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Abstract. In this paper, a weighted algorithm based on the reduced differential transform method is presented for
solving some sideways parabolic equations. The proposed approach uses initial and boundary conditions simulta-
neously for obtaining an approximate analytical solution of equation. A description of the algorithm to solve the
problem and determining the boundary condition is given. Finally, some examples are discussed to show ability of
the presented algorithm and to confirm utility of this method.
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1. Introduction

Convection-diffusion equations occur in various fields of applications. Mathematical models of many natural phe-
nomena are presented by using this type of equations for example processes in fluid mechanics, astrophysics, meteo-
rology, multiphase flow in oil reservoirs, polymer flow, financial modeling, and several other areas [1, 9, 11, 13]. Thus,
computing solutions of these equations is very important. Researchers in literature have used different methods for
solving this type of equations [1, 4, 9, 11, 13, 16].

In many industrial applications, the temperature on one side of a thick wall is determined, but the other side is
inaccessible to measurements [5, 8]. In a one-dimensional case, this problem leads to the following parabolic equation
[12]

ut = a(x)uxx + b(x)ux + g(x, t) 0 < x < L, 0 < t < T, (1.1)
with the conditions

u(x, 0) = f (x), 0 ≤ x ≤ L, (1.2)
u(0, t) = φ(t), 0 ≤ t ≤ T, (1.3)
ux(0, t) = ψ(t), 0 ≤ t ≤ T, (1.4)

where a(x), b(x), f (x), φ(t), ψ(t) and g(x, t) are given functions. The boundary function ϕ(t), the solution at x = L, is
unknown.
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For example the above problem is a simple model of the heat transfer inside a thermocouple of a suction pyrometer.
The suction pyrometer [7], is used for controlling and measuring the gas temperature in a combustion chamber. In this
case, equation (1.1) is called the sideways heat equation. The problem (1.1)- (1.4) is a type of inverse problems belongs
to the class of parabolic equations. These type of problems have been investigated by researchers in many scientific
works [6, 7, 10, 12, 17, 19, 20].

In this work, we present the weighted reduced differential transform method (WRDTM) to solve the Cauchy problem
(1.1)-(1.4). The reduced differential transform method (RDTM) has been used by many authors to obtain analytical
and approximate solutions to nonlinear problems [2,3,14,15,21]. Here we introduce an algorithm based on the RDTM
to solve the inverse problems of (1.1)-(1.4) types. The differential transformation method which has been applied in
most of literature, is started by the initial condition. But for our purposes, we use the initial and boundary conditions.
The problem is solved twice. at first by initial condition, then by boundary conditions. A weighted combination of two
solutions is considered for final solution of the problem.

The arrangement of this paper is in the following plan: Section 2 is a review of the RDTM. In Section 3, a weighted
algorithm is introduced. Finally, in Section 4, some test problems are solved in order to show the ability and efficiency
of the algorithm.

2. Reduced Differential TransformMethod

In present section, the definitions and operations of RDTM will be reviewed. Suppose that a two variables function
u(x, t) is separable as u(x, t) = p(x)q(t). We can represent this function as

u(x, t) =

∞∑
i=0

Pixi
∞∑
j=0

Q jt j =

∞∑
r=0

Ur(x)tr =

∞∑
r=0

Vr(t)xr,

according to the features of differential transform [21] where Ur(x) and Vr(t) are called t-dimensional and x-dimensional
spectrum functions of u(x, t), respectively.

Definition 2.1. Suppose u(x, t) is analytic and differentiated continuosly with respect to x and t in their domains. Then
i) The transformed function Ur(x) is defined as

Ur(x) =
1
r!

[
∂r

∂tr u(x, t)
]

t=0
. (2.1)

Also, its inverse differential transformation of will be as

u(x, t) =

∞∑
r=0

Ur(x)tr. (2.2)

ii) The transformed function Vr(t) is defined as

Vr(t) =
1
r!

[
∂r

∂xr u(x, t)
]

x=0
.

The inverse differential transformation of Vr(t) will be as

u(x, t) =

∞∑
r=0

Vr(t)xr.

The main operations of the reduced differential transformation, according to the variable t, are listed in Table 1, that
can be deduced from Eqs. (2.1) and (2.2) [2, 14]. These operations can be obtained similarly for reduced differential
transforms according to the variable x.

3. TheWRDTM Solution

Now, a weighted method according to the RDTM (WRDTM) will be presenteded to solve (1.2)-(1.4). We perform
the algorithm in two steps. At the first step, consider (1.1) and suppose L = ∂

∂t . By applying basic properties of
differential transformations and Table 1, the differential transformation of (1.1) with the condition (1.2) becomes

(r + 1)Ur+1(x) = a(x)
∂2

∂x2 Ur(x) + b(x)
∂

∂x
Ur(x) + Gr(x), (3.1)
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Table 1. Some operations of the reduced differential transform.

Function Form Transformed Form
u(x, t) Ur(x) = 1

r!

[
∂r

∂tr u(x, t)
]
t=0

u(x, t) = d (d is a constant) Ur(x) = δ(r) =
{
1 r=0
0 r,0

u(x, t) = v(x, t) + w(x, t) Ur(x) = Vr(x) + Wr(x)
u(x, t) = cv(x, t) Ur(x) = cVr(x) (c is a constant)

u(x, t) = xmv(x, t) Ur(x) = xmVr

u(x, t) = tmv(x, t) Ur(x) = Vr−m

u(x, t) = xmtn Ur(x) = xmδ(r − n) =
{

xm r=n
0 r,n

u(x, t) = ∂m

∂tm v(x, t) Ur(x) =
(r+m)!

r! Vr+m(x)
u(x, t) = ∂m

∂xm v(x, t) Ur(x) = ∂m

∂xm Vr(x)

where Gr(x) is the transformation of g(x, t). By substituting of the U0(x) = f (x) as differential transformation of (1.2)
into (3.1), the approximate solution

ûn(x, t) =

n∑
r=0

Ur(x)tr. (3.2)

will be obtained.
At the second step, we seek the series solution of the Eq. (1.1) according to conditions (1.3) and (1.4). Suppose

L = ∂2

∂x2 . Taking the differential transformation of (1.1) and applying basic properties of differential transformation in
Table 1 with respect to x, we get

∂

∂t
Vr(t) = (r + 1)(r + 2)Vl(t) + (r + 1)Vm(t) + Gr(t), (3.3)

where l and m are natural numbers related to r. From the boundary conditions (1.3) and (1.4), we have

V0(t) = φ(t), (3.4)

and
V1(t) = ψ(t). (3.5)

Substituting (3.4) and (3.5) into (3.3), we can get the successive values of Vr(t). In result, the series solution

ǔn(x, t) =

n∑
r=0

Vr(t)xr (3.6)

will be obtained.
Now, the approximate solution for the sideways heat equation (1.1) with conditions (1.2), (1.3) and (1.4) will be

considered as a weighted combination

un(x, t) = cûn(x, t) + (1 − c)ǔn(x, t), (3.7)

where c is a constant on the interval [0, 1]. For determining the best value of c for each n, we use the idea presented
in [18].

Theorem 3.1. Suppose that f (x) ∈ L2[(0, L)], φ(t), ψ(t) ∈ L2[(0,T )] and ‖.‖ denotes the L2 − norm. Let

c1 = ‖ûn(0, t) − φ(t)‖,

c2 = ‖
∂ûn

∂x
(0, t) − ψ(t)‖,

c3 = ‖ǔn(x, 0) − f (x)‖.

Then the best value for c in (3.7) is

c =
c2

3

c2
1 + c2

2 + c2
3

, n ≥ 0.
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Proof. According to conditions (1.2)-(1.4), we define the following residual function for 0 ≤ x ≤ L and 0 ≤ t ≤ T as

Fn(x, t; c) = ‖un(0, t) − φ(t)‖ + ‖
∂un

∂x
(1, t) − ψ(t)‖ + ‖un(x, 0) − f (x)‖. (3.8)

Substituting (3.7) into (3.8), we have

Fn(x, t; c) = ‖cûn(0, t) + (1 − c)ǔn(0, t) − φ(t)‖2

+ ‖c
∂ûn

∂x
(1, t) + (1 − c)

∂ǔn

∂x
(1, t) − ψ(t)‖2

+ ‖cûn(x, 0) + (1 − c)ǔn(x, 0) − f (x)‖2.

From (3.2), (3.6) and (3.7), we get

Fn(x, t; c) = ‖cûn(0, t) + (1 − c)φ(t) − φ(t)‖2 + ‖c
∂ûn

∂x
(1, t) + (1 − c)ψ(t) − ψ(t)‖2

+ ‖c f (x) + (1 − c)ǔn(x, 0) − f (x)‖2

= ‖cûn(0, t) − cφ(t)‖2 + ‖c
∂ûn

∂x
(1, t) − cψ(t)‖2

+ ‖(1 − c)ǔn(x, 0) − (1 − c) f (x)‖2 = c2c2
1 + c2c2

2 + (1 − c)2c2
3.

The best value of c will minimize the residual function Fn. Thus, by setting the partial derivative of Fn with respect to
c equal to zero, we find

c =
c2

3

c2
1 + c2

2 + c2
3

, n ≥ 0.

�

For evaluating the unknown boundary condition ϕ(t) on x = 1, the approximate solution (3.7) will be used.

4. Illustrative Examples

To show the applicability of the WRDTM, some examples will be presented. We use n terms in evaluating the
approximate solution un(x, t).

Example 4.1. Let us consider a(x) = 1, b(x) = −x, g(x, t) = −e−x(1 + x), f (x) = e−x + x, φ(t) = 1 and ψ(t) = −1 + e−t

on Q ≡ {(x, t)|(x, t) ∈ [0, 1] × [0, 1]}. With these assumptions, the problem (1)–(4) has the solution u(x, t) = e−x + xe−t

and ϕ(t) = e−t + 1
e . Using the properties of the differential transformation with respect to t, we can write

(r + 1)Ur+1(x) =
∂2

∂x2 Ur(x) − x
∂

∂x
Ur(x) − e−x(1 + x),

or

Ur(x) =
1
r
∂2

∂x2 Ur−1(x) − x
∂

∂x
Ur−1(x) − e−x(1 + x).

By substituding of U0(x) = e−x + x as transformation of the initial condition according to mathematical induction, we
find

Ur(x) =
(−1)r x

r!
, r ≥ 1.

The inverse differential transform of Ur(x) gives:

ûn(x, t) =

n∑
r=0

Ur(x)tr

=e−x + x − xt +
xt2

2
−

xt3

6
+

xt4

24
+ · · · +

(−1)nxtn

n!
.
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In other sides, for m ≥ 5, c = 1, therefore, from (3.7) the solution is obtained as

u(x, t) = lim
n→+∞

ûn(x, t) =

∞∑
r=0

(−1)r x
r!

tr = e−x + xe−t.

Finally, by using this solution, the unknown boundary condition at x = 1 will be get as u(1, t) = ϕ(t) = e−t + 1
e .

Example 4.2. Consider the problem

∂u
∂t

=
∂2u
∂x2 −

∂u
∂x
, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1 (4.1)

u(x, 0) = ex − x, 0 ≤ x ≤ 1,
u(0, t) = 1 + t, 0 ≤ t ≤ 1,
ux(0, t) = 0, 0 ≤ t ≤ 1.

The exact solution of this problem is [18]:
u(x, t) = ex − x + t.

To apply WRDTM, taking the differential transform of (4.1), gives

Ur+1(x) =
1

r + 1

( ∂2

∂x2 Ur(x) −
∂

∂x
Ur(x)

)
. (4.2)

By substituding of U0(x) = ex − x into (4.2), it is find that,

U1(x) = 1,

and
Ur(x) = 0, r ≥ 2.

Therefore, we obtain

ûn(x, t) =

n∑
r=0

Ur(x)tr = ex − x + t.

Now, we take differential transformation of (4.1) with respect to x, i.e.

Ur+2(t) =
1

(r + 1)(r + 2)

( ∂
∂t

Ur(t) + (r + 1)Ur+1(t)
)
. (4.3)

Substituding of U0(t) = 1 + t and U1(t) = 0 into (4.3) gives

Ur(t) =
1
r!
, r ≥ 2.

Then

ǔn(x, t) = 1 + t + x2

2 + x3

6 + x4

24 + · · · + xr

r!

For m ≥ 10 we get c = 0, Thus we have

u(x, t) = lim
n→+∞

ǔn(x, t) = ex − x + t.

In result, by using this solution, we get ϕ(t) = t + e − 1.

Example 4.3. Let us consider the problem (1)–(4) with a(x) = 1, b(x) = 2, g(x, t) = x, f (x) = e−x cos(x) + 0.125e−2x +

0.25x(1− x)− 1, φ(t) = e−2t − 0.875 and ψ(t) = −e−2t on Q = {(x, t)|(x, t) ∈ [0, 1]× [0, 5]}. With these assumptions, this
problem has the exact solution u(x, t) = e−2t−x cos(x)+0.125e−2x + ( x

4 )(1− x)−1 and ϕ(t) = cos(1)e−2t−1 +0.125e−2−1.
With respect to t, the differential transformation of Eq. (1.1) becomes

Ur+1(x) =
1

r + 1

( ∂2

∂x2 Ur(x) + 2
∂

∂x
Ur(x) + δ(r).x

)
, (4.4)

where δ(r) is the Dirac delta function.
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Substituting of U0(x) = e−x cos(x) + 0.125e−2x + 0.25x(1 − x) − 1 into (4.4) gives

U1(x) = −2e−xcos(x),
U2(x) = 2e−xcos(x),

U3(x) = −
4
3

e−xcos(x),

U4(x) =
2
3

e−xcos(x),

....

Now, we take the differential transformation of the Eq. (1.1) with respect to x. Again we apply the properties of
differential transformation in Table 1 and obtain

∂

∂t
Ur(t) = (r + 1)(r + 2)Ur+2(t) + 2(r + 1)Ur+1(t) + δ(r − 1),

or

Ur(t) =
1

r(r − 1)
( ∂
∂t

Ur−2(t) − 2(r − 1)Ur−1(t) − δ(r − 3)
)
. (4.5)

After substituting U0(t) = e−2t − 0.875 and U1(t) = −e−2t as transformation of boundary conditons (1.3) and (1.4), into
(4.5), we obtain the next terms as

U2(t) = 0,

U3(t) =
1
6

(−1 + 2e−2t),

U4(t) =
1

12
(1 − 2e−2t),

U5(t) =
1

30
(−1 + 2e−2t),

U6(t) =
1

90
,U7(t) =

1
630

(−2 − e−2t),

....

Therefore, the series solution can be obtained by (3.2).
The relative error of the approximate solutions at t = 2.5 for different values of n are given in Table 2.

Table 2. The relative error for Example 4.3 when t = 2.5.

x n = 10 n = 15 n = 20 n = 25 n = 30
0.1 5.2963E − 3 4.8109E − 5 6.1769E − 8 2.0888E − 9 3.3379E − 10
0.2 4.7110E − 3 4.2793E − 5 5.4943E − 8 1.8580E − 9 2.9323E − 11
0.3 4.1394E − 3 3.7599E − 5 4.8276E − 8 1.6325E − 9 2.5846E − 11
0.4 3.5883E − 3 3.2594E − 5 4.1849E − 8 1.4151E − 9 2.2515E − 11
0.5 3.0648E − 3 2.7839E − 5 3.5744E − 8 1.2087E − 9 1.9105E − 11
0.6 2.5751E − 3 2.3391E − 5 3.0032E − 8 1.0156E − 9 1.6258E − 11
0.7 2.1244E − 3 1.9296E − 5 2.4774E − 8 8.3775E − 10 1.3166E − 12
0.8 1.7166E − 3 1.5588E − 5 2.0014E − 8 6.7677E − 10 1.0880E − 12
0.9 1.3546E − 3 1.2288E − 5 1.5778E − 8 5.3351E − 10 8.4853E − 12

Now, the approximate solution and its accuracy is given for a value of n with more detail. For example, Suppose
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Figure 1. The exact solution (Black) and the approximate solutions (Orange) of Example 4.3 with n = 25 for
various values of t and x.

n = 25. So, we will have

û25(x, t) =

25∑
r=0

Ur(x)tr

= −1 + 0.125e−2x + 0.25x(1 − x)

+ e−xcos(x)
(
1 − 2t + 2t2 − 1.33333t3 + · · ·

+ 2.70405 × 10−17t24 − 2.16324 × 10−18t25),
and

ǔ25(x, t) =

25∑
r=0

Ur(x)xr

= −0.875 + e−2t − e−2t x +
−1 + 2e−2t

6
x3

+
1 − 2e−2t

12
x4 + · · · +

512 + e−2t

6.6 × 1021 x24 −
1024 + e−2t

2.64 × 1022 x25.

According to Theorem 3.1, we get c = 0.2054. Now, the approximate solution will be obtained by (3.7). The exact
solution of problem and its approximations are shown in Figure 1, for various values of t and x. Exact boundary
function at x = 1 and its approximation are shown in Figure 2. Finally Figure 3 exhibits the error function of the
approximate solution for domain Q.

5. Conclusion

In this work, a Cauchy problem of a sideways parabolic equation was considered. In this problem one of boundary
conditions was unknown. By using the RDTM, a weighted algorithm was introduced to determine the solution of the
sideways equation and the unkonwn boundray condition. To show the capability and reliability of the method, some
numerical test examples were presented in the last section. The results verify that the WRDTM is an efficient technique
to solve such problems.
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Figure 2. The exact boundary condition (Black) and its approximation (Red) for Example 4.3.

Figure 3. The error function of the approximate solution for Example 4.3.
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