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SOME PARANORMED SEQUENCE SPACES DEFINED BY A
MUSIELAK-ORLICZ FUNCTION OVER N-NORMED SPACES

AYHAN ESI AND S. K. SHARMA

ABSTRACT. In this paper we present new classes of sequence spaces using la-
cunary sequences and a Musielak-Orlicz function over n-normed spaces. We
examine some topological properties and prove some interesting inclusion re-
lations between them.

1. INTRODUCTION AND PRELIMINARIES

The concept of 2-normed spaces was initially developed by Géhler [5] in the mid
of 1960’s, while that of n-normed spaces one can see in Misiak [14]. Since then,
many others have studied this concept and obtained various results, see Gunawan
([6], [7]) and Gunawan and Mashadi [8]. Let n € N and X be a linear space over
the field K, where K is field of real or complex numbers of dimension d, where

d > n > 2. A real valued function ||-,--- || on X™ satisfying the following four
conditions:

(1) ||z1, 22, ,xn|| = 0if and only if 1, z9,- -+ ,z, are linearly dependent in

X;

(2) ||x1,x2,- x| is invariant under permutation;

(3) |lax1,x2, - ,zpl| = || ||z1, 22, ,2,]| for any o € K, and

(4) HCL‘ +xl7‘r2’ U ’an < H.%‘,CL‘Q,' o 7‘T7LH + ||$l7$2’ e ’an
is called an n-norm on X, and the pair (X,||-,---,-||) is called a n-normed space
over the field K.

For example, we may take X = R" being equipped with the n-norm ||z1, 9, - ,z,||E

= the volume of the n-dimensional parallelopiped spanned by the vectors x1, o, - , Ty

which may be given explicitly by the formula

w1, @2, s anllp = | det(zy;)],
where z; = (241,20, , %) € R™ for each ¢ = 1,2,--- n. Let (X,||-,---,-]])
be an n-normed space of dimension d > n > 2 and {a1,as,- - ,a,} be linearly
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independent set in X. Then the following function ||-,- - -, -|[sc on X™ ! defined by
||x1a$27 T axn—1||oo - maX{Hxhx% T 7xn—laai|| 1=1,2,--- an}
defines an (n — 1)-norm on X with respect to {a1,ag, -+ ,an}.
A sequence (z1) in a n-normed space (X, ||-,--- ,-||) is said to converge to some
LeXif
lim ||zp — L, 21, ,2n-1]| =0 for every zy,---,z,-1 € X.
k— o0
A sequence (x1) in a n-normed space (X, ||-,--- ,-||) is said to be Cauchy if
lim ||zx — ®p, 21, -+, 2n—1]| =0 for every z1,---,2z,—1 € X.
3%

If every cauchy sequence in X converges to some L € X, then X is said to be
complete with respect to the n-norm. Any complete n-normed space is said to be
n-Banach space.

Let X be a linear metric space. A function p : X — R is called paranorm, if

(1) p(x) >0 for all z € X,

(2) p(—z) =p(z) for all z € X,

(3) p(x+y) < p(x) +p(y) for all z,y € X,

(4) if () is a sequence of scalars with A,, — X as n — oo and (x,,) is a sequence
of vectors with p(z, —z) — 0 as n — oo, then p(Apz,—Ax) — 0 asn — oc.

A paranorm p for which p(x) = 0 implies = 0 is called total paranorm and the
pair (X, p) is called a total paranormed space. It is well known that the metric of
any linear metric space is given by some total paranorm (see [19, Theorem 10.4.2,
pp. 183)).

For more details about sequence spaces (see [1], [2], [3], [17], [18]) and references
therein.

An Orlicz function M is a function, which is continuous, non-decreasing and
convex with M(0) =0, M(z) > 0 for x > 0 and M(z) — o0 as x — o0.

Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to define the
following sequence space. Let w be the space of all real or complex sequences
x = (z), then

= frew: () <)

which is called as an Orlicz sequence space. The space £, is a Banach space with

the norm
|| = inf{p >0: ZM(@) < 1}.
k=1 p

It is shown in [10] that every Orlicz sequence space £); contains a subspace isomor-
phic to £,(p > 1). The Ay—condition is equivalent to M (Lx) < kLM (z) for all
values of > 0, and for L > 1. A sequence M = (M},) of Orlicz function is called
a Musielak-Orlicz function (see [13], [16]). A sequence N = (Ny) is defined by

Ni(v) =sup{|v|ju — (My) :u >0}, k=1,2,...
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is called the complementary function of a Musielak-Orlicz function M. For a given
Musielak-Orlicz function M, the Musielak-Orlicz sequence space taq and its sub-
space hj; are defined as follows

tM:{:cEw:IM(cx)<oo for some C>0},

hM:{IEw:IM(cx)<oo for all c>0},

where I is a convex modular defined by
Im(z) =Y (My) (), x = (z1) € tar.
k=1
We consider tyq equipped with the Luxemburg norm

||| =inf{kz >0: IM(%) < 1}

or equipped with the Orlicz norm

][0 = inf{%(l I (ke)) k> 0}

Let ¢, ¢ and ¢y denotes the sequence spaces of bounded, convergent and null
sequences x = (xy) respectively. A sequence z = (zp) € { is said to be almost
convergent if all Banach limits of z = (z,) coincide. In [9], it was shown that

) N R : : .
¢ = {x = (ag) : nh_)ngo - Zx]ﬁs exists, uniformly in s}
In ([11], [12]) Maddox defined strongly almost convergent sequences. Recall that a
sequence x = (z) is strongly almost convergent if there is a number L such that
n
nh_)rréo - Z |zk4+s — L] = 0, uniformly in s.
k=1
By a lacunary sequence 8 = (i,.), r = 0,1,2,---, where ig = 0, we shall mean an
increasing sequence of non-negative integers g, = (i, — i,—1) — 0o (r — o0). The
intervals determined by 6 are denoted by I, = (i,_1,,] and the ratio 4, /i,_1 will
be denoted by g,.. The space of lacunary strongly convergent sequences Ny was
defined by Freedman [4] as follows:

1
Ny = {x = (x): lim — Z |z — L] =0 for some L}.
00 gT
kel,.
Mursaleen and Noman [15] introduced the notion of A-convergent and A-bounded
sequences as follows :
Let A = (M) be a strictly increasing sequence of positive real numbers tending
to infinity i.e.
O< XA <A <- and \f >0 as k—

and said that a sequence x = (zj) € w is A-convergent to the number L, called the
A-limit of x if A, () — L as m — oo, where
m

/\m(l‘) = )\ Z()\k — )\k—l)ka

M =1

|~
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The sequence z = (x) € w is A-bounded if sup,, [An, ()] < co. It is well known
[15] that if lim,, 2, = a in the ordinary sense of convergence, then

1 m
lim (AM<Z(A,C — Ne—1) |z — a|) =0.
k=1
This implies that
. 1
lim [Ap,(z) —a] = hm|— Z(Ak —A—1)(xp —a)| =0
" ™ k=1
which yields that lim,, A, (z) = a and hence x = (x}) € w is A\-convergent to a.
Let (X,]],---,-||) be a n-normed space and w(n — X) denotes the space of X-
valued sequences. Let M = (Mj},) be a Musielak-Orlicz function and p = (pi) be a
bounded sequence of positive real numbers. Then we define the following sequence
spaces in the present paper:

[CaMap7Aa||'a"' 7'H]9:
. 1 Ak(m)—L Pk
{x: (k) Ew(n—X):Tll)rgoh—r Z [Mk(||T7Zh 7zn,1|\)} =0,
kel,
for some p > 0,L € X and for every z1, -, 2,1 EX},
[C7M7p7A7H'7"' a||]8:

{x:(xk)Ew(n— Tlirgoh—z [ ’Zn71‘|>r’“:0,

for some p > 0 and for every zi,-+-, 2,1 EX}
and
[CaM7p7A7 ||7 H ]go =
) Pk
{w:(xk)Ew(n— :sup — Z [ ,-~-,zn_1||)} < 00,
r—00 hrk
el,
for some p >0 and for every z1,---,zp—1 EX}.
When, M(x) = z, we get
[cvpaA7H'7"' ’.||]07
— L Pk
{xZ(xk)Ew(n— )i)nolohiz ( 7217"',25”_1”) 207
kel,
for some p > 0,L € X and for every zi, -+, 2,1 EX},
[Cap7A7||'7"' 7” }8 =
1 Pk
{a:—(xk)Ew(n— rg&h—Z( ,-~',Zn—1||) =0,
kel,
for some p > 0 and for every z1, -, 2,1 EX}

and
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[CapaA7H'7"' a||]go:
1 A P
{x: (zg) €ewn —X): sup — Z (H k(x),zl,~-~ ,zn,1||) " < 00,
r—oo hy P
kel,
for some p > 0 and for every z1,---,2z5_1 EX}.
If we take p = (pr) = 1 for all k, then we get
[cvMyAvu'v"' a'||]0:
. 1 Ap(z) — L
{o= (@) € wln—X): lim 5= 37 {Mk(|k(p),zh~-~ zn-all)] =0,
kel
for some p > 0,L € X and for every z1, -, 2,1 EX},
[67M7A7||'7"' 7” ]8 =
.1 Ay (x)
{x— (zg) € win — X) : Tlggo—r Z [Mk<|\ P 21, 7Zn—1||)] =0,
kel
for some p > 0 and for every zi,-+-, 2,1 EX}
and
[C,M,A,H'7"' 5||]ZO:
1 Ap(x
{x: (xg) € w(n —X): sup — Z [Mk<\| at ),21,~-- ,zn_1||>} < 00,
r—00 h'r 14
kel
for some p >0 and for every z1,---,2z,_1 EX}.

The following inequality will be used throughout the paper. If 0 < infy pr = Hg <
pr < sup, = H < 0o, K = max(1,2771) and H = suppy < oo, then
k

(1.1) ok + g™ < K(lzg[P + |yel™),

for all k € N and y,y;, € C. Also |z4|P* < max(1, |z3|H) for all z, € C.

2. SOME PROPERTIES OF DIFFERENCE SEQUENCE SPACES

Theorem 2.1. Let M = (M},) be a Musielak-Orlicz function and p = (pi) be a

bounded sequence of positive real numbers. Then [ ¢, M,p, A, ||, ,+|| 1%, [ e, M,p, A ||+ -] 1§
and [ ¢, M,p, A, ||-,--- ,-|| 1% are linear spaces over the field of complex numbers C.
Proof. Let = = (x1,),y = (yx)€[ ¢, M,p, A, ||-,--- ,-|| ]§ and o, 3 € C. Then there

exist positive numbers p; and ps such that
. 1 Ap(x) Pk
B S (T )

and

lim hi Z [Mk(HA];(f),zl,-” ,Zn_lﬂﬂpk =0,.
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Let p3 = max(2|a|p1,2|8|p2). Since M = (M) is non-decreasing convex function,
by using inequality (1.1), we have

hi Z {Mk<||w’zh... ,Zn—lH)rk

" kel P3
1 alg(x A Pk
- L [Mk<|| GO ||+ M7Z1v'“ 7Zn—1||>:|
" kel Pa p
1 1 Ap(x Pk
SK}T E{Mk(Hﬁlev”'7zn—1||):|
" kel P
1 1 A Pk
+Kh7 Dhe |:Mk:<|| k(y);zlv 7Zn—1||):|
" kel p2
1 A (z Pk
SK}T {Mk(H d )7217 ;Zn—1||>}
T kel P
1 A Pk
F K (1Y )]
" kel,
— 0 as r — 0
ThUS, we have le"‘ﬁy S [CvapuAv ||7 e 7” ]8 Hence [67M7P7A7 Hv e 7|| ]8 is
a linear space. Similarly, we can prove that [ ¢, M,p, A, ||-,--- ,-|| ]9 and [ ¢, M, p, A, ||-,- -+ ,-]| ]
are linear spaces. O
Theorem 2.2. For any Musielak-Orlicz function M = (M) and a bounded se-
quence p = (pi) of positive real numbers, [ ¢, M,p, A, ||-,--- || 18 is a topological
linear space paranormed by
Pr 1 A p *
g(l’) = inf {pﬁ : (E Z |:Mk(” kp(x)azh"' ,Zn_1||):| k) " < 17T S N}7
kEL,
where H = max(1, supy, px < 00).
Proof. Clearly g(x) >0 for x = (w3) € [¢, M, p, A, ||-,--+ || ]§. Since M;(0) = 0,
we get g(0) = 0. Again, if g(z) = 0, then
pr 1 A p *
inf {pﬁ : (— Z [Mk<|\ﬂ,zl,~~ ,zn,1||)] k) "<lre N} =0.
by p
keI,
This implies that for a given € > 0, there exists some p.(0 < p < €) such that
1 Ap(x P\ B
(e 3= [ (152 e al)] ) <1
he Pe
kel
Thus
1 Ax(x) Pr\ 7 1 Ag(z) PEN T
G 2 (1750 mnal) )7 < G 0 [Me(175 55200 2all) )
kel keI,

0

oo
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for each r. Suppose that x # 0 for each k € N. This implies that Ag(z) # 0, for
each k € N. Let ¢ — 0, then ||A’“e($),z1, <+, Zp—1|| — oo. Tt follows that

(o5 42 )]

" kel,

which is a contradiction. Therefore, Ay (z) = 0 for each k and thus = = 0 for each
k € N. Let p; > 0 and p2 > 0 be such that

(i 2 (12 o)) <

" kel,
A p
k(y)azlv"' ,Zn—1||>:| k) S 1
P2

for each r. Let p = p; 4+ p2. Then, by Minkowski’s inequality, we have

(3 (2 )]

" kel
(3 (AR )]

T~

and

=

(7 3 o

kel

" kel,
= (k; [p1lj:p2Mk<||A,,€0(1x)’Zl"" ’Z"‘lu)
)6k
<(p1[j:/)2)(h1k [ (17 )] )

() G X (2 e )] )

<1

Since p’s are non-negative, so we have

(hiz{ (HAk(w-l—y) 21, 7Zn_1|\) pk)% Sl,TGN},
" ker

[d

|
<int {pfF (230 [t (P28 ))) T <1 o)

[y

g(z +y) = inf {p

"d

' kel
1
it (o < (1 5 (122 )] 1)

Therefore,
9(x +y) < g(x) + g(y).

Finally, we prove that the scalar multiplication is continuous. Let p be any complex
number. By definition,
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g(ux) = inf{p% : (hi Z {Mk(|Ak§:x),zh~-~ 7zn,1||>rk)% <l,re N}.

" kel
Then
o) = it { (i)« (-2 37 [ (12 2y )]7) T < 1ren),
" keI,

where t = ﬁ. Since |p/Pr < max(1, |p|*"PPr), we have

) pr 1 A PrN\ T
g(pz) < max(1, |p[™*PP")inf {t? : (h— Z [Mk(H@,zh ,Zn71‘|>i| k) "<1re N}.
" kel,

So, the fact that scalar multiplication is continuous follows from the above inequal-
ity.

This completes the proof of the theorem. O
Theorem 2.3. Let M = (M) be a Musielak-Orlicz function. If sup[M(z)]"* < oo

k

for all fized x > 0, then [ ¢, M,p, A, ||-,--- ,-[| 18 C [ e, M,p, A ||, -+, -] 1%

Proof. Let x = (zx) € [ ¢, M,p, A, ||-,-- - ,|| ]9 There exists some positive p; such

that ) (o)
. T Pk
lim — g [Mk(” b ,zl,~~~,zn_1|\)} =0.
r—co f1
kel
Define p = 2p;. Since M = (M},) is non-decreasing and convex, by using inequality

(1.1), we have

1 Ay (z P
sup - 37 [an (122 )]
B kel p

1 Ap(z) — L+ L Pk
kS (AL

r e el p
1 1 Ak(x) L Pk
<KSl7lph77, Z [?Mk(H o1 3 R, ;Zn71||):|
kel,.
1 1 L Pk
+K51:ph—T Z [WMIC(H 1,217 »Zn71||>}
kel,
1 Ap(z) — L Pk
SKSUP}TZ {Mk(H () ) 215 ,anlu)}
r r kel, P1
1 Pk
+Ksuph— [Mk(H ) 21, 7zn—1||>}
r r kel,
< 00.
HeHCe.’ﬂ:(xk)e[CvMap7A7H'7"'7'|Hgo' O

Theorem 2.4. Let 0 < infp, = g < pp < suppry = H < o0 and M = (My),
M' = (M) are Musielak-Orlicz functions satisfying Aq-condition, then we have
(Z) [C,M’,p,A,H-,”' 7|| ]6 c [C,MOM’,p,A,H~,~~' a|| ]07
(“) [CaMlvvavn'»"' 7” ]8 - [c,MOM’,p7A7||-7--- 7|| ]87
(m) [C,M’,p,/\,||~,~-- ’|| ]go C [C’MOM/7P7A>||'7"' 7” ]go
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Proof. Let x = (z1) € [, M',p, A, ||-,--+ ,|]]°. Then we have
1 Ap(x)— L Pk
Tll}rgohi'r’kgl: |:M/i:<||k(p)azla aZ7L—1||>:| 207 for some L.

Let € > 0 and choose § with 0 < § < 1 such that Mg(t) < e for 0 <t <. Let
A —L
Yk = M,g(||%,zl,-.. ,zn_lﬂ) for all k€ N.
p

We can Write

M = S DRl e Y M)

kel kelr,yr<s " k€L yk>s
Since M = (M},) satisfies Ag-condition, we have
1 1
7 > [Mi(y)l?* < [Mp(1)]? " > M)
" kel yr<é kel y,<s
1
(2.1) < [Mp(2))" " > My
kel yr<é
For y, > 6
Yk
< =<1+ =
<G <1t

Since M = (M},) is non-decreasing and convex, it follows that

M) < M (14+2) < 5002 + 5 M ().

Since (M},) satisfies Ag-condition, we can write

1 1
Mi(yx) < 2T 5 £ M (2) + 2T 5 " My, (2)
= T%’ch@).
Hence,
1 T My (2) 1 Pk
J— Pk J—
@2 o X Dhor < me (L(FED) DT )
k€L Yk>s kel yr>4

from equations (2.1) and (2.2), we have

T = (‘Tk:) € [C,M oM,apaA7||'7"' a'||]0'
This completes the proof of (i). Similarly, we can prove that

[e, M C e, Mo MY

and

[CaM/oao C [cvM OM/7P7A= ||7 7” ]go

O
Corollary 2.1. Let 0 < infpy = h < pr, <suppr = H < oo and M = (My) be a
Musielak-Orlicz function satisfying Ag-condition, then we have
[CaM/avav ||7 7” ]8 C [CvMavav ||7 ’H }8

and
[C7M/7P»A7H'7"' ’|| }zo C [C7M7P7A’H'7"' 7|| ]go
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Proof. Taking M’(z) = x in Theorem 2.4, we get the required result. O

Theorem 2.5. Let M = (My) be a Musielak-Orlicz function. Then the following
statements are equivalent:

(Z) [C’vavH'a"' 7|| ]%c - [C,M,p,A,H°,°" a|| ]gxw
(“) [Cvvaﬂn""' 7” ]0 - [C,M,p,A7||-7--~ 7” ]007
fiii) sup — 3 [Me(D)P* < o0 (t,p > 0).
r By P ’
kel,
Proof. (i) = (ii) The proof is obvious in view of the fact that [ ¢,p, A, [|-,--+ -] 1§ C [ e,p, Ay |-+ -] %
(ii) = (iii) Let [ ¢, p, A, ||+, 1§ € [ e, M, p, A, ||+ -+, -] 1%, - Suppose that (iii)

does not hold. Then for some ¢, p > 0
1 t
sup 5~ Z [M(=)]P* = o0
r T kel 1%
and therefore we can find a subinterval I,.(;) of the set of interval I,. such that

-1

(2.3) hrl(j 3 [Mk<j7)rk>j,j:1,27

) kel

Define the sequence x = (z) by

1
_ J ) ke I’I‘(j)
Anle) = { 0, k¢l forall seN.
Thenz = (xk) € [C7pa Aa ||a T mg but by equation (23)1 T = (Jﬂk) g [CvMap7A7 H7 e 7|| }207
which contradicts (ii). Hence (iii) must hold.
(iii) = (i) Let (iii) hold and = = () € [, p, A, ||, , || ]%. Suppose that x = (x1,) & [¢, M, p, A, |-, -
Then
1 A P
(2.4 sup i 3 [0 (IPE ol = o
kel,
Let t = ||Ax(x), 21, -, zn—1]| for each k, then by equations (2.4)
1 t
swp - > M ()] = oo
kel,
which contradicts (#i¢). Hence (¢) must hold. O

Theorem 2.6. Let 1 < pp < suppr < oo and M = (M) be a Musielak Orlicz
function. Then the following statements are equivalent:

(Z) [C’MavaaH'v"' 7|| ]80C [C,p,A,H-,'” "|”(9)70
(”) [Caj\llapw/\v”'v"' %H LO C [CvpaA7||'7"' vH ]oo;
.. . k
(iii) ngfh—r Z [M;%;)} >0 (t,p>0).
kel,
Proof. (i) = (ii) It is trivial.
(ii) = (iii) Let (ii) hold. Suppose that (iii) does not hold. Then

n;fhi 3 [Mk(%)}pk =0 (t,p>0),

" kel
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so we can find a subinterval I,.(;) of the set of interval I,. such that

1 1\ 1Pk . .
(2.5) o Z |:Mk<l)} <7 17 71=12.
(9) kel P

Define the sequence x = (z) by

_ ] J kel
Anlz) = { 0, k¢l foral seN.

Thus by equation (2.5), x = (x1) € [ ¢, M, p, A, ||-,--- ,|[]§, but by equation (2.3),
= (x1) & [c,p, A, ||-,-- -, || ]%, which contradicts (ii). Hence (iii) must hold.

(iii) = (i) Let (iii) hold and suppose that = = (z3) € [ ¢, M,p, A, |-+ || 15,
i.e,

. 1 Ap(x Pk
(2.6) rlggoth Z [Mk(H klg )7217... ,%—1”)} =0, for some p > 0.
kel,

Again, suppose that x = (x3) € [ ¢, p, A, ||-,- -+ , || ]§. Then, for some number ¢ > 0
and a subinterval I,.(;) of the set of interval I,., we have ||Ax(z), 21, ,2n-1]| > €

for all £ € N and some s > sg. Then, from the properties of the Orlicz function, we

can write
Ak x p €\ Pk
Mk(” ( )77«'1;"' ’Zn—1||> ZMk(*>
p k P

and consequently by (2.6)
. 1 €\ 1Px
tim g > [ (5)] =0,
which contradicts (iii). Hence (i) must hold. O
Theorem 2.7. Let 0 < pi < qr for all k € N and (q—’“) be bounded. Then,

Pk
[c,M,q,A,||-,~-- 7” ]9 C [C,M,p,A,H',"' ’_H]O.

Proof. Let x € [ ¢, M, q, A, ||-,--- || ]?. Write
Ap(x)— L qk
tk = |:Mk(||k(p)7217 7Zn71||)i|

and pi = %foraﬂk €N. Then0 < pup, <1 for ke N.Take0 < pu < py for k € N.
Define the sequences (uy) and (vg) as follows: For tg > 1, let ux =t and vy =0
and for t; < 1, let up = 0 and vy = tx. Then clearly for all k¥ € N, we have

te = ug + vg, thr = u* + ol
Now it follows that u}* < uj <t and vi* < v}. Therefore,

LA ML D EL ) DR D 9E3

" kel, kel, " kel, " kel,
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Now for each k,

1 u 1 w1l \1-k
k=3 () (5)
kel, kel
1 BT\ B 1\ 1=my i\ 1-H
(G 1) (216G 1)
kel, " ker, "
(r )"
= | — Vg
hy kel,
and so
1 1 "
n
. tkkghjztk'i_(hjzvk
kel, kel, kel
HeHC@?ﬂG[C,M,HAaH'a'“7‘||]9- -

Theorem 2.8. (a) If 0 <infpy <pp <1 forall k € N, then
[caM;vavn'a"' 7|| ]9 C [CvMaA’H'v"' a|| ]0'

(b) If 1 < pp <suppp < oo forall k€ N. Then

[CvMaA’H'v"' ’|| ]9 - [C’MvpaAvH'»"' a|| ]0‘
Proof. (a) Let € [ ¢, M,p,A,||,--+ || 1%, then
. 1 Ak(l’)fL Pk .
S B )]

Since 0 < inf pp < pr < 1. This implies that

lim hir Z |:Mk(”M,Zl,... 7,zn_l”H

r—oo P
kel,
1 A —L P
< lim — Z |:Mk(”&azla”' 7Zn—1||):| k7
r—oo h, P
kel,
1 A —L
therefore, lim — > [Mk(HL,zl,--- nall)] =o0.
rovee iy kel p
This shows that x € [ ¢, M, A, ||, ,+|| |- Therefore,
[C,M,I%Avﬂ'a"' 7|| ]6 C [67M5A7||'7"' v|| ]0'

This completes the proof.
(b) Let pr > 1 for each k and suppy < oo. Let z € [¢,p, A, ||-,--+,-||]°. Then
for each € > 0 there exists a positive integer N such that

. 1 Ak(x)—L Pk
O ()
1mhrl; atl p 21 Zn—1|]

Since 1 < p < sup pi < 00, we have
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— Pr
lim — 3" [Mk(nA’“( =L ,zn,lm
r—oo h,.
kel,.
< lim £ Z [Mk(HM;Zh ,Zn—1||)]
r—00 hr p
kel,
=0
< 1.
Therefore z € [ ¢, M,p, A, ||-,--- || . O
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