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ABSTRACT.  Using the six parameters truncated Mittag-Leffler function, we introduce a convenient truncated
function to define the so-called truncated “V-fractional derivative type. In this sense, we propose the derivative
of a vector valued function and define the “V-fractional Jacobian matrix whose properties allow us to say that:
the multivariable truncated V-fractional derivative type, as proposed here, generalizes the truncated V-fractional
derivative type and can be extended to obtain a truncated “V-fractional partial derivative type. As applications, we
discuss and prove the order change associated with two indexes of two truncated “V-fractional partial derivative type
and propose the truncated V-fractional Green theorem. Finally, we obtain the analytical solution of the “V-fractional
heat equation and present a graphical analysis.
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1. INTRODUCTION

Recently, Sousa and Oliveira [10] introduced the truncated V-fractional derivative in the domain R, satisfying
classical properties of the integer-order calculus, having as special property, to unify five other formulations of local
fractional derivatives of which we mention the derivatives: conformable fractional, alternative fractional, truncated
alternative fractional, M-fractional and truncated M-fractional [5,6,9, 11].

In 2015, Atangana et al. [1],performed a work approaching new properties of the conformable fractional derivative,
being the domain of the functions considered in R*. In 2017, Goziitok and Goziitok [4] introduced the multivariable
conformable fractional calculus, presenting interesting results found in R”. However, such a result is restricted only to
the conformable fractional derivative. In this sense, we extend our definition of the truncated “V-fractional derivative to
the R" [10], since such a derivative formulation unifies the remaining five. We denote this new differential operator by
v V%ZZ(Z)’ z € R", to differentiate from the operator (Vf,”ZZZ(Z), 7 € R, where the parameter a, associated with the order
of the derivative is such that 0 < a < 1, where y,8,p,6 € C and p,q > 0 such that Re (y) > 0, Re (8) > 0, Re (p) > O,
Re(8) >0and Re(y) + p = g.

The article is organized as follows: in section 2, we present the truncated V-fractional derivative by means of the
truncated six parameters Mittag-Leffler function. Also, three theorems have been introduced that address linearity,
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product, divisibility, continuity, and the a-differentiable chain rule. In section 3, we introduce our main result, the
multivariable truncated V-fractional derivative as well as results that justifies its continuity and uniqueness. In this
sense, we introduce the V-fractional Jacobian matrix and introduce and prove two theorems dealing with: chain rule,
linearity and the product of functions through the a-differentiable operator. In section 4, we present the concept of
“V-fractional partial derivative and discuss two applications i.e., a theorem associated with the commutativity of two
truncated V-fractional derivatives and V-fractional Green’s theorem. Finally, we obtain the analytical solution of the
“V-fractional heat equation and present a graphical analysis. Concluding remarks close the article.

2. PRELIMINARIES

We will present the definition of the truncated “V-fractional derivative through the truncated six parameters Mittag-
Leffler function and the gamma function. In this sense, we will present theorems that relate to the continuity and
linearity, product, divisibility, as well as the chain rule.

Then, we begin with the definition of the six parameters truncated Mittag-LefHler function given by [10],

(R
0,0,9 q
By @ = Z(é),,kwmﬁ) @1

being y,B,p,6 € C and p,q > 0 such that Re (y) > 0, Re (B) > 0, Re (p) > 0, Re (6) > 0, Re (y) + p = g and (0) k, (0)
given by

I'(p + gk)
) 2.2
(p)qk F (p) ( )
a generalization of the Pochhammer symbol and I'(-) is the function gamma.
From Eq. (2.1), we introduce the following truncated function, denoted by iHi:Z’,Z(Z)’ by means of
g 2
HY () =T (B) B (1) =T ‘ 2.3
el @ =T @) By ) (ﬁ)Z(é)kpr(ykw) 2.3)

In order to simplify notation, in this work, if the truncated V-fractional derivative of order «, according to Eq. (2.4)
below, of a function f exists, we simply say that the f function is a-differentiable.

So, we start with the following definition, which is a generalization of the usual definition of a derivative presented
as a particular limit.

Definition 2.1. Let f : [0,0) — R. For 0 < @ < 1 the truncated V-fractional derivative of f of order a, denoted by

p(V%fy( ), is defined as

6 -
p(V(Squ(t):limf( iHy s € ))—f(t)’

o - (2.4)

for Vt > 0, ,Hpgq (+) is a truncated function as defined in Eq. (2.3) and being y,5,p0,6 € C and p,g > 0 such that
Re(y) > 0, Re(B) > 0, Re (p) > 0, Re (6) > 0, Re (y) + p = q and (6) , (p) 4 given by Eq. (2.2) [10].

Theorem 2.2. [10] If the function f : [0,0) — R is a-differentiable for ty > 0, with 0 < a < 1, then f is continuous
in t.

Theorem 2.3. Let 0 < @ < 1, a,b € R, y,B8,p,0 € C and p,q > 0 such that Re(y) > 0, Re(8) > 0, Re(p) > 0,
Re (6) > 0, Re (y) + p = q and f, g a-differentiable, fort > 0. Then,

0 p(vﬁ,p,q (af +bg) (1) = ap(v‘”’qf(t) + bp‘Vépqg(t)

8. Y. yBa
@) fVIRI(f -9 () = F D) FVIRde (D) + g () FVIRA £ (1)
) FVIRLF () = f (1) £VOR g (1)
@ 1viga (£ = e L et
5. 0

4) p(Vf,ZZ (¢) = 0, where f(t) = c is a constant.
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1T (B) (), df (1)
Chy+p©), dr

(5) If f is differentiable, then fq/j’;:g f) =

IN(E)ND)
6) PVIRL (1) = —— L —ar"™
© V5 = 50 B @),
Proof. See [10]. :

Theorem 2.4. (Chain rule) Assume f,g : (0,00) — R be two a-differentiable functions where 0 < a < 1. Let
v,B,0,0 € Cand p,q > 0 such that Re(y) > 0, Re(B) > 0, Re(p) > 0, Re(6) > 0, Re(y) + p = g then (fo g) is
a-differentiable and for all t > 0, we have

VIBL(FoR) (0= (8(0) {Viblg (1),

v v
for f differentiable in g(t).
Proof. See [10]. O

Definition 2.5. [10] (‘V-fractional integral) Let a > 0 and r > a. Also, let f be a function defined on (a,f] and
0 < a < 1. Then, the V-fractional integral of f of order « is defined by

PP £ (1) Fy+p)©), (M f N
rha TBE), Jo
with y,8,p,6 € C and p, g > 0 such that Re (y) > 0, Re (8) > 0, Re (p) > 0, Re (6) > 0 and Re (y) + p > q.

Theorem 2.6. Let a > 0 and t > a. Also, let f be a function defined on (a,t] and 0 < a < 1. Then, the V-fractional
integral of f of order « is unique.

Proof. Consider the V-fractional integral of f of order 0 < @ < 1 given by Eq. (25). Assume that L; and L, are

“V-fractional integrals of f on [a, b]. We want to prove that L; = L,. Let & > 0. Then for each j = 1,2, exist 6; > 0
such that [|P|| < 6; = |o- - L]-| < %, where P is a partition on [a, b]. Taking 6 = min {d1,d>}. Fixed a partition P on the
interval [a, b] and suppose that ||P|| < 6.

Note that 6 < J;, for j = 1,2. Then

O0L|Li-L|<lo-Li|+|loc—-L <&
for all € > 0. Like this, we conclude that |L; — L| = 0, so L; = L,. Therefore, the V-fractional integral is unique. O

Remark 2.7. In order to simplify notation, in this work, the V-fractional integral of order @, will be denoted by

Ty +B©), (*f0
LB @), J. 1°

b
dt:ff(t)dwt

rG+B©),
R o 103 d :
re e, O

where, dt =

3. “V-FractioNAL DERIVATIVE OF A VECTOR VALUED FUNCTION

In this section, we present our main result, the truncated V-fractional derivative in R" and check its continuity
as well as the uniqueness of linear transformation. We present the definition of the truncated “V-fractional Jacobian
matrix, the chain rule and the theorem that refers to linearity and product. We conclude the section discussing some
examples.

Definition 3.1. Let f be a vector valued function with n real variables such that f(xi, x2, ..., X,) = (f1(x1, X2, ..., Xn),
(X1, X5 cees X))y oo fin(X1, X2, .0y X)), We say that f is a-differentiable at a = (ay, ...,a,) € R" where each a; > 0, if
there is a linear transformation L : R" — R such that

. ”f (a1 "Hiﬁz (slal‘“) s e dp ,-Hs,’g’z (sna;"‘)) - f(ay,...,a,) — L(s)“
lim =0

-0 llll

s
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where € = (gq,...,8,), 0 < @ < 1, iny);gf,(') is the truncated function and p,6,y,8 € C, p,q > 0 with, Re(p) > 0,

Re(8) > 0, Re(y) > 0, Re(B) > 0 and Re(y) + p > ¢. The linear transformation is denoted by # V%”Z f(a) and called the
multivariable truncated V-fractional derivative of f of order « at a.

Remark 3.2. Taking m = n = 1 in Definition 3.1, we have

L(e) = f(a:HL (ea™)) - f (@) = 7 (&). G.1)
Dividing by ¢ both sides of Eq. (3.1) and taking the limit € — 0, we have
0:0:q -a
L  f(aiH2% (a™) = f (@) = (o)
1 = 1 =
sl—l;l(l) & 81—138) &
flaHyp (£a7) = £ (@)
- vB.p
81—I>I(1) &
—  PaySra
= ,'(V%lgﬂf (@),
where limoﬁ = 0. Thus, we conclude that, Definition 3.1 is equivalent to Definition 2.1.
£ E

Theorem 3.3. Let f be a vector valued function with n variables. If f is a-differentiable at a = (ay, ...,a,) € R" with
a; > 0, then there is a unique linear transformation L : R" — R™ such that

; ”f (al ,Hf/’g‘; (g,al’“) v ,-Hi:gf; (sna;”)) - f(ai,....,a,) — L(s)“ .
im =
&0 llll

>

with0 < o < 1, iHi:gf; (+) is the truncated function and p,d,y,B € C, p,q > 0 such that, Re(p) > 0, Re(6) > 0,
Re(y) > 0, Re(B) > 0 and Re(y) + p > q.

Proof. Let M : R" — R™ such that

Hf (a1 iHiﬁf, (slal‘“) e ,-Hi:’g’; (sna;"‘)) - f(ai,...,a,) — M(s)“

lim 0.
£~0 llell
Hence,
0, _ 0,0, —c
L) - Mo N R ) L G
Iim————— < lim
&0 llell &0 llell
| (ar it (210) it 0,) = ) = M )
+lim =0,
e~0 llell
then
IL(e) — M(g)|
&0 llell

If x € R", then ex — 0 as € — 0. Hence, for x # 0 we have

IL(ex) — M(ex)l| _ [IL(x) — M(x)]|

0 =1lim =
€0 llex]] (B3]
Therefore L(x) = M(x). We conclude that, L is unique. |
Example 3.4. Let us consider the function f defined by f(x,y) = sin(x) and the point (a, b) € R? such that a,b > 0,
P79 . r(ﬂ)(p)q 1-a
then l.V%ﬁ,a f(a,b) = L satisfies L(x,y) = ——————xa " “cos(a).

Ly +B)(6),
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To prove this, we note that

|F (ast25% @1a™), b HES (e2b™) = £ (a, ) = L e, )

lim
(£1,62)—(0,0) lICer, &Il

'sin (a ,-Hi:;z‘; (81a‘“)) —sin(a) — L(g, 82)’

lim00
(£1,82)—(0,0) ,s% + 8%

'sin (a HP (sla“’)) — sin(a) -

r@)(p),
TG+A)0),

l-a
VB g1a "% cos (a)’ _

0

< lim
£1—0 leq]

Example 3.5. Let us consider the function f defined by f(x,y) = ¢* and the point (@, b) € R? such that a, b > 0, then

L'(B)(p)
PYOPA f(q, b) = L satisfies L(x,y) = ————1— xa' ",
Vypal Y Ty +B)©),

To prove this, we note that

| (aiH258 @1a) b HES (e2b™) = £ (a,b) = L e, 22)

1m
(£1,62)—(0,0) lICe1, eIl

2 -a
ea'H%ﬁvp(gla ) —e% — L(sl,gz)’

lim 00
(£1,62)—(0,0) ,8% + 8%

_eanEd) _a  T@)(), |
lim - a
£1—-0 £l Cy+p (6)17

—aea

<

Definition 3.6. Consider the matrix of the linear transformation f V%’Z f(a) : R* — R™ with respect to the usual
base of R” and R”. This m X n matrix is called the truncated V-fractional Jacobian matrix of f at a, and denoted by

‘)J‘;’zﬁf (a), where p, 6,7y, € C, p,q > 0 with, Re(p) > 0, Re(6) > 0, Re(y) > 0, Re(8) > 0 and Re(y) + p > q.

Example 3.7. If f(x,y) = sin(x), then we have the matrix
T ),
Ly +p©),

Theorem 3.8. If a vector valued function f with n variables is a-differentiable at a = (ay, ay, ..., a,) € R", with a; > 0,
then f is continuous at a € R".

ijgjgf (a,b) = [ a""cos(a) 0 ] .

Proof. Note that,

5, _ 5, _
”f (a1 ,'Hf;ﬁ; (alala) s s dp ,'Hf;ﬁ’{; (enan")) - fai, ...,an)

< Hf (al IHQ;’; (SIGIQ) 5oy Ay le”;:LI]] (Ena;a)) - f(ah (XX} an) -L (E)H ”8”

llll
+IIL ()l (3.2

Taking the limit € — 0 in both sides of the Eq. (3.2), we have

. 05 - 05 -
11_r>1(1)“f (a1 ,Hsﬁ‘; (81611“) S iHsﬁ‘; (snana)) - f(ay, ...,a,)
. B, B,

fa HP0A £1a7), ... ay HP04 (&na,”)) — f(ay, ...,ay) — L(¢)
lim YBp YB.p

&0 llll
xlim ||g]| + lim ||L (&)]| .
>0 &—0

IA

Let (uy, ..., un) = (147, ..., £20,%), thenu — 0 as € — 0. Since

tim [ £ (a5 @) - f(@| <o,

vB.p
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we have,

hm”f a Hszz (u) (a)”

Hence, f is continuous at a € R". m]
Theorem 3.9. (Chain rule) Let x € R?, y € R™. If f(x) = (fi(X), ..., fu(x)) is a-differentiable at a = (ay, ...,a,) € R",

with a; > 0 such that a € (0, 1], and g(y) = (g1(y), ..., &p()) is a-differentiable at f(a) € R™, with fi(a) > 0 such that
a € (0, 1], then the composition g o f is a-differentiable at a and

PV (g0 f)(a) = g (f (@) PVP9 £ (a),

Y. Y B

for g differentiable in f(a) and p,¥8,y,B8 € C, p,q > 0 such that, Re(p) > 0, Re(6) > 0, Re(y) > 0, Re(B) > 0 and
Re(y)+p=gq.

Proof. Taking L = * V%g f (@ and M = Dg (f (a)), where D is the derivative operator of integer order, we define,

@ (al iHi:gzZ (slal_“) " in;’g’;’, (sna_"))
= f(a1 ng:g,:‘; (8161;") s ey Oy i H yﬁp (ana"’)) f(a)-L(g),

U (fi (@ HEGT (i fi (@) s fo (@) iHEGE (R fo (@)™))

vB.p YB.p
= g(fi @ =G (ki fi (@), s fo (@) iH G (o (@)7)) = 8 (@) = M (K)

and

p(al thg (81(11 )""’aan/ 0.4 (En )) gOf(a“ Zq (51‘11 )’ »dp alﬁ (Sna ))
—go fla)—MoL(e). 3.3)

Hence, taking € — 0 and £ — 0 in both sides of Eq.(3.3) and Eq.(3.3), we have

|

“90 (a1 "Hs,’;’; (slaI“) s eees O i1 7ﬁp » (Ena a))

lim
#=0 llel]
”f ay iH (Slal ), e Ay leg;’) (Sna,;")) — fla) - L(S)H .
llel] =
(3.4)
and
. Hw (fi @ HEG (et fi (@75 oo fo (@) HER (K f (@)7)) '
=0 ]
_ limHg (i @ dH5E (e fy @) o f (@) iHE G (K (@) = g (Fl@)) = M (K -
=0 Kl
(3.5)

On the other hand, taking € — 0 and k — 0 on both sides of Eq.(3.3), we will show that

o (e 55 (onai) o5 )

-0 llll
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Now, let
( yﬁp (81a1 ), v Gy iHi’g’;[, (Sna’”))
(f ay iH «/ﬁl’ (31611 ), e Oy yﬁp(é‘n ‘”))) —g(f(a)) = Mo L(e)

- . a@
alz 7[3[7 (sg;al )7 »Qn i yﬁp(gn ))_a —g(f(a))
m all ﬂp(glal )’m:anz 7,317( na n ))
-M f (al iHVﬁ’P (Slafa) = n ’H;',gz (S”a;a))
f (@) - (a1 i ygp (Slal_a) e lni «/,gﬁ? (8”‘1;0))

= [g fl a4 ’Hvﬁﬁ(flal ),...,a,,,- 7%7(8" _a))
a1 ‘Hvﬁp(‘g‘ala)""’a’” VBP( nd ;a))

fi (al H- ﬁq (81(11 ), ,ay i H ﬁ 1 (ena, )) fi@,.. ]]
M( fm(myzh;;z,,(aal )any, pyﬂ,,(sn )= @

+M [QD (611 iHy,,B,p (31a1 ) s s Ap iHs:ﬁ:p (8nar:a))] .

Il
oo

)—g(f(a))

If we put u; = f; (a1 HP (slal‘") ey iy ,-H‘y’,’g’j, (sna;")) - fj(@), with j = 1,2, ..., m, then we have

YB.p
fi (al lHyﬁp (slal ),...,an ,ny’g‘; (sna;")) =u;+ fj(a),and u — 0 as & - 0. Hence, using Eq. (3.3), we have

.0, —a 0, -a
¢ [ g l(;“ ’Zilﬁ;}y%‘j 6(1;6);}1) afﬁﬂ i’;(;f( n)?;“)) ] g (fl@y-M (u)]
+M [(,0 (a1 ,Hyﬁp (slal ), ey Ay ,-Hyﬁp (sna_"))]
=y (fi @ HG! (0 f @), o fo (a) HS (i fon (@)7))
+M [(p (a1 ,-H%ﬁ,p (81511_") sy Oy i H yﬁp (8na_“))]

p(a1 ’H%[[{? (‘91‘1170) s n i Vﬁp » (Enct, Q))

Thus we will show,

o (i @ iHESS Qi f @), fn (@) S (i fon (@))

. YB.r
lim
u=0 [feell

‘ =0 (3.6)

and

0.0, 0,0, —a
) “M aj ,H ﬁ;’)(s]al ),n-,an iHé,!ﬂj, (snan )))H
lim el - o
P &

For Eq. (3.6), it is obvious from of Eq. (3.5). Now, for Eq. (3.7), we have

IA

||M||“(g0(a1 ’Hyﬁp(glal )""’a’“ Vﬁp(s” ”

K H(cp (a1 lHyﬁp (sla1 ) s ees Ay iHy:[f:p (s,,a,_l“) || , (3.3)

M (e (ar 252 (17°) - 0 HESE (o))

IA

such that K > 0. Taking the limit £ — 0O on both sides of Eq. (3.8) and using Eq. (3.4), we get Eq. (3.6). Hence, we
conclude the proof. O

Corollary 3.10. For m = n = p = 1, the Theorem 3.9 states that

LWL (g0 £)(a) = g (f (@) FVPIf (a).

Y B VP

Corollary 3.10 says that Theorem 3.9 generalizes Theorem (2.3).
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Corollary 3.11. Consider all the conditions of Theorem 3.9 satisfied. Then

yopa
VIR (g0 f) (@)
L@ (o), -
@ 0 0
ropo, ]
0 m(f)ﬁfz% R@T 0
’
= g (f@) _ v
r e @), o
0 0 o +po, "
TB®, . .,
To+p©, @ - 0 0
0 I (f)ﬁ(ﬁ:;) L@t 0
where, 7 r , is the matrix corresponding to the linear transforma-
reE,
0 0 romo, "
pyyoP4
tion”, Vﬂmf (a).

Corollary 3.12. Consider all the conditions of Theorem 3.9 satisfied. For f(a) = a, Corollary 3.11, says that

TPy 1

oA o (;’) 0
Vg -
— , 0 Torho, 2 0
i yﬁ(,g(a) = g (a) . :
e, .,
0 0 TG+AH©®,"
r'®
— gl (a) q Ll—(l/

ry+p©, *
Remark 3.13. The Corollary 3.12 generalizes part 5 of the Theorem 2.3.

Theorem 3.14. Let f be a vector valued function with n variables such that f(xi, ..., Xp,) = (f1(X1, o0 Xn)s cos fr(X15 -0y X))
Then f is a-differentiable function at a = (ay, ...,a,) € R", with a; > 0 if, and only if, each f; is,

PV f (@) = (FVSLEfi (@), SV £ (@),
where a € (0, 1] and p, 6,v,B € C, p,q > 0 with, Re(p) > 0, Re(5) > 0, Re(y) > 0, Re(B) > 0 and Re(y) + p > q.

Proof. 1f each f; is a-differentiable at @ and L = (YV35 i (a) ..., YV75 £, ()), then

f(a1 iHs”g”‘; (81611’”) s e dp iHy:/),:p (s,,a;“)) - f(a)-L(s)
= [fl (a1 ,Hi”g"; (81611_”) sy iHs”g”Z (ena;”)) - fila) - pV%(qlfl (a)(e), ...

s fin (al ,Hﬁﬁ‘; (alal_”) ey iy ,-Hi,’g’j, (sna;")) — fu (@) — pV%(qIfm (@) (8)] )
(3.9)

Taking the limit &€ — 0 on both sides of Eq. (3.9), we have

Hf al, yﬁp(slal‘"),...,an, yﬁp(sn “’)) (a)—L(s)H

€—>0 llll

2 fi (it (es057)) = i@ = FV350 S @) (@)

= i el
n Na; H ﬂvﬁpq
:S%ZM@,W( »ﬁw @@
Z

which is the result. O
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Theorem 3.15. Let 0 < a < 1, L,u € R, y,B8,p0,0 € Cand p,q > 0 such that Re(y) > 0, Re(8) > 0, Re(p) > 0,
Re (6) > 0, Re (y) + p = q and f, g a-differentiable at a = (ay, ..., a,) € R", with a; > 0. Then,

(1) PVO29 A + pug) (a) = VDY £ (@) + V29 ¢ (a).

B B B
o) pvg,p,q . — ¥ V%‘" q yp yopa
(2) PVIR(f - 8) (a) = f (@) VR0 e (@) + g (@) VB f (a).

6. _ _
Proof. 1. LetA = a, ,-H;’ﬁ,p (alal") +-ta, H yﬁp ? (e1a,”), then we have,

A + 1) () = (Af + 1) (@) = (A7V55 £ (@) + V5 (@) o)
m

yba yba
&) [E]
17 ) = Af @ = XV f (@) (&) + g (A) - g (@) - w30 g (@) ()|

- el

M@ -ve@-griir@e] e -wa@-wvis@e]
<
= el " el

r@w-r@-vintr@e)|  fe@w-g@- i@
- A el e el -°

So, the proof is complete.
2. LetA =a, ;H sla]‘") +---+a, ,-Hp"g’q (e1a,%), then we have,

||<f DW= (@ (f @V g(@+g @ V5 f @)

o el

‘ FAEA) = f@)g(A) - gAY V! f (@) (@) + f (@8 (A) - f @) g (@
—F @) Vb (@) (2) + gAY VDD £ (@) (6) - 8 @ VIR F @) (2

ﬁp(

= lim réad v vha
e el
[ s - r@g@ - gy vitt s @
<
= el ’
|r@s@ - r@sg@- 1@y vinie@e|
o0 el i
Near it @@ -s @ v @)
e e
A)
= lim HpViﬁiﬂ )& )” llg (A) - ||g(a)ll
< Klim|l(g)| w =0,
&) el
with K > 0. So, the proof is complete. O

4. TRUNCATED “V-FRACTIONAL PARTIAL DERIVATIVES AND APPLICATIONS

In this section, we introduce the truncated “V-fractional partial derivative and discuss applications: the theorem
associated with the commutativity property of two truncated V-fractional partial derivatives, the truncated V-fractional
Green’s theorem and analytical solution of the V-fractional heat equation and present a graphical analysis.

Definition 4.1. Let f be a real valued function with n variables and a = (aj, ..., a,) € R" be a point whose i

is positive. Then, the limit

component

1imf<al’ 4 ZHV;p (ga ) n) - fa, ...,an),
&—0 <
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102 (02

pPe f(a) = — f (%) |y=q, and called the i"* truncated V-fractional partial derivative of f of
X

if it exists, is denoted by
order a € (0,1] at a.

Theorem 4.2. Let f be a vector valued function with n variables. If f is a-differentiable at a = (ay, ..., a,) € R", with

o3
aj >0, then

ad
510

Proof. Let f(x1,..., xp) = (fi (X1, e Xn) 5 oves finn (X1, ..., X)) Suppose first that m = 1, so that f (x1, ..., x,) € R". Define
h:R — R'"by h(y) = (a, ...y, ...,a,) with y in the place of p”. Then —fila) = ’)V‘S”q (foh) (ap). Hence, by

(9x“‘f] (a) of order a € (0, 1] exists for 1 < j <m, 1 < p < n and the Jacobian of f at a is the m X n matrix

0 x" yB.a
Corollary (3.11), we have
T'®) (), Ia
— " 0 0
TG+A©), ' () oo
pgo.ra , 0 T h©, " (o)™ 0
Ve Fom(a) = f (h(a)) | '
’ ' r@e), Ia
0 0 TGy, @)
T, .,
TG po), a ] 0 0
0 %alﬂ 0
, :
= f'(a) _ o
) OO, .,
0 0 To+AH©), "
- pyoPa
= Vga f(a).

a(l a(l
Since (f o h) (ap) has a single entry pw fj (@), this shows that FPr fj (a) exists and is the pt entry of the 1 X7 matrix
P

P
P V%Z f (@). The theorem now follows for arbitrary m since, by Theorem (3.14), each f}, is a-differentiable and the p
row of pV%Zf (a) is ijZZfJ (a). ]

For the next result, we use the Clairaut-Schwarz theorem integer order [12], and realize an application of the trun-
cated V-fractional partial derivative.

Theorem 4.3. Assume that f(t,s) is a function for which 0% (3% f (1, s)) is of order a € (0,1] and (3¢ f (¢, 5)) is of
order k € (0, 1] exist and are continuous over the domain D c R?, then

a(l K ak a(l
ar (atkf( ) A (aﬂf(t s))

Proof. By means of the Definition (2.1), truncated “V-fractional derivative at the s variable, we have

— | lim
ot |0 &£

F(B)(p) 1-x 2
= ﬁlimf(t,s F(+—B>(5)ps +0(8))_f(t,s)

Ot | e—0 &

5 [ o ov (. F(tsiHDG (e57)) = £ (2, 9)
t(l/ (atkf( )
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') (o) h
Introducing the following change of variable & = g5 (—q +0 (8)) implies € = R
£ sehang To+p©), P SI_K( T® @), +0(8))
L'y +pB)(9),
we get
f,s+h)—f(,s)
o (0" o .. hs<1
_ — l" = — 1 .
or (azkf( s)) o o0 L@ (p), 06
——— +0(e
L'y +p)©),
Since f is differentiable in s-direction, we obtain
9 (& . T®w, o
= f(t8)] = s ——— f (t,s
o1 \ o< I'(y +p)(©6), 0t* \ds
Again, by the definition of the truncated V-fractional derivative we have
aa 5] 2 six L@ i Lf (S ey s) = 21 (1s)
t, .
o 5! TG +8)©), lm e
In analogy to the expression, after making a similar change of variable, we have
@ [ G« F ) (p), s\l drt+ks)—LF@,s
%, P ) = B) (), lim6Sf( )— 5/ ( ).
o1 \ o Ciy+p)©), k0 k
Since f is differentiable in #-direction, we obtain
9 (& r@)p, Y
P p9)) = (Y e Ty .1
ot \ or Cy+p ), otds
Being f a continuous function and using the Clairaut-Schwarz theorem for partial derivative, it follows that
2 62
—f =—=f(s).
ags? 09 = gl 9
Therefore the Eq. (4.1), becomes
o (o r@)e, \ (o
o f(t,5) OOV e g
ar \ ar L'y+p)©), asot
_ ( T B)(p), )2 i groagy 3 S+ = 5@ 5)
Ly +p ), h=0 h '
4.2)
'@ (p) @)
Thus, taking & = es'~* (—" +0 (s)) and later k = &'~ (—‘f +0 (s)) in the Eq. (4.2), we arrive
£ T+ ), Ty +5 ), 4
at
3 (o F (. L2fts+h-2f@s9) o (o6
o ((‘)tkf(t )) ot (hn(l) h = or (araf(t s))

which completes the proof.

We define the “V-fractional vector at the point a, given by

Vof (@) = ( @, f(a))

The next example, is a direct application of the Theorem 4.3.
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Example 4.4. Consider f(t, s) = ¢““* with a € R satisfying the conditions of Theorem 4.3, then we have
9" ( o e s)) o ( ST B) (), 8 ea(m]
ot o |\ T (y +B8) (), s
ST, &,
“To+B) (6), 01

r®p), \’
2 -k l-a q a(t+s)
a‘s "t (—F(y+ﬂ) (6)p) 4 “4.3)

and

(yfaﬂ

aK 1T B) (), & a5+
ot

A\To+p©),a’
ﬂ“ﬂ@@)a e
“TO+8 0,05

r®e), \
_ 2 -k l-a q a(t+s)
= a's "t (—F OB (6)1)) e . “4.4)

Thus, by Eq. (4.3) and Eq. (4.4) we conclude that

0% [ 0" o (0
6t“( —f (s ) (6t”f(ts))

Theorem 4.5. (truncated V-fractional Green theorem) Let C be a simple positively oriented, piecewise smooth and
close curve in R?, say for instance the x — y plane, furthermore assume D in the interior of C. If f(x,y) and g(x,y) are
two functions having continuous partial truncated V-fractional derivative on D then

% aa—l aa—l
S [ Ge= g )aes = [ s - st

) x@'ye=Ydxdy, with d,x and d,y, given by Remark 2.7.

Iy +8) ),
L@ ),

Proof. In fact, note that

g L[ s s

Applying the classical version of the Green’s theorem [7],

ff (— - —P) ds = f(de+ Ody)
dy c
into Eq. (4.5), we conclude that

% oY aafl 6(171
ff;(axag__f)ds fa(llfd‘”x 6a/1gdwy

The following application by means of the heat equation will be discussed in R. However, it can be extended to R".
Using a V-fractional derivative type, we propose a “V-fractional heat equation given by

0%u (x, t) 6214 (x,0)

where d,S = (

O

,0<x<L,t>0, 4.6
or ox? * (46)
where 0 < @ < 1 and with the initial condition and boundary conditions given by

u@©,t) = 0,t>0, 4.7

u(lL,t) = 0,t>0,
ulx,0 = fx),0<x<L.
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We start, considering the so-called V-fractional linear differential equation with constant coefficients
% (x t)
t 4.8
B v (x 1) = (4.8)

where i is a positive constant.
Using the item 5 in Theorem 2.3, the Eq. (4.6) can be written as follows

tl“’F(,B)(p)q dv(x,1)

2, =0
TE+n©), d "
whose solution is given by
I'(B+7y)(©6), /ﬂt“)
v(t) = cex (J_r— s “4.9)
TTee, e

with0 < @ < 1 and 8,v,p,9, p,g > 0.
Now, we will use separation of variables method to obtain the solution of the V-fractional heat equation. Then,
considering u (x,#) = P (x) Q (¢) and replacing in Eq. (4.6), we get
2

L ompmw=k d SP@O

dr
which implies
L =L py-¢ (4.10)
kQ (1) dt* P (x) dx? ’ ’

where £ is a constant.
From Eq. (4.10), we obtain a system of differential equations, given by

d[l
20 -kQn =0

and
2

a2
First, let’s find the solution of Eq. (4.11). For this, we must study three cases, that is, & = 0, & = —u? and & = i,
with > 0
The Case 1, i.e. £ = 0 and the Case 3, i.e. £ = u%, we do not present the calculations, since it is a trivial solution.
Case 2: & = —i°
Substituting & = —u? into Eq. (4.11), we get

—P(x)-€éP(x)=0. (4.11)

2

a2

whose solution is given by P (x) = ¢, sin (ux)+c; cos (ux), with ¢; and ¢, arbitrary constant. Using the initial conditions
Eq. (4.7), we obtain ¢; = 0 and 0 = ¢; sin (ux) which implies that u = *, with n = 1,2, .... Then, we obtain

—PX) + PP (x) =0,

TX nmw
P = ansin (") and = .
. (X) = a, sin 7 and u 2
Therefore, the solution of Eq. (4.11) is given by
nm nm
P, ._n( ) du="" 412
(x) = a, sin 7)) andu=— (4.12)

Using the Eq. ( 4.8) and Eq. (4.9), we have

4.13)

0,0 bp LN 1) )

[y, \L
where b, are constant coeflicients.
So, using the Eq. (4.12) and Eq. (4.13), the partial solutions of Eq. (4.6), is given by

il gf;‘; (x,0) = ch sin(%)exp (_% (%)2 c_]ita)'
n=1



A Truncated “V-Fractional Derivative in R” 62

Using Eq. (4.7), we get

oo

W0 == e sin(%)

n=1

2 (F . (nmx
c,,:zj(; f(x)sm(T)dx

So, we conclude that the solution of “V-fractional heat equation Eq. (4.6), satisfying the conditions Eq. (4.7), is

given by
. (nmx I'@B+y) ) n7r2k
ﬂyp(xt) Zsm(T)exp( W(p)qp L )( ff(x)sm ) ) (4.14)

n=1
Choosing p =g =7y =6 =p = = 1in the Eq. (4.14), we have

au(x,t):isin(%)exp( (”L”Zk)( ff(x)sn )dx) (4.15)

=1

which provides ¢, through

the solution of Eq. (4.8), in this sense of the conformable fractional derivative. (Note that, taking the limit i — 1 in the
Eq. (2.4)). We have the parameter « free.
Choosing p = g =y =6 = p = l in the Eq. (4.14), we get

auﬁ(x,t)zism( )exp( r(ﬁ+1)(”")2k“)( ff(x)sm )dx) (4.16)

n=1
the solution of Eq. (4.8), in this sense of the M-fractional derivative. (Note that, taking the limit i — oo in the Eq.
(2.4). We have the parameter « and g3 free.
Next, we will present some plots by choosing values for the parameters a, 8,7, 6, p, p, ¢, k, t and L, to see the behavior
of the solution presented in Eq (4.14) and recover the Eq. (4.15) and Eq. (4.16). The graphics were plotted using
MATLAB 7:10 software (R2010a). For the elaboration of the following plots, we choose the function f(x) = 50x(1—x).

Ficure 1. Analytical solution of the V-fractional heat equation Eq. (4.14). We consider the values
t=50,L=1,k=0.01 and @ = 0.2.
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FiGure 2. Analytical solution of the V-fractional heat equation Eq. (4.14). We consider the values
t=50,L=1,k=0.0l and @ = 0.5.
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Figure 3. Analytical solution of the V-fractional heat equation Eq. (4.14). We consider the values
t=50,L=1,k=0.0l and @ = 0.9.
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5. CoNcLUDING REMARKS

After a brief introduction to the truncated six-parameters Mittag-Leffler function and the truncated “V-fractional
derivative with domain of function in R and the validity of some important results, we have introduced the multivariable
truncated “V-fractional derivative, that is, with domain of the function in R”". In this sense, we discussed and proved
classical theorems such as: the chain rule, the commutativity of the exponent of two truncated V-fractional derivatives
and Green’s theorem.

We concluded that: a variety of new fractional derivatives of said local have been recently introduced, all them
satisfy the requirements of the integer-order derivative, and have been employed to deal more effectively with real
problems and their physical properties [2, 3,7, 8]. The dynamics of systems over time, becomes more complex and
more precise mathematical tools are needed to solve certain theoretical and practical problems. In this theoretical and
applicable sense, we extended the idea of truncated “V-fractional derivative of a variable, so it is possible to work with
differential equations with several variables consequently make comparisons with the results obtained by means of
other fractional derivatives. Studies in direction will be published in a forthcoming paper.
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