques have
been developed. Transfer learning is a machine
learning method in which the knowledge gained
by solving one problem is reused as a starting
point to solve a different problem. Pre-trained
CNN models are used as starting points for solving
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different problems, allowing high classification
performance to be achieved on smaller datasets
with lower computational costs (Altuntas and
Kocamaz, 2021; Kornblith et al,, 2019).

A brief overview of the CNNs employed in this
study is presented below: AlexNet considered one
of the foundational architectures in deep learning.
It consists of a total of eight layers, including five
convolutional layers for feature extraction and
three fully connected layers for classification. Its
relatively simple structure laid the groundwork
for later CNN advancements.

GoogLeNet introduced the innovative Inception
module, which enables the network to capture
multi-scale features within a single layer by
combining multiple convolutional operations.
Although it comprises 22 layers, GoogLeNet
maintains efficiency through the strategic use of
1x1 convolutions for dimensionality reduction.
ResNet-50 is a deep residual network with 50
layers, specifically designed to overcome the
vanishing gradient problem often encountered in
very deep architectures. By employing residual
connections, it facilitates more effective gradient
flow and faster convergence. ResNet-50 is widely
adopted in transfer learning due to its balance of
depth, performance, and computational efficiency.

Data labeling approach

The image data obtained in this study were
diagnosed by the subject matter expert within our
research team. During the data labeling phase,
each image was labeled according to the disease
symptoms or pest indications it showed. Disease
and pest names were used as class labels, resulting
in a dataset with 7 classes: 3 diseases, 3 pests, and
1 healthy class.

Diseases and pests can cause symptoms and
damage on multiple plant organs. These
symptoms and damages may visually differ
significantly depending on the plant organ. To
ensure that the dataset aligns with real-world
conditions, images were collected from different
plant organs. Therefore, each image was
categorized based on which plant organ the
primary feature belonged to. The dataset consists
of images obtained from 4 main plant organs: leaf,
fruit, shoot/branch, and stone.

Since some diseases and pests cause symptoms
and damage on multiple plant organs, visual
differences appear between these symptoms and
damages. This results in high intra-class variance.
High intra-class variance can make it challenging
for the model to make accurate predictions (Wei
et al, 2022). Therefore, to improve the
classification performance of the deep learning-
based prediction models (fine-tuned CNN), a
second data labeling approach was proposed with
detailed datalabeling. In the first dataset, 7 classes
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were created using disease and pest names, while
in the second dataset, 13 classes were formed by
combining disease and pest names with plant
organs (disease-pest x plant organ). This data
labeling strategy aims to increase inter-class
variance while reducing intra-class variance.

Experimental setup

To measure the classification performance of the
CNN models used in the study, the k-fold cross-
validation procedure was applied. In the hold-out
validation procedure, performance evaluation
based on a single training-test split can be either
fortunate or unfortunate. k-fold cross-validation
reduces the variance caused by data splitting by
including all the samples in the test set once. In
addition, results may vary even on the same data
split due to factors such as dropout layers in CNN
architectures, random weight initialization, or the
order of mini-batches. Evaluating the models with
different folds creates random training conditions,
allowing the changes resulting from the stochastic
nature of deep learning to be reflected in the
average. The results are presented as mean and
standard deviation values. In this way, a more
reliable performance evaluation can be made. In
this study, the number of folds was set to 5,
considering the number of samples and their class
distribution.

An evaluation framework is proposed to compare
the predictive performance of CNN models and to
fairly evaluate the effects under different data
labeling approaches. This evaluation framework
ensures that all models are trained with the same
training, validation and test samples on different
data labeling approaches. In this framework, the
13-class labeled dataset is divided into 5 folds. In
order to prevent underrepresented classes from
being left out by chance, the partitioning process
is carried out by taking into account the class
ratios in each fold. Then, each fold is divided into
two subsets, 75% of the samples in the fold are for
training and 25% of the samples in the fold are for
validation. First, the entire first fold was used as
the test set, while the training subsets of the
remaining four folds were combined to form the
training set, and their validation subsets were
merged to form the validation set. The training
process was then carried out using these sets.
Then, the entire second fold was used as the test
set, while the training subsets of the remaining
four folds were merged to create the training set,
and their validation subsets were combined to
form the validation set. The training process was
then carried out using these sets. This process is
repeated five times, each time using a different
fold for testing. Thus, it is guaranteed that each
model is trained with the same training, validation
and test sets.
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After the training of all CNN models used in the
study was completed on the 13-class labeled
dataset, the five folds created for the 13-class
dataset were converted into folds for the 7-class
version. The detailed class labels within each fold
were mapped back to their original categories. For
example, SharkaXFruit, SharkaXLeaf, and
SharkaXStone classes were converted to Sharka
class. The same process was applied to other
detailed classes. Model trainings were repeated
for each fold as explained above. Thus, not only
CNN models but also data labeling approaches
were partitioned with the same training,
validation and test sets.

Training models for a fixed number of epochs may
lead to overfitting or, conversely, underfitting.
Therefore, an early stopping procedure was
adopted as a regularization technique. Models
were evaluated on the validation set in each epoch.
Training was stopped if no improvement in
validation accuracy was observed during five
consecutive epochs.

Evaluation metrics

In this study, accuracy (Acc.), precision (Pre.),
recall (also known as sensitivity), and F1 score
performance metrics were used to evaluate and
compare the classification performances of the
fine-tuned CNN models. These metrics are
calculated using the values of True Positive (TP),
False Positive (FP), False Negative (FN), and True
Negative (TN) obtained from the confusion matrix.
The confusion matrix summarizes the number of
correct and incorrect predictions made by the
model on the test set.

In multi-class classification problems,
performance metrics are calculated separately for
each class. For the class under evaluation, correct
predictions are considered as TP, while incorrect
predictions for that class are counted as FN. All
other classes are treated as negative. Among these,
instances that do not belong to the positive class
and are correctly not predicted as such are
classified as TN. Conversely, instances from
negative classes that are incorrectly predicted as
positive are counted as FP.

The mathematical formulas for the performance
metrics used in this study are given below.

e TP + TN .
T TPYFP+FN+TN &y
pre.= —1 2
"¢ TP FP 2)
Recall = — % 3
R (3)
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2%TP

Flscore = o b ¥ FP + FN

(4)

In addition, the overall performance of the model
is assessed using the overall accuracy metric,
whose formula is also provided below.

L TP,

Overall Acc.= oy—————<
N (TP, + FP)

(5)

Here, N refers to the number of classes, while TP;
and FPi represent the number of correct and
incorrect positive predictions for the ith class,
respectively.

Results

All procedures in this study were conducted using
MATLAB® R2020b. The computer used for the
study was equipped with a 2.6 GHz i5 processor, a
512 GB SSD hard drive, 8 GB DDR4 system
memory, and a 4 GB graphics card.

This study aimed to accurately detect apricot
diseases and pests from images of different plant
organs captured under field conditions using fine-
tuned CNN models. To support this goal, two
different labeling strategies were employed: a
conventional 7-class structure and a more
detailed 13-class structure that incorporates both
disease-pest types and affected plant organs. The
dataset was evaluated using stratified 5-fold
cross-validation. Each model was evaluated using
the same data partitions across folds, ensuring a
fair basis for comparison between models and
labeling methods. The results are reported as the
mean and standard deviation of performance
metrics across all folds.

Stochastic Gradient Descent with Momentum
(SGDM) was used as the optimization method for
fine-tuning the CNN architectures (Murphy,
2012). The hyperparameters were set as follows:
The final fully connected layers of the models were
replaced with fully connected layers having
output sizes of 7 and 13, respectively, to match the
number of classes in each dataset. The maximum
number of epochs was set to 100, the mini-batch
size to 32, and the learning rate to 107

The validation procedure was performed once at
the end of each epoch. If no improvement in
validation performance was observed for five
consecutive validation runs, training was
terminated early. Table 2 summarizes the total
training time and total number of epochs spent
across the five folds, along with the mean and
standard deviation of validation accuracy for each
model and dataset.
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Table 2. Total training time, total number of epochs, and validation accuracy (mean * standart deviation)
obtained from the models after fine-tuning procedure

Cizelge 2. Modellerin ince-ayarlama islemi sonrasinda elde edilen toplam egitim siiresi, toplam egitim
dongiisii sayis1 ve dogrulama basarimi (ortalama * standart sapma)

Val. Accuracy

Model Dataset Total Training Time Total Epochs (%, Mean  SD)
7-class 3 hr 28 min 59 sec 91 88.28+0.63
AlexNet
13-class 3 hr 16 min 23 sec 85 87.48+0.81
7-class 11 hr 48 min 24 sec 105 91.87+0.60
GoogLeNet
13-class 10 hr 48 min 36 sec 102 91.60+0.83
7-class 36 hr 37 min 22 sec 133 94.35+0.34
ResNet-50 i
13-class 32 hr 31 min 28 sec 128 93.51+0.64

Table 3. Classification results of the fine-tuned AlexNet model
Cizelge 3. Ince-ayarlanmis AlexNet modeline ait simiflandirma sonuglari

DataSet Class Name TP FP FN TN ‘?‘;:) l(?(;)e) R(eoz;" on/i;r gzzr;}l)
A A
Leaf Blister Mite 423 81 92 5,485 2(7);? iggi iiig zigz

7-class  Monilia 304 38 32 5707 23:?2 23132 zg:gg 22:22 88.80+0.66
nmsae e w w5 A8 ER B
Shot Hole 1621 156 130 4,174 23:2? Zi:gg zi:gg 232
N N

99.42 89.76 68.56 76.93
+0.15 +10.50 +10.80 +6.68

97.32 86.90 89.02 87.91

HealthyXBranch 59 8 27 5,987

HealthyXFruit 592 90 73 5,326 +0.41 +3.06 +2.16 +1.76

96.70 79.69 74.37 76.81
HealthyXLeaf 334 86 115 5,546 +0.46 +4.23 +5.70 +3.59
HealthyXStone 196 3 8 5,874 99.82 98.56 96.07 97.27

+0.07 +2.14 +2.20 +1.03
97.52 85.56 85.24 85.34
+0.31 +3.54 +2.70 +1.72
- 99.08 93.00 90.18 91.55
13-class  Monilia 303 23 33 5,722 +0.27 +316 +2.70 +2.45 88.18+0.64

98.65 92.73 96.48 94.55

Leaf Blister Mite 439 75 76 5,491

Plum Scale 713 56 26 5286 o0 L c 1254 147
SharkaXFruit 318 58 57 5648 23:;1 i;;ég igzzg E;Zg
SharkaXLeaf 317 94 81 sss9  rZ TS TOHh 7838
SharkaXSone 138 85 5930 Joid B L e
Shot HoleXFruit ~ 695 71 82 5233 23:‘2}2 Zggg ig:gz 2225
Shot HoleXLeaf 900 109 74 4,998 28;23 232? z;;zg 22:33
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Table 4. Classification results of the fine-tuned GoogleNet model
Cizelge 4. Ince-ayarlanmis GoogLeNet modeline ait siniflandirma sonuglari

DataSet Class Name TP FP FN TN ’3;:)' ?or/oe]. R(?,ZSH F(lo/:)cr :c Z?I(‘f:/ll)
w m m san N 28 N 27
Leaf Blister Mite 456 69 59 5,497 Zggg iggz izzg S;%

7-class Monilia 307 24 29 5,721 23;2 z;;: 2;;; 2;32 91.43+0.74
pmsle e s s D% BT B
swre e o oo aze % WE %m up
e @ sew BF D% 2m %2
HealthyXBranch 71 12 15 5983 Zg:i? igzgg :8120..4299 iizgg
helbipit 620 78 45 sams 0790 8892 923 %095
helhyileal 3 89 G sse (700 Ol49 8619 @73
HealthyXStone 199 5 5 5,872 zg?g izzg 2;32 zzgz
LatBliserMie 444 9 71 sy OB03 9028 @62l gm0

13-class  Monilia 307 22 29 5,723 zg(l)s ziig 213(75 25?% 91.30£0.67
pmsae T s w swe BT %n %
SaaXfrit 35 35 57 sen 0049 01 w0 e
SwaXlest 322 72 76 sen /%6 G207 8091 g1
swase 16 wwm SN RRTH e
Shot HoleXFruit 730 38 47 5266  .oo) zgég Zigz 2‘1*:%
ShotHoleXLeaf 913 60 61 5047 000 2302 93Th 9378

Table 3 presents the classification outcomes of the five folds, and the associated metrics are

fine-tuned AlexNet model on the 7-class and 13-
class datasets. Confusion matrix values are shown
as totals across all five folds, while the
performance metrics are summarized using mean
and standard deviation.

Table 4 summarizes the results obtained with the
fine-tuned GoogLeNet model for both labeling
approaches. The confusion matrices reflect total
counts across the five folds, and the performance
values are reported as averages with standard
deviations.

Table 5 provides the classification performance of
the ResNet-50 model using the two labeling
schemes. Confusion matrix totals are based on all
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expressed as mean and standard deviation.

Discussionand Conclusion

This study aimed to accurately detect apricot
diseases and pests from images of different plant
organs captured under field conditions using fine-
tuned CNN models. For this purpose, our research
team constructed an original dataset consisting of
6,081 images including healthy samples and
samples affected by three diseases and three
pests. In addition to the 7-class dataset, a second
13-class dataset was created by combining
disease-pest types with plant organ labels through
a detailed labeling approach.
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Table 5. Classification results of the fine-tuned ResNet-50 model
Cizelge 5. Ince-ayarlanmis ResNet-50 modeline ait siniflandirma sonuglari

DataSet Class Name TP FP FN TN .?‘;oc) :;Z)e)' R(e;z;ll on/i ;r :c Z?I(‘f:/ll)
e o e G0 0 4n %
N
Leaf Blister Mite 463 28 52 5,538 iggg z;;z ig?g iigi

7-class  Monilia 304 21 32 5724 22:;3 23:3; zg:‘;g 2;:23 93.90+0.39
nnsas mw o s G A om
I
savo w0 me Sk T
R
HealthyXBranch ~ 64 13 22 5982 zg:g 2;:?1 fo% Zg:gz
HealthyXFruit 628 69 37 5347 zg:ég Zg:g; Z?ﬁ ziig
HealthyXLeaf 401 61 48 5571 zgé; iizgg ig:ig zg:gg
HealthyXStone 198 6 6 5871 zg?g 2;;2 z;g; zzgi
Leaf Blister Mite 465 27 50 5539 zg:;g z;ﬁ zgjg zi:gj

13-class  Monilia 305 24 31 5721 23:12 2;:;‘; Zg:;; :ﬁ:;g 93.27+1.18
s v w s 0 A AL
SharkaXFruit 338 25 37 5681 Zg:gj 23:(1)2 zg:;g Zi:gz
SharkaXLeaf 358 42 40 5641 zg:gg 33:2‘1} ig:zg zg:z(l)
R
Shot HoleXFruit ~ 737 30 40 5274 zg:gz Z?:é(z) Z‘;:gg ziig
Shot HoleXLeaf ~ 927 46 47 5061 zg:‘;z zi% Zig zg:gi

The motivation behind this detailed labeling was
to reduce intra-class variance and increase inter-
class variance, thereby improving classification
performance. Accordingly, the  AlexNet,
GoogLeNet, and ResNet-50 CNN architectures
were fine-tuned and adapted to the problem, and
their performances were compared. The results
showed that these three models achieved overall
accuracy rates of 88.80%, 91.43%, and 93.90%,
respectively, on the 7-class dataset. On the 13-
class dataset, the models achieved 88.18%,
91.30%, and 93.27% accuracy, respectively. All
three models produced highly successful results. A
trend was observed where deeper architectures
outperformed shallower ones in terms of
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classification accuracy, suggesting a potential
advantage of increased representational capacity.
However, when tested on the 13-class labeled
dataset created through detailed labeling, each
model exhibited a slight, statistically insignificant
drop in classification performance. One potential
reason for this decline is the increased visibility of
class imbalance as the number of classes
increased. Furthermore, although the images
were labeled based on plant organs, they were
captured under real field conditions, often
containing multiple plant parts in a single image.
The background complexity and the presence of
different plant organs together may be other
contributing factors to the performance drop.
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In future studies, it is planned to create a more
balanced dataset by incorporating additional
images or applying data augmentation techniques.
To improve the classification performance of the
detailed 13-class dataset, the use of attention
mechanisms  or hierarchical classification
approaches will be considered. Additionally,
hybrid or ensemble learning methods that
combine the feature extraction capabilities of
different CNN architectures will be explored to
further enhance classification success.
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