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1. Introduction

Over most rings it is impossible to classify all modules: even algebras of tame

representation type typically are “wild” when their infinitely generated representa-

tions are considered. In particular, one is interested in the classification of certain

“significant” modules rather than in arbitrary modules. The pure-injective modules

seem to form a class of modules that appear naturally and where there is hope of

some kind of classification. Pure-injective modules play a central role in the model

theory of modules: for example classification of the complete theories of R-modules

reduce to classifying the (complete theories of) pure-injectives. Also, for some rings

the “small” (finite-dimensional, finitely generated, . . . ) modules are classified and

in many cases this classification can be extended to give a classification of the

(indecomposable) pure-injective modules. Indeed, there is sometimes a strong con-

nection between infinitely generated pure-injective modules and families of finitely

generated modules (see [31], [32], [33], [34] and [40]). The reader is referred to [3],

[35, Chapters 1 and 14] and [36] for a detailed discussion of classification prob-

lems, their representation types (finite, tame, or wild), and useful computational

reduction procedures.
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In this paper all rings are commutative with identity and all modules unitary.

We are going to study pullbacks of discrete valuation rings. Let v1 : R1 → R̄

and v2 : R2 → R̄ be homomorphisms of two discrete valuation domains Ri onto a

common field R̄. Denote the pullback R = {(r1, r2) ∈ R1 ⊕ R2 : v1(r1) = v2(r2)}
by (R1

v1−→ R̄
v2←− R2), where R̄ = R1/J(R1) = R2/J(R2). Then R is a ring

under coordinate-wise multiplication. Denote the kernel of vi, i = 1, 2, by Pi. Then

Ker(R → R̄) = P = P1 × P2, R/P ∼= R̄ ∼= R1/P1
∼= R2/P2, and P1P2 = P2P1 = 0

(so R is not a domain). Furthermore, for i 6= j, 0 → Pi → R → Rj → 0 is an

exact sequence of R-modules (see [24]). A typical example of pullback of discrete

valuation domain is the infinite-dimensional k-algebra k[x, y : xy = 0](x,y) where k

is a field (it is the pullback (k[x](x) → k ← k[y](y)) of two discrete valuation domains

k[x](x), k[y](y) (see [2, Section 6]). Let R be a pullback of two discrete valuation

domains with common residue field K. As in [24] define the associated graded

ring G(R) to be the additive group ⊕iP
i/P i+1 equipped with a ring structure by

defining the multiplication as in [24]. Similarly, the associated graded module of an

R-module M is P iM/P i+1M , equipped with a G(R)-module structure by defining

the scalar multiplication as in [24]. Arnold and Laubenbacher ([2, Section 6])

showed that G(R) is the k-algebra k[x, y : xy = 0](x,y). The R-modules of deleted

and block cycle types correspond exactly to the G(R)-modules of string and band

types (see [8]). Modules over pullback rings have been studied by several authors

(see for instance, [2], [7], [10], [12], [14], [15], [16], [17], [19], [20], [21], [23], [24], [25],

[26], [29], [38]). Notably, there is the important work of Levy [25], resulting in the

classification of all finitely generated indecomposable modules over Dedekind-like

rings. Common to all these classification is the reduction to a “matrix problem” over

a division ring, see [9] and [35, Section 17.9] for a background of matrix problems

and their applications. It is proved that the pullback of two commutative local

rings has Morita duality if and only if the two rings have Morita duality ([18]).

The classification of subclass of pure-injective modules over the pullback of two

discrete valuation rings over a common factor field are very important and a difficult

problem. One point of this paper is that to introduce a subclass of pure-injective

modules over such rings. Indeed, this article includes the classification of those

indecomposable 2-absorbing comultiplication modules over k[x, y : xy = 0](x,y)

where k is a field, which have finite-dimensional top.

In the present paper, we introduce a new class of R-modules, called 2-absorbing

comultiplication modules, and we study it in details from the classification problem

point of view. We are mainly interested in case either R is a discrete valuation do-

main or R is a pullback of two discrete valuation domains. First, we give a complete
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description of the 2-absorbing comultiplication modules over a discrete valuation do-

main. Let R be a pullback of two discrete valuation domains over a common factor

field. The main purpose of this paper is to give a complete description of the in-

decomposable 2-absorbing comultiplication R-modules with finite-dimensional top

over R/rad(R) (for any module M we define its top as M/Rad(R)M). The clas-

sification is divided into two stages: the description of all indecomposable sepa-

rated 2-absorbing comultiplication R-modules and then, using this list of separated

2-absorbing comultiplication modules we show that non-separated indecomposable

2-absorbing comultiplication R-modules with finite-dimensional top are factor mod-

ules of finite direct sums of separated indecomposable 2-absorbing comultiplication

R-modules. Then we use the classification of separated indecomposable 2-absorbing

comultiplication modules from Section 3, together with results of Levy [25,26] on the

possibilities of amalgamating finitely generated separated modules, to classify the

non-separated indecomposable 2-absorbing comultiplication modules with finite-

dimensional top (see Theorem 4.7). We will see that the non-separated modules

may be represented by certain amalgamation chains of separated indecomposable

2-absorbing comultiplication modules (where infinite length 2-absorbing comulti-

plication modules can occur only at the ends) and where adjacency corresponds to

amalgamation in the socles of these separated 2-absorbing comultiplication mod-

ules.

The concept of 2-absorbing ideal, which is a generalization of that of prime ideal,

was introduced and studied by Badawi in [4]. Various generalizations of prime ideals

are also studied in [5] and [6]. Recall that a proper ideal I of a ring R is called a

2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or

bc ∈ I. Recently (see [30], [39]), the concept of 2-absorbing ideal is extended to the

context of 2-absorbing submodule which is a generalization of prime submodule.

Recall from [30] that a proper R-submodule N of a module M is said to be a

2-absorbing submodule of M if whenever a, b ∈ R, m ∈ M and abm ∈ N , then

am ∈ N or bm ∈ N or ab ∈ (N :R M).

For the sake of completeness, we state some definitions and notations used

throughout. Let R be the pullback ring as mentioned in the beginning of intro-

duction. An R-module S is defined to be separated if there exist Ri-modules Si,

i = 1, 2, such that S is a submodule of S1⊕S2 (the latter is made into an R-module

by setting (r1, r2)(s1, s2) = (r1s1, r2s2)). Equivalently, S is separated if it is a pull-

back of an R1-module and an R2-module and then, using the same notation for

pullbacks of modules as for rings, S = (S/P2S → S/PS ← S/P1S) [24, Corollary

3.3] and S ⊆ (S/P2S)⊕ (S/P1S). Also S is separated if and only if P1S ∩P2S = 0
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[24, Lemma 2.9]. Let M be an R-module. A separated representation of M is a

pair (S, ϕ) where

(i) S is a separated R-module;

(ii) ϕ is an R-homomorphism of S onto M ;

(iii) for every pair (S′, ϕ′) satisfying (i) and (ii), and for every R-homomorphism

α of S in S′ such that ϕ′α = ϕ, α is 1 − 1. The module K = Ker(ϕ) is then an

R̄-module, since R̄ = R/P and PK = 0 [24, Proposition 2.3]. An exact sequence

0 → K → S → M → 0 of R-modules with S separated and K an R̄-module is a

separated representation of M if and only if PiS ∩K = 0 for each i and K ⊆ PS

[24, Proposition 2.3]. Every module M has a separated representation, which is

unique up to isomorphism [24, Theorem 2.8].

Definition 1.1. (a) IfR is a ring andN is a submodule of anR-moduleM , the ideal

{r ∈ R : rM ⊆ N} is denoted by (N : M). Then (0 : M) is the annihilator of M .

A proper submodule N of a module M over a ring R is said to be prime submodule

if whenever rm ∈ N , for some r ∈ R, m ∈ M , then m ∈ N or r ∈ (N : M), so

(N : M) = P is a prime ideal of R, and N is said to be P -prime submodule. The

set of all prime submodules in an R-module M is denoted by Spec(M) [27,28].

(b) An R-module M is a comultiplication module provided for each submodule

N of M there exists an ideal I of R such that N is the set of elements m in M such

that Im = 0. In this case we can take N = (0 :M ann(N)) [1].

(c) AnR-moduleM is defined to be a weak comultiplication module if Spec(M) =

∅ or for every prime submodule N of M , N = (0 :M I), for some ideal I of R [15].

(d) A proper submodule N of a module M is said to be 2-absorbing submodule

if whenever a, b ∈ R, m ∈M and abm ∈ N , then am ∈ N or bm ∈ N or ab ∈ (N :R

M) [30,39]. The set of all 2-absorbing submodules in an R-module M is denoted

by abSpec(M).

(e) A submodule N of an R-module M is called a pure submodule if any finite

system of equations over N which is solvable in M is also solvable in N . A sub-

module N of an R-module M is called relatively divisible (or an RD-submodule)

in M if rN = N ∩ rM for all r ∈ R (see [31], [37]).

(g) A module M is pure-injective if it has the injective property relative to all

pure exact sequences (see [31], [37]).

Remark 1.2. (a) Let R be a Dedekind domain, M an R-module and N a submodule

of M . Then N is pure in M if and only if IN = N ∩ IM for each ideal I of R.

Moreover, N is pure in M if and only if N is an RD-submodule of M [31], [37].
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(b) Let N be an R-submodule of M . It is clear that N is an RD-submodule of

M if and only if for all m ∈M and r ∈ R, rm ∈ N implies that rm = rn for some

n ∈ N . Furthermore, if M is torsion-free, then N is an RD-submodule if and only

if for all m ∈ M and for all non-zero r ∈ R, rm ∈ N implies that m ∈ N . In this

case, N is an RD-submodule if and only if N is a prime submodule.

2. 2-Absorbing comultiplication modules

In this section, we give a complete description of the 2-absorbing comultiplication

modules over a discrete valuation domain. We begin with the key definition of this

paper.

Definition 2.1. Let R be a commutative ring. An R-module M is defined to be

a 2-absorbing comultiplication module if abSpec(M) = ∅ or for every 2-absorbing

submodule N of M , N = (0 :M I), for some ideal I of R.

One can easily show that if M is a 2-absorbing comultiplication module, then

N = (0 :M ann(N)) for every 2-absorbing submodule N of M . It is easy to see

that the class of 2-absorbing comultiplication modules contains the class of weak

comultiplication modules (resp. comultiplication modules) defined in [15] (resp.

[14]). We need the following lemma proved in [39, Lemma 2.4] and [30, Lemma 2.1,

Lemma 2.2, and Theorem 2.3], respectively.

Lemma 2.2. (i) Let K ⊆ N be submodules of an R-module M . Then N is a

2-absorbing submodule of M if and only if N/K is a 2-absorbing submodule

of M/K.

(ii) Let I be an ideal of R and N be a 2-absorbing submodule of M . If a ∈ R,

m ∈M and Iam ⊆ N , then am ∈ N or Im ⊆ N or Ia ⊆ (N : M).

(iii) Let I, J be ideals of R and N be a 2-absorbing submodule of M . If m ∈M
and IJm ⊆ N , then Im ∈ N or Jm ⊆ N or IJ ⊆ (N : M).

(iv) Let N be a proper submodule of M . Then N is a 2-absorbing submodule of

M if and only if IJK ⊆ N for some ideals I, J of R and a submodule K

of M implies that IK ⊆ N or JK ⊆ N or IJ ⊆ (N : M).

Lemma 2.3. (a) Let M be an R-module, N an R-submodule of M and I an

ideal of R such that I ⊆ ann(M). Then M is a 2-absorbing comultipli-

cation R-module if and only if M is 2-absorbing comultiplication as an

R/I-module.

(b) Let R and R′ be any commutative rings, g : R → R′ a surjective homo-

morphism and M an R′-module. If M is a 2-absorbing comultiplication

R′-module, then M is a 2-absorbing comultiplication R-module.
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Proof. (a) It is easy to see that N is a 2-absorbing R-submodule of M if and only

if N is 2-absorbing submodule of M as an R/I-module. Now the assertion follows

the fact that (0 :M J) = (0 :M (I + J)/I) for every ideal J of R.

(b) Clearly, if N is a 2-absorbing R-submodule of M , then it is a 2-absorbing

R′-submodule of M . Assume that M is a 2-absorbing comultiplication R′-module

and let N be a 2-absorbing R-submodule of M . Then N = (0 :M J), where

J = (0 :R′ N); so I = g−1(J) is an ideal of R with g(I) = J . It is enough to

show that (0 :M J) = (0 :M I). Let m ∈ (0 :M J). If r ∈ I, then g(r) ∈ J , so

g(r)m = 0. Thus rm = 0 for every r ∈ I; hence m ∈ (0 :M I). For the reverse

inclusion, assume that x ∈ (0 :M I) and s ∈ J . Then s = g(a) for some a ∈ I. It

follows that sx = g(a)x = ax = 0 for every s ∈ J ; hence x ∈ (0 :M J), and we have

equality. �

Proposition 2.4. Assume that M is a 2-absorbing comultiplication module over

a commutative ring R and let N be a non-zero pure submodule of M . Then the

following hold:

(i) M/N is a 2-absorbing comultiplication R-module.

(ii) Every direct summand of M is a 2-absorbing comultiplication submodule.

Proof. (i) Let K/N be a 2-absorbing submodule of M/N . Then by Lemma 2.2(i),

K is a 2-absorbing submodule of M , so K = (0 :M I) for some ideal I of R. We

show that K/N = (0 :M/N I). Let x+N ∈ K/N . Then Ix = 0 gives I(x+N) = 0;

so x+N ∈ (0 :M/N I). For the reverse inclusion, assume that y +N ∈ (0 :M/N I).

Then Iy ⊆ N ∩ IM = IN ⊆ IK = 0; hence y ∈ K, and we have equality.

(ii) follows from (i). �

Remark 2.5. Let R be a discrete valuation domain with unique maximal ideal

P = Rp.

(a) Since P is a 2-absorbing submodule of R-module R with (0 :R ann(P )) =

R 6= P , we get that R is not a 2-absorbing comultiplication R-module.

(b) By [17, Proposition 2.5], abSpec(E(R/P )) = ∅ and abSpec(Q(R)) = {(0)}
(so {0} = (0 :Q(R) R)), where E(R/P ), the injective hull of R/P and Q(R),

the field of fractions of R. Thus they are 2-absorbing comultiplication R-

modules.

(c) Each R/Pn (n ≥ 1) is a 2-absorbing comultiplication module since it is a

comultiplication module (see [14]).
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Theorem 2.6. Let R be a discrete valuation domain with a unique maximal ideal

P = Rp. Then the indecomposable 2-absorbing comultiplication modules over R,

up to isomorphism, are the following:

(i) R/Pn, n ≥ 1, the indecomposable torsion modules;

(ii) E(R/P ), the injective hull of R/P ;

(iii) Q(R), the field of fractions of R.

Proof. By [10, Proposition 1.3], these modules are indecomposable. They are

2-absorbing comultiplication by Remark 2.5. It remains to be shown that there

are no more indecomposable 2-absorbing comultiplication modules. Let M be an

indecomposable 2-absorbing comultiplication and choose a non-zero element a ∈M .

Consider the annihilator, annR(a) = {r ∈ R : ra = 0}, and the height h(a) =

sup{n : a ∈ PnM} (so h(a) is a non-negative integer or ∞). If annR(a) = Pm+1,

then annR(apm) = P . So, replacing a if necessary, it may be supposed that annR(a)

is 0 or P . Now we consider the various possibilities for h(a) and annR(a).

Case 1: If abSpec(M) = ∅, then Spec(M) ⊆ abSpec(M) gives M is a torsion

divisible R-module with PM = M and M is not finitely generated by [27, Lemma

1.3, Proposition 1.4]. We may assume that (0 : a) = P . By an argument like

that in [11, Proposition 2.7 Case 2], M ∼= E(R/P ). So we may assume that

abSpec(M) 6= ∅.
Case 2: If h(a) = n, then annR(a) = P . Assume to the contrary, annR(a) = 0.

Say a = pnb. Then rb = 0 implies ra = 0 and so r = 0. Thus Rb ∼= R. We also

have that Rb is pure in M (see [13, Theorem 2.12 Case 1]). As M is a torsion-free

R-module by [22, Theorem 10], we must have Rb is a prime submodule of M (see

Remark 1.2 (b)) (so 2-absorbing submodule); hence R ∼= Rb = (0 :M 0) = M ,

which is a contradiction by Remark 2.5 (a). So we may assume that h(a) = n,

(0 : a) = P . Say a = pnb. Then we have Rb ∼= R/Pn+1. Furthermore, Rb is pure

in M . Hence, since Rb is a pure submodule of bonded order of M , we deduce that

Rb is a direct summand of M by [22, Theorem 5]; hence M = Rb ∼= R/Pn+1.

Case 3: h(a) =∞, annR(a) = P . By an argument like that [11, Theorem 2.12,

Case 4], we get that M ∼= E(R/P ). Hence abSpec(M) = ∅ by Remark 2.5 that is

a contradiction.

Case 4: h(a) =∞, annR(a) = 0. By an argument like that [13, Theorem 2.12,

Case 3], we obtain M ∼= Q(R). �

Theorem 2.7. Let M be a 2-absorbing comultiplication module over a discrete

valuation domain with a unique maximal ideal P = Rp. Then M is of the form

M = N ⊕ K, where N is a direct sum of copies of R/Pn (n ≥ 1) and K is
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a direct sum of copies of E(R/P ) and Q(R). In particular, every 2-absorbing

comultiplication R-module is pure-injective.

Proof. Let T denote an indecomposable summand of M . Then T is an inde-

composable 2-absorbing comultiplication module by Proposition 2.4(ii). Now the

assertion follows from Theorem 2.6. The “in particular” statement follows from

[10, Proposition 1.3]. �

3. The separated absorbing comultiplication modules

In this section we determine the indecomposable absorbing comultiplication sep-

arated R-modules where

R = (R1
v1−→ R̄

v2←− R2) (1)

is the pullback of two discrete valuation domains R1, R2 with maximal ideals P1, P2

generated respectively by p1, p2, P denotes P1⊕P2 and R1/P1
∼= R2/P2

∼= R/P ∼= R̄

is a field (we do not need the a priori assumption of finite-dimensional top for

this classification). Then R is a commutative Noetherian local ring with unique

maximal ideal P . The other prime ideals of R are easily seen to be P1 (that is

P1 ⊕ 0) and P2 (that is 0 ⊕ P2). Let a = (r, s) ∈ R with r 6= 0 and s 6= 0. Then

we can write a = (pn1 , p
m
2 ) for some positive integers m,n, so ann(a) = 0; hence

Ra ∼= R. If a = (0, pm2 ) for some positive integer m, then ann(a) = P1 ⊕ 0, and so

R(0, pm2 ) ∼= R/(P1 ⊕ 0) ∼= R2. Similarly, R(pn1 , 0) ∼= R/(0 ⊕ P2) ∼= R1. The other

ideals I of R are of the form I = Pn
1 ⊕ Pm

2 = (Pn
1 , P

m
2 ) = (< pn1 >,< pm2 >) for

some positive integers m,n since I ⊆ P = P1 ⊕ P2 = (P1, P2) = (< p1 >,< p2 >)

and p1p2 = 0 = p2p1 (see [10, p. 4054]). We need the following lemma proved in

[17, Proposition 3.1].

Lemma 3.1. Let S = (S/P2S = S1
f1−→ S̄ = S/PS

f2←− S2 = S/P1S) be any

separated module over the pullback ring as in (1).

(i) If T is a 2-absorbing submodule of S, then T1 is a 2-absorbing submodule

of S1 and T2 is a 2-absorbing submodule of S2.

(ii) abSpec(S) = ∅ if and only if abSpec(Si) = ∅ for i = 1, 2.

Remark 3.2. Let R be the pullback ring as in (1), and let T be an R-submodule

of a separated module S = (S1
f1−→ S̄

f2←− S2), with projection maps πi : S � Si.

Set T1 = {t1 ∈ S1 : (t1, t2) ∈ T for some t2 ∈ S2} and T2 = {t2 ∈ S2 : (t1, t2) ∈
T for some t1 ∈ S1}.Then for each i, i = 1, 2, Ti is an Ri-submodule of Si and T ≤
T1⊕T2. Moreover, we can define a mapping π′1 = π1|T : T � T1 by sending (t1, t2)

to t1. Hence T1 ∼= T/(0⊕Ker(f2)∩T ) ∼= T/(T ∩P2S) ∼= (T +P2S)/P2S ⊆ S/P2S.
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So we may assume that T1 is a submodule of S1. Similarly, we may assume that

T2 is a submodule of S2 (note that Ker(f1) = P1S1 and Ker(f2) = P2S2).

Proposition 3.3. Let R be the pullback ring as in (1), and let S = (S1 → S̄ ← S2)

be any separated R-module. Then the following hold:

(i) If L1 is a non-zero 2-absorbing submodule of S1, then there exists a sepa-

rated submodule T of S such that T + (0⊕P2)S is a 2-absorbing submodule

of S.

(ii) If L2 is a non-zero 2-absorbing submodule of S2, then there exists a sepa-

rated submodule T ′ of S such that T ′+(P1⊕0)S is a 2-absorbing submodule

of S.

Proof. (i) If L1 is a non-zero 2-absorbing submodule of S1, then there exists a

separated submodule T = (T1 → T̄ ← T2) of S, where T1 = L1. By Remark 3.2,

T1 ∼= (T + (0⊕P2)S)/(0⊕P2)S ⊆ S/(0⊕P2)S. Thus (T + (0⊕P2)S)/(0⊕P2)S is

a 2-absorbing R-submodule of S/(0⊕ P2)S. Hence T + (0⊕ P2)S is a 2-absorbing

R-submodule of S by Lemma 2.2(i). The proof of (ii) is similar. �

Theorem 3.4. Let S = (S1 → S̄ ← S2) be any separated module over the pullback

ring as (1). Then S is a 2-absorbing comultiplication R-module if and only if each

Si is a 2-absorbing comultiplication Ri-module, i = 1, 2.

Proof. By Lemma 3.1(ii), we may assume that abSpec(S) 6= ∅. Suppose that

S is a 2-absorbing comultiplication R-module and let L be a nonzero 2-absorbing

submodule of S1. By Proposition 3.3, there exists a submodule T = (T1 → T̄ ← T2)

of S such that L = T1 and T ′ = T + (0 ⊕ P2)S is a 2-absorbing submodule of S.

Clearly, ann(T ′) = ann(T ) ∩ ann((0 ⊕ P2)S) = 0 or Pn
1 ⊕ 0 for some positive

integer n. Since S = (0 :S 0), S is a 2-absorbing comultiplication module gives

T ′ = (0 :S Pn
1 ⊕ 0). It suffices to show that L = T1 = (0 :S1

pn1 ). Let t ∈ T1.

There exists t2 ∈ T2 such that (t1, t2) ∈ T ⊆ T ′; so (Pn
1 ⊕ 0)(t1, t2) = 0. It then

follows that T1 ⊆ (0 :S1
pn1 ). For the reverse inclusion let s1 ∈ (0 :S1

pn1 ). Then

there is an element s2 ∈ S2 such that (s1, s2) ∈ S and (Pn
1 ⊕ 0)(s1, s2) = 0. Hence

(s1, s2) ∈ T ′. Thus s1 ∈ T1 and we have equality. Therefore S1 is 2-absorbing

comultiplication. Similarly, S2 is 2-absorbing comultiplication. Conversely, assume

that S1, S2 are 2-absorbing comultiplication and let T be a 2-absorbing submodule

of S. By Lemma 3.1, T1, T2 are 2-absorbing submodules of S1, S2, respectively.

By assumption, T1 = (0 :S1
Pn
1 ) and T2 = (0 :S2

Pm
2 ) for some integers n,m.

An inspection will show that T = (0 :S Pn
1 ⊕ Pm

2 ). Thus S is a 2-absorbing

comultiplication R-module. �
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Lemma 3.5. Let R be the pullback ring as in (1). Then, up to isomorphism, the

following separated R-modules are indecomposable and 2-absorbing comultiplication:

(i) S = (E(R1/P1) → 0 ← 0), (0 → 0 ← E(R2/P2)), where E(Ri/Pi) is the

Ri-injective hull of Ri/Pi for i = 1, 2;

(ii) S = (Q(R1) → 0 ← 0), (0 → 0 ← Q(R2)), where Q(Ri) is the field of

fractions of Ri for i = 1, 2;

(iii) S = (R1/P
n
1 → R̄← R2/P

m
2 ) for all positive integers n,m.

Proof. By [10, Lemma 2.8], these modules are indecomposable. They are 2-

absorbing comultiplication by Theorem 2.6 and Theorem 3.4. �

Theorem 3.6. Let R be the pullback ring as in (1), and let S = (S1 → S̄ ← S2)

be an indecomposable separated 2-absorbing comultiplication R-module. Then S is

isomorphic to one of the modules listed in Lemma 3.5.

Proof. If abSpec(S) = ∅, then abSpec(Si) = ∅ by Proposition 3.1 (ii), so Si = PiSi

for each i = 1, 2 (see Theorem 2.6, Case 1); hence S = PS = P1S1⊕P2S2 = S1⊕S2.

Therefore, S = S1 or S2 and so S is of type (i) in the list of Lemma 3.5 by Theorem

2.6. So we may assume that abSpec(S) 6= ∅. If S = PS, then by [10, Lemma 2.7

(i)], S = S1 or S = S2 and so S is an indecomposable 2-absorbing comultiplication

Ri-module for some i, and since PS = S, it is of type (ii) by Theorem 2.6. So we

may assume that S 6= PS.

By Theorem 3.5, Si is a 2-absorbing comultiplication Ri-module, for each i =

1, 2. Therefore by structure of 2-absorbing comultiplication modules over discrete

valuation domain (see Theorem 2.7), Si = Mi ⊕ Ni, where Ni is a direct sum of

copies of Ri/P
n
i (n ≥ 1) and Mi is a direct sum of copies of E(Ri/Pi) and Q(Ri).

Then we have S = (N1 → S̄ ← N2) ⊕ (M1 → 0 ← 0) ⊕ (0 → 0 ← M2). As S is

indecomposable and S 6= PS, we get that S = (N1 → S̄ ← N2). We will see that

Si (= Ni) is indecomposable. Then there are positive integers u, v and w such that

Pu
1 S1 = 0, P v

2 S2 = 0 and PwS = 0. Choose s ∈ S1 ∪ S2 with s̄ 6= 0 and let o(s)

denote the least positive integer k such that P ks = 0 if there is such k and if no such

k o(s) = ∞ and o(s) minimal among such s. Assume s ∈ S2, and so write s = s2

and m = k = o(s2). Now pick s1 ∈ S1 with s̄1 = s̄2 = s̄ and o(s1) = n minimal

(so o(s2) 6= ∞ and o(s1) 6= ∞). There exists a s = (s1, s2) such that o(s) = n1,

o(s1) = m2 and o(s2) = k1. Then Risi is pure in Si for i = 1, 2 (see [10, Theorem

2.9]). Therefore, R1s1 ∼= R1/P
m2
1 (resp. R2s2 ∼= R2/P

k1
2 ) is a direct summand of

S1 (resp. S2) since for each i, Risi is pure-injective. Let M̄ be the R̄-subspace of

S̄ generated by s̄. Then M̄ ∼= R̄. Let M = (R1s1 = M1 → M̄ ← M2 = R2s2).

Then M is an R-submodule of S which is 2-absorbing comultiplication by Lemma
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3.5 and is a direct summand of S; this implies that S = M , and S is as in (iii) in

the list of Lemma 3.5 (see [10, Theorem 2.9]). �

Corollary 3.7. Let R be the pullback ring as in (1).

(i) Every separated 2-absorbing comultiplication R-module S is of the form

S = M ⊕N , where M is a direct sum of copies of the modules as in (iii),

and N is a direct sum of copies of the modules as in (i)-(ii) of Lemma 3.5.

(ii) Every separated 2-absorbing comultiplication R-module is pure-injective.

Proof. Apply Theorem 3.6 and [10, Theorem 2.9]. �

4. The non-separated absorbing comultiplication modules

We continue to use the notation already established, so R is a pullback ring

as in (1). In this section we find the indecomposable non-separated 2-absorbing

comultiplication modules with finite-dimensional top. It turns out that each can

be obtained by amalgamating finitely many separated indecomposable 2-absorbing

comultiplication modules. We need the following lemma proved in [17, Proposition

4.1].

Lemma 4.1. Let R be a pullback ring as in (1).

(i) E(R/P ) is an indecomposable non-separated 2-absorbing comultiplication

R-module.

(ii) If 0→ K → S →M → 0 is a separated representation of an R-module M ,

then abSpecR(S) = ∅ if and only if abSpecR(M) = ∅.

Lemma 4.2. Let R be a pullback ring as in (1) and let 0→ K → S →M → 0 be

a separated representation of an R-module M .

(i) If (0 :R S) = Pm
1 ⊕ 0 for some positive integer m, then M is separated.

(ii) If (0 :R S) = 0⊕ Pm
2 for some positive integer m, then M is separated.

(iii) (ii) If (0 :R S) = 0, then M is separated.

Proof. (i) Suppose that (0 :R S) = Pm
1 ⊕ 0. As Pm

1 ⊕ 0 ⊆ ((0 ⊕ P2)S :R S) and

0⊕ P2 ⊆ ((0⊕ P2) :R S), we find that Pm
1 ⊕ P2 ⊆ ((0⊕ P2) :R S). It then follows

from [14, Proposition 4.3] that K ⊆ PmS ⊆ (Pm
1 ⊕P2)S ⊆ (0⊕P2)S; hence K = 0

since K ∩ (0⊕ P2)S = 0. Thus M is separated. The proof of (ii) is similar.

(iii) An inspection will show that (0 :R M) = 0. It follows that (P1 ⊕ 0)M 6= 0

and (0 ⊕ P2)M 6= 0. Let m ∈ (P1 ⊕ 0)M ∩ (0 ⊕ P2)M . If m = 0, we are done.

So suppose that m 6= 0. Since ϕ−1(Rm) = ϕ−1(ϕ(Rx) = Rx and Rm 6= 0, 0 →
K → Rx→ Rm→ 0 is a separated representation of Rm with K ⊆ P (Rx) by [12,
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Lemma 3.1]. By hypothesis, there exist m1,m2 ∈M and x ∈ S such that m = ϕ(x)

and m = (ps1, 0)m1 = (0, pt2)m2 for some integers s, t. Then (p1, 0)m = 0 = (0, p2)m

gives Pm = 0, and so ϕ(Px) = 0; hence ϕ(P1x) = ϕ(P2x) = 0. Since ϕ is one-

to-one on PiS for each i, we get that Px = 0; so K ⊆ P (Rx) = 0. Thus M is a

separated R-module. �

Proposition 4.3. Let R be a pullback ring as in (1) and let M be a 2-absorbing

comultiplication non-separated R-module. Let 0→ K → S →M → 0 be a separated

representation of M . If N is a non-zero R-submodule of M , then M/N is a 2-

absorbing comultiplication R-module.

Proof. Let L/N be a 2-absorbing submodule of M/N . Then L is a 2-absorbing

submodule of M by Lemma 2.2 (i), so L = (0 :M ann(L)). Since ann(M) ⊆
ann(L) 6= 0 and M is a non-separated R-module, Lemma 4.2 gives ann(L) =

Pn
1 ⊕ Pm

2 for some positive integers m,n (note that if ann(M) = 0, then ann(S) ⊆
(K :R S) = ann(M) = 0). We show that L/N = (0 :M/N (Pn

1 ⊕ Pm
2 )). Let

x+N ∈ L/N . Then (Pn
1 ⊕Pm

2 )x = 0 gives (Pn
1 ⊕Pm

2 )(x+N) = 0; so x+N ∈ (0 :M/N

(Pn
1 ⊕ Pm

2 )). For the reverse inclusion, assume that y +N ∈ (0 :M/N (Pn
1 ⊕ Pm

2 )).

Then (Pn
1 ⊕ Pm

2 )y ⊆ N ⊆ L. We claim that (Pn
1 ⊕ Pm

2 )y = 0. Assume to the

contrary, 0 6= (Pn
1 ⊕ Pm

2 )y ⊆ L. Then (P 2n
1 ⊕ P 2m

2 )y = 0. Let s be the least

positive integer such that P sy = 0 (so P s−1y 6= 0). There exists x ∈ S such that

y = ϕ(x) and ϕ(P sx) = 0; so ϕ(P s
1x) = ϕ(P s

2x) = 0. By [26, Proposition 2.3],

ϕ is one-to-one on PiS for each i, we find that P s
2x = P s

1x = 0; hence P sx = 0.

Set U = P s−1y. Then 0 → K → ϕ−1(U) = P s−1x → U → 0 is a separated

representation of U by [12, Lemma 3.1] such that K ⊆ P (P s−1x) = 0 which is a

contradiction. Thus (Pn
1 ⊕ Pm

2 )y = 0, and so we have equality. �

Theorem 4.4. Let R be a pullback ring as in (1) and let M be any non-separated

R-module. Let 0→ K → S →M → 0 be a separated representation of M . Then S

is 2-absorbing comultiplication if and only if M is 2-absorbing comultiplication.

Proof. By Lemma 4.1 (ii), we may assume that abSpec(S) 6= ∅. Suppose that M

is a 2-absorbing comultiplication R-module and let T be a non-zero 2-absorbing

submodule of S. Then by [14, Proposition 4.3], K ⊆ T , and so T/K is a 2-

absorbing submodule of S/K ∼= M by Lemma 2.2(i). Since S/K ∼= M is 2-absorbing

comultiplication, we have T/K = (0 :S/K Pn
1 ⊕ Pm

2 ) for some integer m,n. By an

argument like that in [14, Theorem 4.4], we find that T = (0 :S Pn
1 ⊕ Pm

2 ), and

so S is 2-absorbing comultiplication. Conversely, assume that S is a 2-absorbing

comultiplication R-module. Then M ∼= S/K is a 2-absorbing comultiplication R-

module by Proposition 4.3. �
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Proposition 4.5. Let R be a pullback ring as in (1), and let M be an indecom-

posable 2-absorbing comultiplication non-separated R-module with M/PM finite-

dimensional top over R̄. If 0→ K → S →M → 0 is a separated representation of

M , then S has finite-dimensional top and is pure-injective.

Proof. Since S/PS ∼= M/PM by [10, Proposition 2.6 (i)], we find that S has

finite-dimensional top. Now the assertion follows from Theorem 4.4 and Corollary

3.7. �

Let R be a pullback ring as in (1) and let M be an indecomposable 2-absorbing

comultiplication non-separated R-module with M/PM finite-dimensional over R̄.

Consider the separated representation 0 → K → S → M → 0. By Proposition

4.3, S is pure-injective. So in the proofs of [10, Lemma 3.1, Proposition 3.2 and

Proposition 3.4] (here the pure-injectivity of M implies the pure-injectivity of S by

[10, Proposition 2.6 (ii)]) we can replace the statement “M is an indecomposable

pure-injective non-separated R-module” by “M is an indecomposable 2-absorbing

comultiplication non-separated R-module”: because the main key in those results

are the pure-injectivity of S, the indecomposability and the non-separability of M .

So we have the following result:

Corollary 4.6. Let R be a pullback ring as in (1) and let M be an indecomposable 2-

absorbing comultiplication non-separated R-module with M/PM finite-dimensional

over R̄, and let 0 → K → S → M → 0 be a separated representation of M . Then

the following hold:

(i) The quotient fields Q(R1) and Q(R2) of R1 and R2 do not occur among

the direct summands of S.

(ii) S is a direct sum of finitely many indecomposable 2-absorbing comultiplica-

tion modules.

(iii) At most two copies of modules of infinite length can occur among the inde-

composable summands of S.

Before embarking on the proof of the next result let us explain its idea. Let R be

a pullback ring as in (1). Let M be any R-module and let 0→ K → S →M → 0 be

a separated representation of M . We have already shown that if M is indecompos-

able 2-absorbing comultiplication with M finite-dimensional top then S is a direct

sum of just finitely many indecomposable separated 2-absorbing comultiplication

modules and these are known by Theorem 3.6. In any separated representation

0→ K
i−→ S

ϕ−→M → 0 the kernel of the map ϕ to M is annihilated by P , hence
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is contained in the socle of the separated module S. Thus M is obtained by amalga-

mation in the socles of the various direct summands of S. This explains Corollary

4.6 (i): the modules Q(R1) and Q(R2) have zero socle and so cannot be amalga-

mated with any other direct summands of S and hence cannot occur in a separated

(hence “minimal”) representation. So the questions are: does this provide any fur-

ther condition on the possible direct summands of S? How can these summands be

amalgamated in order to form M? For the case of finitely generated R-modules M

these questions are answered by Levy’s description [25], see also [26, Section 11].

Levy shows that the indecomposable finitely generated R-modules are of two non-

overlapping types which he calls deleted cycle and block cycle types. It is the mod-

ules of deleted cycle type which are most relevant to us. Such a module is obtained

from a direct summand, S, of indecomposable separated modules by amalgamating

the direct summands of S in pairs to form a chain but leaving the two ends unamal-

gamated. Reflecting the fact that the dimension over R̄ of the socle of any finitely

generated indecomposable separated module is ≤ 2 each indecomposable summand

of S may be amalgamated with at most two other indecomposable summands. Con-

sider the indecomposable separated R-modules S(n,m) = (R1/P
n
1 → R̄← R2/P

m
2 )

with n,m ≥ 2 (it is generated over R by (1 + Pn
1 , 1 + Pm

2 )). Actually, separated

indecomposable R-modules also include R1/P
n
1 for n ≥ 2, which can be regarded

up to isomorphism as S(n, 1) = (R1/P
n
1 → R̄ ← R2/P2). Similarly, for m ≥ 2,

S(1,m) = (R1/P1 → R̄ ← R2/P
m
2 ) is a separated indecomposable R-module.

Moreover, R1, R2 and R themselves can be viewed as separated indecomposable

R-modules, corresponding to the cases n = ∞ and m = 1, n = 1 and m = ∞,

n = m = ∞. Deleted cycle indecomposable R-modules are introduced as follows:

Let S be a direct sum of finitely many modules S(i) = S(ni,1, ni,2) (with i < s a

non-negative integer). Here ni,j ≥ 2 for every j < s and j = 1, 2, with two possible

exceptions i = 0, j = 1 and i = s − 1 and j = 2, where the values ni,j = 1 or

∞ are allowed. Then amalgamate the direct summands in S by identifying the

P2-part of the socle of S(i) and the P1-part of the socle S(i+ 1) for every i < s−1.

For instance, given the separated modules S1 = (R1 → R̄ ← R2/P
3
2 ) = Ra with

P 3
2 a = 0 and S2 = (R1/P

7
1 → R̄ ← R2/P

2
2 ) = Ra′ with P 7

1 a
′ = 0 = P 2

2 a
′. Then

one can form the non-separated module (S1 ⊕ S2)/(R(p22a − p61a
′) = Rc + Rc′

where c = a + R(p22a − p61a
′), c′ = a′ + R(p22a − p61a

′), P 3
2 c = 0 = P 7

1 c
′ = P 2

2 c

and P 2
2 c = P 6

1 c
′ which is obtained by identifying the P2-part of the socle of S1

with the P1-part of the socle of S2. We will use that same description, but with 2-

absorbing comultiplication separated modules in place of the finitely generated ones,

gives us the non-zero indecomposable 2-absorbing comultiplication non-separated
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R-modules. As a consequence, any non-zero indecomposable 2-absorbing comulti-

plication separated module with 1-dimensional socle may occur only at one of the

ends of the amalgamation chain (see [10, Proposition 3.4]). It remains to show

that the modules obtained by these amalgamations are, indeed, indecomposable

2-absorbing comultiplication. We do that now and thus complete the classification

of the indecomposable 2-absorbing comultiplication non-separated modules with

finite-dimensional top.

Theorem 4.7. Let R = (R1 → R̄ ← R2) be the pullback of two discrete valua-

tion domains R1, R2 with common factor field R̄. Then the indecomposable non-

separated 2-absorbing comultiplication modules with finite-dimensional top, up to

isomorphism, are the following:

(i) M = E(R/P ), the injective hull of R/P ;

(ii) The indecomposable modules of finite length (apart from R/P which is sep-

arated), that is, M =
∑s

i=1Rai with

pns
1 as = 0 = pm1

2 a1, p
ni−1
1 ai = p

mi+1−1
2 ai+1(1 ≤ i ≤ s− 1)

mi, ni ≥ 2 except for m1 ≥ 1, ns ≥ 1.

(iii) M = E1 +
∑s

i=1Rai + E2 with

a0 = pm1−1
2 a1, b0 = pns−1

1 as, p1a0 = 0 = p2b0,

and pni−1
1 ai = p

mi+1−1
2 ai+1 for all 1 ≤ i ≤ s − 1, where E1

∼= E(Ra0) ∼=
E(R1/P1), E2

∼= E(Rb0) ∼= E(R2/P2) and mi, ni ≥ 2 except for m1 ≥ 1,

ns ≥ 1.

(iv) M = E1 +
∑s

i=1Rai with

pns
1 as = 0, a0 = pm1−1

2 a1, p1a0 = 0,

and pni−1
1 ai = p

mi+1−1
2 ai+1 for all 1 ≤ i ≤ s − 1, where E1

∼= E(Ra0) ∼=
E(R1/P1), and mi, ni ≥ 2 except for ns ≥ 1,

(v) M =
∑s

i=1Rai + E2 with

pms
2 as = 0, b0 = pn1−1

1 a1, p2b0 = 0,

and pmi−1
2 ai = p

ni+1−1
1 ai+1 for all 1 ≤ i ≤ s − 1, where E2

∼= E(Rb0) ∼=
E(R2/P2), and mi, ni ≥ 2 except for ms ≥ 1.
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Proof. Let M be an indecomposable non-separated 2-absorbing comultiplication

R-module with finite-dimensional top and let 0→ K
i−→ S

ϕ−→M → 0 be a sepa-

rated representation of M . By Corollary 4.6 (iii), S is a direct sum of finitely many

indecomposable 2-absorbing comultiplication separated modules. We know already

that every indecomposable 2-absorbing comultiplication non-separated module has

one of these forms so it remains to show that the modules obtained by these amal-

gamation are, indeed, indecomposable 2-absorbing comultiplication modules. (i)

follows from Lemma 4.1 (i). Since a quotient of any 2-absorbing comultiplication

R-module is 2-absorbing comultiplication by Proposition 4.3, they are 2-absorbing

comultiplication. The indecomposability follows from [25, 1.9] and [10, Theorem

3.5]. �

Remark 4.8. (i) Let R be the pullback ring described in Theorem 4.7. Then

by [10, Theorem 3.5] and Theorem 4.7, every indecomposable 2-absorbing

comultiplication R-module with finite-dimensional top is pure-injective.

(ii) This paper includes the classification of indecomposable 2-absorbing comul-

tiplication modules with finite-dimensional top over k-algebra k[x, y : xy =

0](x,y).
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