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ABSTRACT: Atopic dermatitis (AD) is a long-term inflammatory skin condition characterized by a complex interplay of 
genetic and molecular factors. Understanding the underlying transcriptomic changes can aid in identifying biomarkers 
for diagnosis and therapeutic targets. This study aimed to discover and characterize transcriptomic biomarkers in AD 
using bioinformatics tools and techniques. Two pre-existing datasets, GSE6012 and GSE16161, were analyzed using the R 
limma package to identify differentially expressed genes (DEGs). Gene Ontology (GO) and REACTOME pathway 
enrichment analyses were conducted using WebGestalt 2019 to explore the biological properties and pathways 
associated with the identified genes. A protein-protein interaction (PPI) network was constructed using STRING and 
Cytoscape, with MCODE and CytoHubba plugins used to identify significant gene clusters and hub genes. The analysis 
identified 352 DEGs (158 upregulated, 194 downregulated) in GSE6012 and 5451 DEGs (2962 upregulated, 2489 
downregulated) in GSE16161, with 226 overlapping genes. GO enrichment analysis revealed significant roles in cell 
proliferation, epidermis development, and immune response. REACTOME pathway analysis highlighted significant 
modifications in pathways related to skin structure and immune defense, including cornified envelope formation and 
antimicrobial peptides. The PPI network analysis identified three primary subclusters and pinpointed APOE and STAT1 
as key hub genes. This research offers an understanding of the transcriptomic biomarkers of AD. The identified DEGs, 
enriched biological functions, pathways, and key hub genes offer valuable information for understanding AD's 
molecular mechanisms and potential therapeutic targets. 
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 1.  INTRODUCTION 

Atopic Dermatitis (AD), often known as atopic eczema, is a widespread chronic skin condition 
characterized by recurring inflammation and distinct episodes of pruritic (itchy) eczematous lesions 
alongside dry skin [1, 2]. It is notably prevalent among children, affecting approximately 15% to 20% of this 
population, while its occurrence among adults ranges from 1% to 3% [1]. Furthermore, the impact of AD is 
enduring, as roughly 80% of pediatric cases persist into adulthood, often presenting with persistent lesions 
notably in regions like the flexures, head, and neck [3]. The complex pathogenesis of AD implicates a 
combination of genetic predispositions and environmental triggers [4, 5]. Genetic factors play a significant 
role, with certain genetic variations predisposing individuals to heightened susceptibility to the condition. 
Moreover, environmental factors such as allergens, irritants, and microbial exposures further exacerbate the 
inflammatory response, contributing to the development and persistence of AD symptoms [6]. 
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Understanding these intricate interplays between genetic predisposition and environmental influences is 
crucial for elucidating the underlying mechanisms driving the onset and progression of AD. 

Functional and computational investigations have identified numerous genetic risk factors or causal 
genes associated with AD [7, 8]. A multi-ancestry genome-wide association study (GWAS) identified genetic 
variants linked to filaggrin (FLG), ovo-like transcriptional repressor 1 (OVOL1), and interleukin 6 receptor 
(IL6R) as potential risk loci for AD (9). Furthermore, additional functional or clinical studies have implicated 
interleukin-4 (IL-4), interleukin-13 (IL-13), toll-like receptor 2 (TLR2), matrix metalloproteinase 9 (MMP9), 
and MMP10 as susceptibility genes for AD [8, 9]. Despite these findings, the precise mechanisms underlying 
the pathogenesis of AD remain to be fully elucidated. 

Advances in experimental and computational biology have accelerated the availability of genomic 
and biological information, resulting in the creation of multiple databases. These databases contain a variety 
of data sources, including transcriptome data with gene expression profiles from human patients, animal 
models of human diseases, and small molecule treatments, as well as other molecular profiling techniques. 
Publicly available databases offer unique opportunities to improve rational drug design by utilizing the 
concept of pharmacological targets within networks and the effectiveness of phenotypic screening [10, 11].  

Transcriptome data holds particular promise for identifying and prioritizing biomarkers with 
potential therapeutic applications [12]. By combining transcriptomics and bioinformatics data, novel insights 
into the etiology of AD can be gained by identifying similar transcriptional characteristics. The use of 
bioinformatics tools to identify transcriptome biomarkers linked with AD has become increasingly popular 
due to the complexity of AD pathogenesis and the availability of transcriptomic data [13]. This research 
endeavor seeks to deepen comprehension of the discovery and characterization process of transcriptome 
biomarkers in AD through the use of bioinformatics tools and techniques. By combining transcriptome data 
with computational analyses, new biomarkers could be developed that may serve as prognostic markers, 
therapeutic targets, or diagnostic indicators for AD. An interdisciplinary approach is being used to increase 
our understanding of AD pathophysiology and develop personalized treatment solutions for this 
debilitating disease. 

2. RESULTS  

2.1 Detection of DEGs for AD 

The study was based on two pre-existing datasets, GSE6012 and GSE16161, which were examined 
with the R limma package to detect DEGs. The selection of these datasets was influenced by several factors, 
including the availability of complete data with ethical approval for research, the inclusion of human 
individuals, and the inclusion of both diseased and healthy tissue samples from patients instead of just 
certain cell types. Figure 1A shows volcano plots indicating that the GSE6012 dataset has 352 DEGs, with 158 
upregulated and 194 downregulated genes. Similarly, Figure 1B shows volcano plots indicating that the 
GSE16161 dataset has 5,451 DEGs, with 2,962 upregulated and 2,489 downregulated genes, comparing nine 
AD and nine normal skin tissues. To improve the precision of identifying risk genes, we focused on the 
intersection of DEGs from both datasets. This resulted in 226 overlapping genes, as shown in Figure 1C and 
Supplementary Table S1.  

 
Figure 1. Identification of differentially expressed genes (DEGs) in Atopic Dermatitis. (A) A volcano plot for dataset 

GSE6012. (B) A volcano plot depicting DEGs in dataset GSE16161. (C) Venn diagrams illustrating the overlap of DEGs 

between GSE6012 and GSE16161 datasets. 
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2.2 Gene ontology and REACTOME pathway analysis 

The biological properties of the discovered genes were explored using the WebGestalt 2019 web 
tools through GO enrichment analysis. The analysis comprised three main components: biological processes 
(BP), cellular components (CC), and molecular functions (MF). Enriched functions with statistical 
significance were identified by applying a significance threshold of q-value (FDR) < 0.05 to each study. A 
total of 289 functions were found to be significantly enriched through BP analysis. The top-ranked outcomes 
were strongly correlated with "cell proliferation," "epidermis development," and "response to biotic 
stimulus," suggesting these genes play pivotal roles in cellular growth and response mechanisms, as well as 
skin development and immune responses. The CC analysis revealed 14 significantly enriched functions, 
including "cytoplasmic vesicle lumen," "vesicle lumen," and "secretory granule lumen," offering insights into 
the cellular compartments where these genes exert their effects, likely influencing processes like intracellular 
transport and secretion. The analysis of MF uncovered 29 functions that were significantly enriched, such as 
"serine-type endopeptidase activity," "serine-type peptidase activity," and "serine hydrolase activity," 
underscoring the chemical and catalytic roles the encoded proteins play within biological pathways, 
particularly in protein processing and metabolic regulation. Figure 2 shows the results of the GO enrichment 
analyses (BP, MF, and CC), providing an overview of the enriched functions in each category and 
highlighting the important BP, CC, and MF connected to the discovered genes. A complete summary of the 
GO enrichment analysis results can be found in Supplementary Table S2. 

Subsequently, we conducted a REACTOME enrichment pathway analysis using WebGestalt 2019 to 
investigate the possible engagement of pathways associated with the identified gene candidates. This 
approach aims to offer a thorough comprehension of the functional implications of these genes by 
identifying the specific biological pathways in which they are involved. The REACTOME analysis revealed 
significant modifications in four pathways, as indicated by a q-value threshold below 0.05 (refer to Figure 3). 
The top-ranking categories within these pathways included "Formation of the cornified envelope," "Metal 
sequestration by antimicrobial proteins," "Keratinization," and "Antimicrobial peptides." These results are 
noteworthy, suggesting a strong link between the identified genes and key biological processes such as 
immunological response, skin structure and function, and potentially, defense mechanisms against 
infections. The full findings of the REACTOME pathway enrichment analysis are detailed in Supplementary 
Table S3. 

2.3 Construction of PPI network and the analysis of DEGs 

The analysis of the PPI network was conducted utilizing STRING and Cytoscape to identify 
significant gene clusters. This network comprised 218 nodes and 536 edges, reflecting the protein 
interactions within the studied biological system. To pinpoint potential biomarkers within the PPI network, 
we utilized the MCODE and CytoHubba plugins in Cytoscape. MCODE was instrumental in identifying 
gene clusters that could serve as potential biomarkers. It segmented the PPI network into three primary 
subclusters: Cluster 1, with 11 nodes and 53 edges, scored 10.600; Cluster 2, including 41 nodes and 47 edges 
with a score of 7.231; and Cluster 3, comprising 8 nodes and 24 edges, scored 6.857, as shown in Figure 4.  

Subsequent analysis with CytoHubba pinpointed key genes within the PPI network, employing 
three algorithms including: degree, closeness, and MNC to rank each node by its significance within the 
network. This analysis identified the hub genes, with APOE and STAT1 emerging as the two most prominent 

based on the consistency across the three algorithms. The detailed outcomes of this analysis are captured in 
Supplementary Table S4. 

This comprehensive PPI network analysis elucidates gene clusters and hub genes, revealing the 
intricate structural and functional network of protein interactions in the system under scrutiny. The 
subclusters defined by MCODE suggest distinct protein groups potentially engaged in specific biological 
processes. Furthermore, the hub genes identified by CytoHubba, particularly APOE and STAT1, underscore 

their vital roles in the network. Such insights not only augment our understanding of the network dynamics 
but also foster further investigation into the biological relevance and potential as biomarkers of these 
proteins. 
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Figure 2. Gene ontology enrichment analysis of atopic dermatitis risk genes using WebGestalt 2019. 

 
Figure 3. REACTOME pathway enrichment analysis of atopic dermatitis risk genes using WebGestalt 2019. 
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Figure 4. A protein–protein interaction (PPI) network of atopic dermatitis risk genes was created using STRING and 
Cytoscape. The network consisted of 218 nodes and 536 edges. Additionally, three main modules were identified using 
MCODE in Cytoscape, with the following cluster scores: Cluster 1 (red, score = 10.6), Cluster 2 (green, score = 7.231), and 
Cluster 3 (blue, score = 6.857). 

3. DISCUSSION 

AD is a prevalent chronic inflammatory skin condition impacting individuals globally with varying 
severity levels [14, 15]. Its pathogenesis is intricately linked to immune dysregulation [16]. Consequently, the 
pursuit of identifying novel DEGs holds promise in unraveling the molecular intricacies of AD. Leveraging 
bioinformatics methodologies offers an opportunity to refine the process of discovering and characterizing 
transcriptome biomarkers, potentially serving as prognostic markers, therapeutic targets, or diagnostic 
indicators, thereby fostering improved patient care. This study delves into two sets of gene expression 
profiles, GSE6012 and GSE16161, related to AD, aiming to elucidate potential biomarkers for diagnosis and 
treatment. The discovery of new biomarkers facilitates patient stratification, therapeutic response prediction, 
and prognosis assessment [17]. In our work, two hub genes, APOE and STAT1, emerge as the most 

promising biomarkers in AD, consistently across three algorithms, suggesting their potential utility in 
clinical applications. 

The analysis of our top-ranked BP has yielded insightful results, particularly concerning the 
response to biotic stimuli. AD is notably associated with the abnormal presence of pathogens like 
Staphylococcus aureus on the skin [18, 19]. This condition is exacerbated by the fact that commensal bacteria, 
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which typically induce antimicrobial peptides (AMPs) to inhibit S. aureus, are compromised [20]. AMPs like 
Human Beta-Defensin 3 (HBD-3) and LL-37 are usually highly expressed following various exposures in 
normal, healthy skin, playing a crucial role in the skin's defense mechanisms [21, 22]. However, in AD, Th2 
cytokines are known to down-regulate the expression of these AMPs, leading to recurrent microbial 
infections that could potentially disrupt the skin's pH balance [23]. Understanding these interactions and the 
cascading effects they have on skin health is vital. It highlights the importance of maintaining the balance of 
skin flora and the potential therapeutic targets for preventing or treating conditions like AD. 

The vesicle lumen is of significant importance in the pathophysiology of AD. Recent research has 
highlighted the importance of extracellular vesicles (EVs) in the advancement of the disease [24]. These 
vesicles, which are lipid bilayer-delimited particles discharged by cells, have been found to carry proteins, 
RNA, and other molecules that can influence the immune response and contribute to the inflammatory 
processes characteristic of AD [25]. For instance, EVs from Staphylococcus aureus, a bacterium often 
associated with skin infections, can exacerbate the condition by disrupting the skin barrier and promoting 
the release of pro-inflammatory cytokines. Similarly, EVs from the skin fungus Malassezia sympodialis 
harbor allergens that may lead to allergic sensitization through the skin. Moreover, mast cell-derived EVs 
have been shown to stimulate different immune cells, potentially dampening the allergic response [26]. 
These findings, in line with our results, suggest that the vesicle lumen is a key player in mediating the 
complex interactions between skin cells and the immune system in AD. 

Recent studies have elucidated the significant role of serine-type endopeptidases in the development 
of AD, highlighting the molecular functions of these enzymes as critical factors in the pathogenesis of the 
condition. Molecular function analysis has revealed that serine-type endopeptidases, such as kallikrein-
related peptidases, are involved in the degradation of cell adhesion molecules within the epidermis, which is 
a pivotal process in maintaining skin integrity [27]. The aberrant activity of these proteases has been linked 
to the disruption of the epidermal barrier, a characteristic feature of AD. This disruption facilitates the entry 
of allergens and pathogens, exacerbating the inflammatory response [28]. Furthermore, the connection 
between heightened serine protease activity and raised levels of serum immunoglobulin E (IgE), as well as 
other biomarkers like thymus and activation-regulated chemokine (TARC) and eosinophil counts, 
underscores the multifaceted impact of these enzymes on AD [28]. 

Analyses have revealed a notable variation in the expression of the APOE gene, with both 

upregulation and downregulation observed. This gene, pivotal in lipid metabolism, has been the subject of 
extensive study due to its implications in various physiological processes and diseases [29]. Notably, the 
APOEɛ4 allele has been associated with increased levels of vitamin D and adiponectin, both renowned for 

their anti-inflammatory and immunomodulatory properties. These findings suggest a complex interplay 
between APOE ɛ4 and these beneficial compounds, potentially shedding light on the mechanisms by which 
APOE ɛ4 influences disease processes and outcomes. The upregulation of APOE may be indicative of an 

increased demand for lipid transport or a response to cellular stress, while downregulation could signal a 
reduced need or dysfunction in lipid handling [30]. This association is particularly intriguing as it suggests a 
potential protective mechanism against inflammatory processes. In studies involving ApoE knockout mice, 
the inhibition of serine palmitoyltransferase (SPT) has been shown to lead to improved lipid profiles [31]. 
Furthermore, the enzyme Serine Palmitoyltransferase Long Chain Base Subunit 2 (SPTLC2), which is 
involved in the synthesis of sphingolipids, has been observed to increase in conditions with epidermal 
barrier abnormalities [32]. This finding opens new avenues for understanding the complex interplay 
between lipid metabolism and inflammation in AD. 

The signal transducer and activator of transcription (STAT) pathway plays a pivotal role in 

modulating the complex immune responses implicated in the immunopathogenesis of AD. This pathway, 
particularly through the Janus kinase (JAK)–STAT signal transduction, orchestrates the activity of Th2 
cytokines such as interleukin (IL)-4, IL-5, IL-13, IL-31, and thymic stromal lymphopoietin [33]. These 

cytokines are instrumental in the manifestation of chronic inflammation and pruritus, hallmark symptoms of 
AD. The JAK–STAT pathway also plays a significant role in maintaining the integrity of the epidermal 

barrier and in the modulation of peripheral nerves, which are crucial for the sensation of pruritus [34]. By 
targeting the JAK–STAT pathway, there is potential to dampen these inflammatory signals and achieve 

clinical improvement by suppressing the diverse immune pathways that contribute to the pathology of AD 
[35]. However, it is important to consider the limitations of our study. Our analysis is primarily based on 
computational approaches and relies on existing databases and literature, which may introduce biases and 
curation constraints. Furthermore, experimental validation is needed to confirm the functional relevance of 
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the identified biomarkers. Future studies should address these limitations by exploring the potential 
underlying mechanisms of APOE and STAT1 in AD pathogenesis and treatment response through pre-

clinical experimental investigations. 

4. CONCLUSION 

This study offers a thorough bioinformatics analysis of transcriptomic biomarkers associated with 
AD, utilizing datasets GSE6012 and GSE16161 to identify significant DEGs. The intersection of these datasets 
revealed 226 overlapping DEGs, highlighting critical roles in cell proliferation, epidermis development, and 
immune response, as shown by GO enrichment analysis. REACTOME pathway analysis further emphasized 
pathways related to skin structure and immune defense, such as cornified envelope formation and 
antimicrobial peptides. PPI network analysis identified three primary subclusters and key hub genes, 
notably APOE and STAT1, demonstrating their central roles in the molecular network. These comprehensive 

insights into the DEGs, enriched biological functions, pathways, and hub genes deepen our understanding 
of AD's molecular mechanisms and identify potential biomarkers for diagnosis and therapeutic targets. This 
provides a valuable foundation for future research and clinical applications in managing AD. 

5. MATERIALS AND METHODS 

5.1 Data sources 

The publicly available NCBI-GEO database was used to find microarray datasets associated with 
AD. The GEO database (https://www.ncbi.nlm.nih.gov/geo/) provided two gene expression profile 
datasets (GSE6012 [36] and GSE16161 [37]) related to AD. To find DEGs in AD compared to non-AD 
subjects, relevant literature was reviewed using the search terms “human [organism] AND Atopic 
Dermatitis.” Eligible datasets had to meet two requirements: they had to compare AD patients with healthy 
(non-AD) controls, and they had to come from the same tissue type - skin, in this case. 

5.2 Identification of Differential Expressed Genes (DEGs) 

The GSE6012 expression profile was analyzed using the Affymetrix Human Genome U133A Array, 
which included 10 tissues from AD and 10 from normal skin. The Affymetrix Human Genome U133 Plus 2.0 
Array was used to examine the expression profile of nine AD and nine normal skin tissues in GSE16161. The 
data, which had already been normalized, were used to identify DEGs with the R package limma. The 
criteria used to select DEGs were a p-value of 0.05 and a log fold change (log FC) greater than 1. The datasets 
were ensured to have received ethical approval and to contain all necessary data for analysis. Finally, a Venn 
diagram was used to represent the DEGs that intersected GSE6012 and GSE16161. 

5.3 Analysis of DEGs at functional enrichment analysis 

 To explore the biological implications of the identified genes within AD tissues, we 
conducted a comprehensive analysis of GO functions and REACTOME pathways. The aim of this analysis 
was to reveal the functional categories and molecular pathways significantly enriched among the DEGs 
associated with AD. The GO Consortium's online resource (http://www.geneontology.org) was used for the 
GO function enrichment analysis [38]. This allowed us to investigate the functional annotations of the genes 
and identify the specific overrepresented BP, CC, and MF associated with the DEGs linked to AD. In 
addition, we conducted REACTOME pathway enrichment analysis, which provides a wide range of normal 
and disease-related biological processes (https://reactome.org/) [39]. By examining the enrichment of genes 
in specific REACTOME pathways, we aimed to gain insights into the main signaling cascades, metabolic 
pathways, and cellular processes involved in AD pathogenesis. These analyses were performed using the 
WEB-based GEne SeT AnaLysis Toolkit (WebGestalt 2019) (http://www.webgestalt.org/) [40]. The 
significance threshold was established at a false discovery rate (FDR) below 0.05 to ensure statistical 
significance and reduce the risk of false-positive results. 

5.4 Construction of PPI network 

The STRING database was used to investigate interactions among both known and predicted 
proteins. Its comprehensive collection of protein interactions was leveraged to study PPI networks and 
identify core regulatory genes [41]. To ensure reliability, protein interaction results with a confidence score 
exceeding 0.7 were specifically focused on. The PPI network was visualized using Cytoscape 3.10.1, a widely 

https://www.ncbi.nlm.nih.gov/geo/
http://www.geneontology.org/
https://reactome.org/
http://www.webgestalt.org/
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adopted software for network analysis and visualization, to aid in identifying significant network properties 
and patterns [42]. Additionally, the Molecular Complex Detection (MCODE) application within Cytoscape 
3.10.1 was employed to identify hub cluster modules within the PPI network. MCODE is adept at detecting 
densely connected regions, which are indicative of functional modules or protein complexes. Default 
parameter settings for MCODE were used, including a k-score of 2, degree cutoff of 2, node score cutoff of 
0.2, and a maximum depth of 100 [43]. The aim of this PPI analysis was to reveal intricate protein interaction 
patterns and identify key hub clusters or modules within the network. This sheds light on underlying 
regulatory mechanisms and functional relationships among proteins relevant to our investigation. 

5.5 Selection of hub genes 

CytoHubba, a Cytoscape plugin, was utilized to identify key genes within the PPI network. The tool 
employs various algorithms to calculate key network characteristics and assess the network's architecture 
[44]. Three network analysis techniques were used in this study: degree, closeness and maximum 
neighborhood component (MNC). Higher degrees indicate greater connectivity. The degree represents the 
number of connections a gene has in the network, indicating how many interaction partners it has. By 
measuring the average shortest distance between a gene and every other gene in the network, closeness 
measures how central a gene is, with higher values corresponding to more central placements. The most 
comprehensive collection of connected nodes is highlighted by the MNC, which identifies the largest 
connected subset in the network. By combining the results of different approaches, we have identified genes 
that occupy critical positions within the network and named them hub genes. These genes are thought to 
play an important role in coordinating the biological processes regulated by the PPI network. 

5.6 Statistical analyses  

In our research, we employed RStudio version 4.2.1 as the primary tool for all analytical processes. 
To conduct over-representation analysis (ORA), which encompasses GO and REACTOME pathway 
enrichment, we utilized the WebGestalt 2019 package within R [40]. GO and REACTOME results were 
visualized using the ggplot2 package in R [45]. The Venn diagram, depicting the overlap between datasets 
GSE6012 [36] and GSE16161 [37], was generated with a specialized R package (R v4.2.1) [46]. Furthermore, 
for the construction and visualization of the PPI network, STRING and Cytoscape tools were instrumental 
[47].    
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