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Abstract: Honey bees (Apis mellifera) play a vital role in maintaining ecosystem balance and supporting the sustainability of 
agricultural production. Accurate classification of these insects at the species and subspecies levels is essential for biodiversity 
monitoring, understanding local adaptation, and developing effective conservation strategies. In recent years, deep learning 
algorithms have emerged as powerful tools for automatic classification based on visual data. This review presents a 
comprehensive synthesis of studies utilizing deep learning-particularly convolutional neural networks (CNNs), transfer 
learning approaches, and hybrid models-for the image-based identification of honey bee lineages. The reviewed methods are 
evaluated in terms of their performance in image analysis and morphological differentiation. While the results demonstrate 
the high accuracy and rapid classification potential of deep learning models, current limitations such as dataset size, labeling 
challenges, and environmental variability are also discussed. By examining these strengths and constraints, this review aims 
to provide an in-depth perspective on the applicability of deep learning in honey bee research and outlines promising directions 
for future studies in this rapidly advancing field. 
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1. Introduction

Honey bees (Apis mellifera) play a fundamental role 
not only as critical pollinators within ecosystem 
services but also in enhancing agricultural 
productivity. However, recent colony losses have 
heightened the need for more effective and 
systematic approaches to the conservation and 
breeding of bee populations (Panziera et al., 2022). 
Accurate identification and classification of honey 
bee genotypes or subspecies are essential for 
monitoring natural selection, assessing local 
adaptation, and tracking disease tolerance (da Silva 
et al., 2015). In this context, classification methods 
based on the morphological characteristics of honey 
bees have long been employed (Zhang et al., 2025). 
Nevertheless, such methods are often time-
consuming, observer-dependent, and have low 
repeatability. 

With advances in image processing techniques, 
data derived from digital microscopy or macro-

scale photographs of honey bees have introduced 
new potential for developing automated 
classification systems (Karthiga et al., 2021). In 
particular, deep learning algorithms have emerged 
as powerful tools due to their capacity to 
autonomously learn complex and high-dimensional 
visual patterns (De Nart et al., 2022; Rodrigues et 
al., 2022). Architectures such as Convolutional 
Neural Networks (CNNs) can accurately classify 
honey bees by recognizing visual cues such as wing 
venation, body morphology, or pattern variations 
(De Nart et al., 2022; Garcia et al., 2022; Rodrigues 
et al., 2022). These automated systems not only 
reduce the workload for researchers but also 
provide more objective and reproducible results. 
Moreover, they enable the analysis of large datasets 
and can be integrated with field-derived visual 
records. 

This review aims to provide a comprehensive 
examination of the potential of deep learning 
methods for classifying honey bees at the species, 
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subspecies, or genotype level based on visual data. 
The review begins by outlining the basic principles 
and architectures of artificial neural networks 
(ANNs), followed by a detailed explanation of the 
structural components of CNNs. Subsequently, 
approaches based on these architectures that have 
been applied to honey bee image classification are 
presented alongside relevant examples from the 
literature, with a comparative evaluation in terms of 
accuracy, data requirements, and limitations. 
Finally, key challenges such as class imbalance, 
model interpretability, and environmental 
variability in image-based classification are 
discussed, and recommendations for future studies 
are provided. 

2. Fundamentals of Deep Learning

The concept of artificial intelligence (AI) first 
gained theoretical grounding in 1935 when Alan 
Turing proposed the idea of "machines that can 
learn." Over the years, this idea evolved into 
practical applications through advancements in 
algorithm development (Grzybowski et al., 2024). 
One of the major outcomes of this evolution is 
machine learning, which is defined as a set of 
algorithms that mimic human learning processes by 
learning from data and improving their accuracy 
over time. Deep learning, introduced by Rina 
Dechter in 1986, is regarded as a subfield of 
machine learning. Inspired by the structure of the 
human brain, deep learning is a powerful approach 
that uses multi-layered ANNs to automatically 
extract patterns from data (Luo et al., 2022). 

Although machine learning and deep learning 
are often used interchangeably, they differ 
significantly in methodology. Traditional machine 
learning models typically require feature 
engineering, where domain-specific features are 
manually extracted. In contrast, deep learning 
models can perform this process automatically, 
without explicit programming. Especially deep 
neural networks have the ability to uncover 
meaningful patterns from large datasets, enabling 
them to make highly accurate predictions (Khanikar 
et al., 2022). This capability makes deep learning 
particularly advantageous for analyzing large and 
complex datasets. 

Today, one of the most impactful areas where 
deep learning is applied is computer vision. 
Architectures such as CNNs are specifically 
designed to capture and learn spatial relationships 
in images (Traore et al., 2018). These models excel 
at tasks such as image classification, object 
detection, and segmentation by recognizing visual 
patterns in data. In biological imaging, deep 
learning has also proven effective in applications 

ranging from cell identification to leaf disease 
detection and animal species classification. Within 
this context, deep learning offers an effective and 
scalable solution for classifying morphologically 
diverse organisms such as honey bees. 

3. Artificial Neural Networks

Artificial neural networks are inspired by the 
principles of the nervous system in advanced 
biological organisms. In biological systems, the 
fundamental unit of the nervous system is the 
neuron, which consists of three main parts: 
dendrites, the soma (cell body), and the axon. 
Neurons are interconnected through dendrites and 
axons, and these connection points are called 
synapses. Dendrites collect signals from 
presynaptic neurons or the environment and 
transmit them to the soma. These signals are 
processed in the soma, and if they exceed a certain 
threshold, an action potential is generated and 
propagated along the axon (da Silva et al., 2016). 
Upon reaching the end of the axon, this signal 
triggers the release of chemical messengers known 
as neurotransmitters into the synaptic cleft, 
transmitting the signal to the next neuron. This 
sequence of electrical and chemical reactions forms 
the basis of learning and response mechanisms in 
organisms (Hodgkin and Huxley, 1952). 

Inspired by this biological framework, the 
artificial neuron-the basic unit of an ANN-was first 
introduced in 1943 by neurophysiologist Warren 
McCulloch and mathematician Walter Pitts. 
Artificial neurons are mathematical functions 
modeled after biological neurons and serve as the 
fundamental building blocks of ANNs (Kubat, 
2021). 

An artificial neuron is defined by input signals 
(I₁, I₂, ..., In) and corresponding weights (W₁, W₂, 
..., Wn), which may have positive or negative 
values. Each input signal is multiplied by its 
respective weight, and the total input is calculated 
as the sum of these products (∑IiWi). This sum is 
compared to a threshold value, and the result is 
passed through an activation function to produce an 
output, which is then transmitted to the next neuron. 
In this system, weights are adjustable parameters 
that are updated during the learning process and 
determine the influence of each input. The strength 
of the effect on the postsynaptic neuron is 
represented by the magnitude of each IiWi product. 

Multilayer ANNs, which are widely used across 
many fields including animal husbandry, consist of 
multiple computational layers. These typically 
include three main components: an input layer, one 
or more hidden layers, and an output layer. The 
learning process begins with initializing weights 
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(Wij) and biases (bj) for the connections in the 
network. Neurons process a large number of 
training samples and produce predictions, which are 
then compared to actual outputs to compute the 
error (loss value). To minimize this loss, the 
backpropagation algorithm is used. 
Backpropagation calculates the contribution of each 
parameter to the error by propagating it backward 
and adjusts the weights accordingly. 

This process is repeated until the network 
reaches the desired level of accuracy. Through this 
iterative refinement, ANNs are capable of learning 
and making predictions with high accuracy, even in 
large datasets with complex relationships (Krogh, 
2008). 

4. Convolutional Neural Networks

Convolutional Neural Networks are a specialized 
architecture of artificial neural networks designed 
specifically for deep learning tasks involving visual 
data, such as image recognition, object detection, 
and biomedical image analysis. Unlike traditional 
ANNs, CNNs are highly effective at capturing 
spatial and local correlations within data. This 
ability makes them a powerful tool for analyzing 
and classifying morphological differences among 
biological species (Zhao et al., 2024). 

The core principle behind CNNs lies in their use 
of a series of specialized layers that automatically 
extract meaningful features from input images. 
When trained on large-scale image datasets, this 
architecture can learn subtle patterns and 
relationships that are often imperceptible to the 
human eye, thereby achieving high levels of 
classification accuracy (Grzybowski et al., 2024). 

4.1. Common CNN architectures 

4.1.1. LeCun Network (LeNet) 

LeCun Network is one of the earliest CNN 
architectures in the field of deep learning, 
developed by Yann LeCun and colleagues in 1998. 
Originally designed for the recognition of 
handwritten digits, this architecture features a 
simple structure comprising a limited number of 
convolutional and pooling layers. The LeNet 
architecture consists of sequential layers that 
progressively reduce the spatial dimensions of the 
data, followed by fully connected layers for 
classification. Although relatively shallow in depth 
and rarely used directly in modern applications, 
LeNet remains foundational in the evolution of 
CNN architectures (Zhao et al., 2024). 

4.1.2. Alex Krizhevsky Network (AlexNet) 

AlexNet marked a turning point in the rise of 
deep learning within the field of computer vision by 
winning the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) in 2012. It was 
the first architecture to popularize the use of the 
ReLU (Rectified Linear Unit) activation function 
and employed the dropout technique to reduce 
overfitting. The architecture consists of five 
convolutional layers and three fully connected 
layers, and was trained using two separate 
processing pipelines to enable data parallelism. 
Compared to LeNet, AlexNet is significantly more 
advanced in terms of depth and filter sizes, 
achieving high accuracy on large datasets and 
paving the way for deeper and more complex CNN 
architectures (Rafiq et al., 2023). 

4.1.3. Visual Geometry Group Network 

(VGGNet) 

VGGNet was developed in 2014 by the Visual 
Geometry Group at the University of Oxford and is 
notable for its use of sequential 3×3 convolution 
filters to increase network depth (Tasyurek and 
Arslan, 2023). The VGG architecture simplified and 
modularized the network by employing the same 
filter size across all layers. Versions such as VGG-
16 and VGG-19, which contain 16 and 19 layers 
respectively, are widely used-especially in transfer 
learning applications. While its deep structure 
enables the network to learn complex patterns 
effectively, the high number of parameters results in 
relatively high computational costs (Alzubaidi et 
al., 2021). 

4.1.4. Google LeNet Architecture (GoogLeNet) 

Google LeNet Architecture, also known as 
Inception-v1, won first place in the 2014 ILSVRC 
competition and introduced a groundbreaking 
architectural concept known as network-in-network 
design. Instead of using a single convolutional 
layer, this architecture employs Inception modules, 
which apply filters of various sizes in parallel. This 
approach enables the network to be enriched both in 
width and depth while maintaining a manageable 
number of parameters. Subsequent versions, 
including Inception-v2, v3, and v4, introduced 
further optimization techniques and increased 
architectural depth (Barber and Oueslati, 2024). 

4.1.5. Residual Network (ResNet) 

Residual network was developed by Microsoft 
Research in 2015 to address the issue of 
performance       degradation  in deep  networks,  which 
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often occurs as network depth increases (Khan et 
al., 2019). The architecture introduced the concept 
of residual connections (also known as skip 
connections), which allow the input of a layer to be 
directly added to its output after a few layers. This 
mechanism facilitates the flow of gradients during 
backpropagation, thereby enabling the successful 
training of much deeper networks. Variants such as 
ResNet-50 and ResNet-101 are widely used today, 
particularly in transfer learning tasks, and are 
known for their high accuracy and robustness (Wu 
et al., 2019). 

4.2. Core components of convolutional neural 

networks 

A typical CNN model is composed of 
convolutional, activation, pooling, and fully 
connected layers. These layers progressively 
abstract the input image and extract the most salient 
features to perform classification (Gu et al., 2018). 

4.2.1. Convolution layer 

The convolution layer enables the model to 
extract local features from input data (e.g., an image 
of a honey bee) using small matrices called kernels 
or filters. These kernels, typically of size 3×3 or 
5×5, are slid across the input image to generate 
feature maps. The convolution operation can be 
mathematically represented as shown in Equation 1 
(Gu et al., 2018).  

  (1) 

In this equation, X(i, j) represents the input 
image, W(m, n) denotes the convolution filter 
(kernel), and Y(i, j) refers to the resulting feature 
map. 

This operation enables the model to extract 
edges, textures, and salient structures from the input 
image, thereby providing powerful features that 
help distinguish between different honey bee 
lineages. 

4.2.2. Activation function 

The feature maps obtained from the convolution 
operation are initially the result of a linear 
transformation. To enable the model to learn non-
linear representations, an activation function is 
applied. One of the most commonly used activation 
functions in CNNs is the Rectified Linear Unit 
(ReLU) (Puig-Arnavat and Bruno, 2015), which is 
mathematically defined in Equation 2. 

   (2) 

In this equation, x denotes the input value, while 
f(x) represents the corresponding output of the 
activation function. 

The ReLU function accelerates and enhances 
the learning process by mapping all negative values 
to zero. Alternatively, other activation functions 
such as Leaky ReLU and ELU (Exponential Linear 
Unit) can also be employed depending on the task 
and network architecture (Nair and Hinton, 2010). 

4.2.3. Pooling layer 

The pooling layer reduces the spatial 
dimensions of the feature maps produced by the 
convolutional layer, thereby decreasing the number 
of parameters and overall computational cost. The 
most commonly used pooling operation is Max 
Pooling, which summarizes information by 
selecting the maximum value within a defined 
window (Estrach et al., 2014), as shown in Equation 
3. 

(3) 

In this equation, X(i+m, j+n) denotes the input 
values within the local region f, and P(i, j) 
represents the pooled output, which corresponds to 
the maximum value in that region. 

Pooling contributes to spatial invariance, 
enabling the model to become more robust to 
changes in scale and orientation-such as those found 
in honey bee images. 

4.2.4. Fully connected layer 

In the final stage of a CNN, the low-dimensional 
representation obtained from the pooling layer is 
flattened and passed to the fully connected layers. 
At this point, the network functions similarly to a 
traditional artificial neural network, computing 
class probabilities-such as those corresponding to 
specific honey bee species-using activation 
functions like Softmax or Sigmoid. 

The fully connected layer performs the 
classification based on the features learned 
throughout the preceding layers. For multi-class 
classification tasks, the Softmax function is 
commonly used and is defined in Equation 4 
(Scabini and Bruno, 2023). 

(4) 

YILDIZ and KARABAĞ

227Türkiye Tarımsal Araştırmalar Dergisi - Turkish Journal of Agricultural Research     12(2): 224-230



In this equation, xj denotes the input features, 
wij represents the weight connecting input j to 
neuron i, bi is the bias term, and zi is the resulting 
linear combination before the activation function is 
applied. 

The Softmax function normalizes the predicted 
values into probabilities, ensuring that the total sum 
across all classes is equal to 1. 

5. Image-Based Classification of Honey

Bees

The CNN architectures and processing components 
discussed in the previous sections form the 
foundational elements of the recent advances in 
honey bee image classification. By integrating 
convolutional operations, pooling strategies, and 
activation mechanisms, these deep learning models 
can efficiently learn the subtle morphological 
patterns that distinguish honey bee subspecies, wing 
venation structures, and even health-related 
abnormalities. The following studies demonstrate 
how these components have been effectively 
applied to image-based honey bee classification 
tasks. 

The classification of honey bee species has long 
attracted scientific interest due to the complex 
nature of both morphological and molecular data. In 
particular, the limitations of traditional 
classification methods in handling multivariate and 
implicit relationships have led to the emergence of 
next-generation artificial intelligence-based 
approaches in this field (Crisci et al., 2012). In this 
context, deep learning-based image processing 
methods offer a powerful alternative for the 
automated classification of honey bees in terms of 
species, subspecies, and even health status. 

Recent studies have demonstrated the 
effectiveness of CNN architectures, especially for 
the classification of images based on wing 
morphology. For instance, De Nart et al. (2022) 
aimed to differentiate honey bee subspecies by 
recognizing wing images using AI-based 
techniques. A dataset consisting of 9,887 wing 
images from seven subspecies and one hybrid was 
analyzed using ResNet-50, MobileNet V2, 
Inception Net V3, and Inception ResNet V2. As a 
result, individual wing classification accuracies 
exceeded 0.92, and all models were reported to 
outperform traditional morphometric evaluation 
methods. These findings confirm that CNN-based 
architectures can surpass conventional 
classification methods in terms of accuracy and 
consistency, especially when trained on large, 
balanced, and high-resolution datasets. 

Similarly, Rodrigues et al. (2022) developed a 
software tool named DeepWings©, which performs 
geometric morphometric classification of honey bee 
wings by automatically detecting 19 landmarks on 
digital wing images. To achieve this, they applied a 
combination of machine learning techniques: (i) 
using a CNN to detect the wings, (ii) applying a U-
Net model for landmark segmentation, and (iii) 
employing a Support Vector Machine (SVM) for 
classification. The subspecies classifier achieved an 
average accuracy of 86.6% across 26 subspecies, 
and 95.8% accuracy for a subset of five major 
subspecies. The final implementation of the system 
demonstrated excellent processing speed, requiring 
only 14 seconds to analyze 10 images. However, 
despite its promising performance, DeepWings© 
shows reduced classification power for certain 
subspecies with high intra-population variability-
emphasizing the need for further refinement using 
molecularly validated training sets. 

The accuracy and overall performance of this 
software were also validated in an independent test 
study conducted by Garcia et al. (2022). The 
researchers evaluated the tool using 14,816 wing 
images from five different subspecies (A. mellifera 

carnica, A. mellifera caucasia, A. mellifera 

iberiensis, A. mellifera ligustica, and A. mellifera 

mellifera). Their results showed that 92.6% of the 
A. mellifera iberiensis colonies were matched to the
correct subspecies with a high average probability
of 0.919. In contrast, only 41.1% of the A. m.

mellifera colonies were matched to their correct
subspecies, although those that were matched
exhibited a very high probability of 0.994. When
compared to molecular data, the correlation
between wing-based and molecular marker-based
classification for 1.214 colonies was found to be
significant but weak (r= 0.31; p<0.0001). This
indicates that wing-based classification alone may
not always reflect true genetic identity, especially in
hybrid zones or genetically admixed populations.

A different approach was proposed by Rebelo et 
al. (2021). The researchers developed a system that 
analyzes the vein patterns of the forewings of bees, 
and supported this method with image segmentation 
techniques. They reported achieving a species-level 
accuracy of 96% and a genus-level accuracy of 99% 
on a large dataset comprising 48 species and 23 
genera. These levels of accuracy represent highly 
remarkable outcomes within the scope of 
morphometric classification approaches, and point 
to the generalizability of deep learning models even 
beyond the A. mellifera species complex. 

In addition, a study by Karthiga et al. (2021) 
proposed a CNN model capable of classifying not 
only honey bee species but also their health status. 
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The study employed a convolutional neural network 
composed of two-dimensional layers to perform 
species and health condition analysis on a large 
dataset. To address class imbalance and better 
represent minority classes, Synthetic Minority 
Over-sampling Technique (SMOTE) was applied 
for data augmentation. The model was trained on 
more than 5.000 honey bee images, achieving 86% 
accuracy in subspecies classification and 84% 
accuracy in health status prediction. This result 
underscores the potential of CNN models to move 
beyond taxonomic classification and contribute to 
colony health monitoring-an increasingly vital area 
in apicultural research. 

Such applications demonstrate that deep 
learning can be utilized not only for species 
identification but also for broader analytical 
purposes, such as assessing colony health and 
detecting morphological deviations linked to 
environmental stressors. These findings emphasize 
the transformative potential of CNN architectures, 
when combined with curated datasets, to deliver 
fast, scalable, and accurate classifications in honey 
bee research. Nevertheless, a consistent limitation 
across these studies is the scarcity of large-scale, 
geographically diverse, and molecularly confirmed 
image datasets-a gap that future research must 
address to enhance model robustness and 
generalizability. 

6. Conclusions

This review has highlighted the current potential 
and applications of deep learning techniques in the 
image-based classification of honey bees. Studies in 
the literature have reported high classification 
accuracies-ranging from 86% to 99%-mostly based 
on honey bee wing images. Notably, the application 
of pretrained CNN architectures such as ResNet and 
Inception through transfer learning has yielded 
successful outcomes, even in cases where data 
availability is limited. 

However, despite these promising findings, 
research in this field remains relatively limited and 
often constrained to specific datasets. For instance, 
most of the image data used to date are derived from 
forewing structures, while approaches based on 
body segmentation, behavioral visual data, or three-
dimensional imaging are not yet widespread. 
Moreover, existing studies tend to focus 
predominantly on European subspecies (e.g., A. 

mellifera carnica, A. mellifera ligustica, A. 

mellifera mellifera), with a notable lack of image-
based classification applications involving local 
variants from regions such as Anatolia, the Middle 
East, or Africa. 

Another limiting factor is related to image 
quality, label accuracy, and data imbalance. While 
some studies have implemented data augmentation 
techniques such as SMOTE, it remains unclear how 
well algorithms can process low-quality images 
captured under field conditions. Furthermore, the 
generalizability of the models is often confined to 
the tested datasets, and performance tends to 
degrade with data from external sources. The weak 
correlation observed between molecular data and 
visual classification results also poses 
methodological challenges for the biological 
validation of image-based predictions. 

In light of these considerations, integrating deep 
learning–based image classification methods into 
honey bee biology holds significant potential. 
However, fully realizing this potential will require 
the development of more diverse, representative, 
and well-labeled datasets, the inclusion of 
subspecies from varied geographic and genetic 
backgrounds, and the enhancement of model 
interpretability. These steps would contribute to 
both the conservation of biological diversity and the 
implementation of objective, data-driven breeding 
programs. 
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