SOME PARANORMED SEQUENCE SPACES DEFINED BY A MUSIELAK-ORLICZ FUNCTION OVER N-NORMED SPACES

AYHAN ESI AND S. K. SHARMA

ABSTRACT. In this paper we present new classes of sequence spaces using lacunary sequences and a Musielak-Orlicz function over *n*-normed spaces. We examine some topological properties and prove some interesting inclusion relations between them.

1. Introduction and preliminaries

The concept of 2-normed spaces was initially developed by Gähler [5] in the mid of 1960's, while that of n-normed spaces one can see in Misiak [14]. Since then, many others have studied this concept and obtained various results, see Gunawan ([6], [7]) and Gunawan and Mashadi [8]. Let $n \in \mathbb{N}$ and X be a linear space over the field \mathbb{K} , where \mathbb{K} is field of real or complex numbers of dimension d, where $d \geq n \geq 2$. A real valued function $||\cdot, \cdots, \cdot||$ on X^n satisfying the following four conditions:

- (1) $||x_1, x_2, \dots, x_n|| = 0$ if and only if x_1, x_2, \dots, x_n are linearly dependent in X:
- (2) $||x_1, x_2, \dots, x_n||$ is invariant under permutation;
- (3) $||\alpha x_1, x_2, \dots, x_n|| = |\alpha| \ ||x_1, x_2, \dots, x_n||$ for any $\alpha \in \mathbb{K}$, and
- (4) $||x+x', x_2, \dots, x_n|| \le ||x, x_2, \dots, x_n|| + ||x', x_2, \dots, x_n||$

is called an *n*-norm on X, and the pair $(X, ||\cdot, \cdots, \cdot||)$ is called a *n*-normed space over the field \mathbb{K} .

For example, we may take $X = \mathbb{R}^n$ being equipped with the n-norm $||x_1, x_2, \dots, x_n||_E$ = the volume of the n-dimensional parallelopiped spanned by the vectors x_1, x_2, \dots, x_n which may be given explicitly by the formula

$$||x_1, x_2, \cdots, x_n||_E = |\det(x_{ij})|,$$

where $x_i = (x_{i1}, x_{i2}, \dots, x_{in}) \in \mathbb{R}^n$ for each $i = 1, 2, \dots, n$. Let $(X, ||\cdot, \dots, \cdot||)$ be an *n*-normed space of dimension $d \geq n \geq 2$ and $\{a_1, a_2, \dots, a_n\}$ be linearly

²⁰⁰⁰ Mathematics Subject Classification. 40A05, 46A45, 40C05A..

Key words and phrases. n-norm, paranorm space, Orlicz function, Musielak-Orlicz function.

independent set in X. Then the following function $||\cdot, \cdots, \cdot||_{\infty}$ on X^{n-1} defined by

$$||x_1, x_2, \cdots, x_{n-1}||_{\infty} = \max\{||x_1, x_2, \cdots, x_{n-1}, a_i|| : i = 1, 2, \cdots, n\}$$

defines an (n-1)-norm on X with respect to $\{a_1, a_2, \dots, a_n\}$.

A sequence (x_k) in a n-normed space $(X, ||\cdot, \cdots, \cdot||)$ is said to converge to some $L \in X$ if

$$\lim_{k \to \infty} ||x_k - L, z_1, \cdots, z_{n-1}|| = 0 \text{ for every } z_1, \cdots, z_{n-1} \in X.$$

A sequence (x_k) in a *n*-normed space $(X, ||\cdot, \cdots, \cdot||)$ is said to be Cauchy if

$$\lim_{\substack{k \to \infty \\ p \to \infty}} ||x_k - x_p, z_1, \dots, z_{n-1}|| = 0 \text{ for every } z_1, \dots, z_{n-1} \in X.$$

If every cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.

Let X be a linear metric space. A function $p: X \to \mathbb{R}$ is called paranorm, if

- (1) $p(x) \ge 0$ for all $x \in X$,
- (2) p(-x) = p(x) for all $x \in X$,
- (3) $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$,
- (4) if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ as $n \to \infty$ and (x_n) is a sequence of vectors with $p(x_n x) \to 0$ as $n \to \infty$, then $p(\lambda_n x_n \lambda x) \to 0$ as $n \to \infty$.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [19, Theorem 10.4.2, pp. 183]).

For more details about sequence spaces (see [1], [2], [3], [17], [18]) and references therein.

An Orlicz function M is a function, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \longrightarrow \infty$ as $x \longrightarrow \infty$.

Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to define the following sequence space. Let w be the space of all real or complex sequences $x = (x_k)$, then

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \right\}$$

which is called as an Orlicz sequence space. The space ℓ_M is a Banach space with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}.$$

It is shown in [10] that every Orlicz sequence space ℓ_M contains a subspace isomorphic to $\ell_p(p \geq 1)$. The Δ_2 -condition is equivalent to $M(Lx) \leq kLM(x)$ for all values of $x \geq 0$, and for L > 1. A sequence $\mathcal{M} = (M_k)$ of Orlicz function is called a Musielak-Orlicz function (see [13], [16]). A sequence $\mathcal{N} = (N_k)$ is defined by

$$N_k(v) = \sup\{|v|u - (M_k) : u > 0\}, k = 1, 2, \dots$$

is called the complementary function of a Musielak-Orlicz function \mathcal{M} . For a given Musielak-Orlicz function \mathcal{M} , the Musielak-Orlicz sequence space $t_{\mathcal{M}}$ and its subspace $h_{\mathcal{M}}$ are defined as follows

$$t_{\mathcal{M}} = \Big\{ x \in w : I_{\mathcal{M}}(cx) < \infty \text{ for some } c > 0 \Big\},$$

$$h_{\mathcal{M}} = \Big\{ x \in w : I_{\mathcal{M}}(cx) < \infty \text{ for all } c > 0 \Big\},$$

where $I_{\mathcal{M}}$ is a convex modular defined by

$$I_{\mathcal{M}}(x) = \sum_{k=1}^{\infty} (M_k)(x_k), x = (x_k) \in t_{\mathcal{M}}.$$

We consider $t_{\mathcal{M}}$ equipped with the Luxemburg norm

$$||x|| = \inf\left\{k > 0 : I_{\mathcal{M}}\left(\frac{x}{k}\right) \le 1\right\}$$

or equipped with the Orlicz norm

$$||x||^0 = \inf \left\{ \frac{1}{k} \left(1 + I_{\mathcal{M}}(kx) \right) : k > 0 \right\}.$$

Let ℓ_{∞} , c and c_0 denotes the sequence spaces of bounded, convergent and null sequences $x = (x_k)$ respectively. A sequence $x = (x_k) \in \ell_{\infty}$ is said to be almost convergent if all Banach limits of $x = (x_k)$ coincide. In [9], it was shown that

$$\hat{c} = \left\{ x = (x_k) : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n x_{k+s} \text{ exists, uniformly in } s \right\}.$$

In ([11], [12]) Maddox defined strongly almost convergent sequences. Recall that a sequence $x = (x_k)$ is strongly almost convergent if there is a number L such that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} |x_{k+s} - L| = 0, \text{ uniformly in } s.$$

By a lacunary sequence $\theta=(i_r),\ r=0,1,2,\cdots$, where $i_0=0$, we shall mean an increasing sequence of non-negative integers $g_r=(i_r-i_{r-1})\to\infty$ $(r\to\infty)$. The intervals determined by θ are denoted by $I_r=(i_{r-1},i_r]$ and the ratio i_r/i_{r-1} will be denoted by q_r . The space of lacunary strongly convergent sequences N_θ was defined by Freedman [4] as follows:

$$N_{\theta} = \left\{ x = (x_k) : \lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} |x_k - L| = 0 \text{ for some } L \right\}.$$

Mursaleen and Noman [15] introduced the notion of λ -convergent and λ -bounded sequences as follows :

Let $\lambda = (\lambda_k)_{k=1}^{\infty}$ be a strictly increasing sequence of positive real numbers tending to infinity i.e.

$$0 < \lambda_0 < \lambda_1 < \cdots$$
 and $\lambda_k \to \infty$ as $k \to \infty$

and said that a sequence $x = (x_k) \in w$ is λ -convergent to the number L, called the λ -limit of x if $\Lambda_m(x) \longrightarrow L$ as $m \to \infty$, where

$$\lambda_m(x) = \frac{1}{\lambda_m} \sum_{k=1}^m (\lambda_k - \lambda_{k-1}) x_k.$$

The sequence $x = (x_k) \in w$ is λ -bounded if $\sup_m |\Lambda_m(x)| < \infty$. It is well known [15] that if $\lim_m x_m = a$ in the ordinary sense of convergence, then

$$\lim_{m} \left(\frac{1}{\lambda_m} \left(\sum_{k=1}^{m} (\lambda_k - \lambda_{k-1}) |x_k - a| \right) = 0.$$

This implies that

$$\lim_{m} |\Lambda_{m}(x) - a| = \lim_{m} \left| \frac{1}{\lambda_{m}} \sum_{k=1}^{m} (\lambda_{k} - \lambda_{k-1})(x_{k} - a) \right| = 0$$

which yields that $\lim_m \Lambda_m(x) = a$ and hence $x = (x_k) \in w$ is λ -convergent to a.

Let $(X, ||\cdot, \dots, \cdot||)$ be a n-normed space and w(n-X) denotes the space of X-valued sequences. Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function and $p = (p_k)$ be a bounded sequence of positive real numbers. Then we define the following sequence spaces in the present paper:

$$[c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta} =$$

$$\left\{ x = (x_k) \in w(n-X) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Lambda_k(x) - L}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} = 0, \right\}$$

for some $\rho > 0, L \in X$ and for every $z_1, \dots, z_{n-1} \in X$,

$$[c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^{\theta} =$$

$$\left\{ x = (x_k) \in w(n - X) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Lambda_k(x)}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} = 0, \right\}$$

for some $\rho > 0$ and for every $z_1, \dots, z_{n-1} \in X$

and

$$[c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta} =$$

$$\left\{ x = (x_k) \in w(n - X) : \sup_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Lambda_k(x)}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} < \infty, \right\}$$

for some $\rho > 0$ and for every $z_1, \dots, z_{n-1} \in X$.

When, $\mathcal{M}(x) = x$, we get

$$[c, p, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta} =$$

$$\left\{ x = (x_k) \in w(n - X) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left(|| \frac{\Lambda_k(x) - L}{\rho}, z_1, \cdots, z_{n-1} || \right)^{p_k} = 0, \right\}$$

for some $\rho > 0, L \in X$ and for every $z_1, \dots, z_{n-1} \in X$,

$$[c, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^{\theta} =$$

$$\left\{ x = (x_k) \in w(n - X) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I} \left(|| \frac{\Lambda_k(x)}{\rho}, z_1, \cdots, z_{n-1} || \right)^{p_k} = 0, \right.$$

for some
$$\rho > 0$$
 and for every $z_1, \dots, z_{n-1} \in X$

and

$$[c, p, \Lambda, ||\cdot, \dots, \cdot||]_{\infty}^{\theta} =$$

$$\left\{ x = (x_k) \in w(n - X) : \sup_{r \to \infty} \frac{1}{h_r} \sum_{k \in L} \left(\left| \left| \frac{\Lambda_k(x)}{\rho}, z_1, \dots, z_{n-1} \right| \right| \right)^{p_k} < \infty, \right\}$$

for some $\rho > 0$ and for every $z_1, \dots, z_{n-1} \in X$.

If we take $p = (p_k) = 1$ for all k, then we get $[c, \mathcal{M}, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta} =$

$$\left\{ x = (x_k) \in w(n - X) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_n} \left[M_k \left(|| \frac{\Lambda_k(x) - L}{\rho}, z_1, \cdots, z_{n-1} || \right) \right] = 0, \right\}$$

for some $\rho > 0, L \in X$ and for every $z_1, \dots, z_{n-1} \in X$,

$$[c, \mathcal{M}, \Lambda, ||\cdot, \cdots, \cdot||]_0^{\theta} =$$

$$\left\{ x = (x_k) \in w(n - X) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_n} \left[M_k \left(|| \frac{\Lambda_k(x)}{\rho}, z_1, \cdots, z_{n-1} || \right) \right] = 0, \right\}$$

for some $\rho > 0$ and for every $z_1, \dots, z_{n-1} \in X$

and

$$[c, \mathcal{M}, \Lambda, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta} =$$

$$\left\{x = (x_k) \in w(n-X) : \sup_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\left| \left| \frac{\Lambda_k(x)}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right] < \infty, \right\}$$

for some
$$\rho > 0$$
 and for every $z_1, \dots, z_{n-1} \in X$.

The following inequality will be used throughout the paper. If $0 \le \inf_k p_k = H_0 \le p_k \le \sup_k = H < \infty$, $K = \max(1, 2^{H-1})$ and $H = \sup_k p_k < \infty$, then

$$(1.1) |x_k + y_k|^{p_k} \le K(|x_k|^{p_k} + |y_k|^{p_k}),$$

for all $k \in \mathbb{N}$ and $x_k, y_k \in \mathbb{C}$. Also $|x_k|^{p_k} \leq \max(1, |x_k|^H)$ for all $x_k \in \mathbb{C}$.

2. Some properties of difference sequence spaces

Theorem 2.1. Let $M=(M_k)$ be a Musielak-Orlicz function and $p=(p_k)$ be a bounded sequence of positive real numbers. Then $[c, M, p, \Lambda, ||., \cdots, \cdot||]^{\theta}$, $[c, M, p, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta}$ and $[c, M, p, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta}$ are linear spaces over the field of complex numbers C.

Proof. Let $x = (x_k), y = (y_k) \in [c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^\theta$ and $\alpha, \beta \in \mathbb{C}$. Then there exist positive numbers ρ_1 and ρ_2 such that

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_n} \left[M_k \left(|| \frac{\Lambda_k(x)}{\rho_1}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} = 0,$$

and

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\left| \left| \frac{\Lambda_k(x)}{\rho_2}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k} = 0,.$$

Let $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since $\mathcal{M} = (M_k)$ is non-decreasing convex function, by using inequality (1.1), we have

$$\begin{split} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Lambda_k(\alpha x + \beta y)}{\rho_3}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \\ &= \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\alpha \Lambda_k(x)}{\rho_3}, z_1, \cdots, z_{n-1} || + \frac{\beta \Lambda_k(y)}{\rho_3}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \\ &\leq K \frac{1}{h_r} \sum_{k \in I_r} \frac{1}{2^{p_k}} \left[M_k \left(|| \frac{\Lambda_k(x)}{\rho_1}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \\ &+ K \frac{1}{h_r} \sum_{k \in I_r} \frac{1}{2^{p_k}} \left[M_k \left(|| \frac{\Lambda_k(y)}{\rho_2}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \\ &\leq K \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Lambda_k(y)}{\rho_1}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \\ &+ K \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Lambda_k(y)}{\rho_1}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \\ &\to 0 \quad \text{as} \quad r \to \infty. \end{split}$$

Thus, we have $\alpha x + \beta y \in [c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^{\theta}$. Hence $[c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^{\theta}$ is a linear space. Similarly, we can prove that $[c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]_{\theta}^{\theta}$ and $[c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}$ are linear spaces.

Theorem 2.2. For any Musielak-Orlicz function $M = (M_k)$ and a bounded sequence $p = (p_k)$ of positive real numbers, $[c, M, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^{\theta}$ is a topological linear space paranormed by

$$g(x) = \inf \Big\{ \rho^{\frac{p_r}{H}} : \Big(\frac{1}{h_r} \sum_{k \in I} \Big[M_k(||\frac{\Lambda_k(x)}{\rho}, z_1, \cdots, z_{n-1}||) \Big]^{p_k} \Big)^{\frac{1}{H}} \le 1, r \in \mathbb{N} \Big\},$$

where $H = \max(1, \sup_k p_k < \infty)$.

Proof. Clearly $g(x) \ge 0$ for $x = (x_k) \in [c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^{\theta}$. Since $M_k(0) = 0$, we get g(0) = 0. Again, if g(x) = 0, then

$$\inf\left\{\rho^{\frac{p_r}{H}}: \left(\frac{1}{h_r}\sum_{k\in I}\left[M_k\left(||\frac{\Lambda_k(x)}{\rho},z_1,\cdots,z_{n-1}||\right)\right]^{p_k}\right)^{\frac{1}{H}}\leq 1, r\in\mathbb{N}\right\}=0.$$

This implies that for a given $\epsilon > 0$, there exists some $\rho_{\epsilon}(0 < \rho_{\epsilon} < \epsilon)$ such that

$$\left(\frac{1}{h_r}\sum_{k\in I_n}\left[M_k\left(||\frac{\Lambda_k(x)}{\rho_\epsilon},z_1,\cdots,z_{n-1}||\right)\right]^{p_k}\right)^{\frac{1}{H}}\leq 1.$$

Thus

$$\left(\frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\left| \left| \frac{\Lambda_k(x)}{\epsilon}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k} \right)^{\frac{1}{H}} \leq \left(\frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\left| \left| \frac{\Lambda_k(x)}{\rho_{\epsilon}}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k} \right)^{\frac{1}{H}} \leq 1,$$

for each r. Suppose that $x \neq 0$ for each $k \in N$. This implies that $\Lambda_k(x) \neq 0$, for each $k \in N$. Let $\epsilon \longrightarrow 0$, then $||\frac{\Lambda_k(x)}{\epsilon}, z_1, \cdots, z_{n-1}|| \longrightarrow \infty$. It follows that

$$\left(\frac{1}{h_r}\sum_{k\in I_r}\left[M_k\left(||\frac{\Lambda_k(x)}{\epsilon},z_1,\cdots,z_{n-1}||\right)\right]^{p_k}\right)^{\frac{1}{H}}\longrightarrow\infty,$$

which is a contradiction. Therefore, $\Lambda_k(x) = 0$ for each $k \in \mathbb{N}$. Let $\rho_1 > 0$ and $\rho_2 > 0$ be such that

$$\left(\frac{1}{h_r}\sum_{k\in I_r}\left[M_k\left(||\frac{\Lambda_k(x)}{\rho_1}, z_1, \cdots, z_{n-1}||\right)\right]^{p_k}\right)^{\frac{1}{H}} \le 1$$

and

$$\left(\frac{1}{h_r} \sum_{k \in I} \left[M_k \left(\left| \left| \frac{\Lambda_k(y)}{\rho_2}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1$$

for each r. Let $\rho = \rho_1 + \rho_2$. Then, by Minkowski's inequality, we have

$$\begin{split} & \Big(\frac{1}{h_r} \sum_{k \in I_r} \Big[M_k \Big(|| \frac{\Lambda_k(x+y)}{\rho}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \Big)^{\frac{1}{H}} \\ & \leq \Big(\frac{1}{h_r} \sum_{k \in I_r} \Big[M_k \Big(|| \frac{\Lambda_k(x) + \Lambda_k(y)}{\rho_1 + \rho_2}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \Big)^{\frac{1}{H}} \\ & \leq \Big(\sum_{k \in I_r} \Big[\frac{\rho_1}{\rho_1 + \rho_2} M_k \Big(|| \frac{\Lambda_k(x)}{\rho_1}, z_1, \cdots, z_{n-1} || \Big) \Big) \\ & + \frac{\rho_2}{\rho_1 + \rho_2} M_k \Big(|| \frac{\Lambda_k(y)}{\rho_2}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \Big)^{\frac{1}{H}} \\ & \leq \Big(\frac{\rho_1}{\rho_1 + \rho_2} \Big) \Big(\frac{1}{h_r} \sum_{k \in I_r} \Big[M_k \Big(|| \frac{\Lambda_k(x)}{\rho_1}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \Big)^{\frac{1}{H}} \\ & + \Big(\frac{\rho_2}{\rho_1 + \rho_2} \Big) \Big(\frac{1}{h_r} \sum_{k \in I_r} \Big[M_k \Big(|| \frac{\Lambda_k(y)}{\rho_2}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \Big)^{\frac{1}{H}} \\ & \leq 1 \end{split}$$

Since $\rho's$ are non-negative, so we have

$$\begin{split} g(x+y) &= \inf \Big\{ \rho^{\frac{p_r}{H}} : \Big(\frac{1}{h_r} \sum_{k \in I_r} \Big[M_k \Big(|| \frac{\Lambda_k(x+y)}{\rho}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \Big)^{\frac{1}{H}} \leq 1, r \in \mathbb{N} \Big\}, \\ &\leq \inf \Big\{ \rho^{\frac{p_r}{H}} : \Big(\frac{1}{h_r} \sum_{k \in I_r} \Big[M_k \Big(|| \frac{\Lambda_k(x)}{\rho_1}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \Big)^{\frac{1}{H}} \leq 1, r \in \mathbb{N} \Big\} \\ &+ \inf \Big\{ \rho^{\frac{p_r}{H}} : \Big(\frac{1}{h_r} \sum_{k \in I_r} \Big[M_k \Big(|| \frac{\Lambda_k(y)}{\rho_2}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \Big)^{\frac{1}{H}} \leq 1, r \in \mathbb{N} \Big\}. \end{split}$$

Therefore,

$$g(x+y) \le g(x) + g(y).$$

Finally, we prove that the scalar multiplication is continuous. Let μ be any complex number. By definition,

$$g(\mu x) = \inf \left\{ \rho^{\frac{p_r}{H}} : \left(\frac{1}{h_r} \sum_{k \in I} \left[M_k \left(|| \frac{\Lambda_k(\mu x)}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1, r \in \mathbb{N} \right\}.$$

Then

$$g(\mu x) = \inf \Big\{ (|\mu|t)^{\frac{p_r}{H}} : \Big(\frac{1}{h_r} \sum_{t \in I} \Big[M_k \Big(|| \frac{\Lambda_k(x)}{t}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \Big)^{\frac{1}{H}} \le 1, r \in \mathbb{N} \Big\},$$

where $t = \frac{\rho}{|\mu|}$. Since $|\mu|^{p_r} \le \max(1, |\mu|^{\sup p_r})$, we have

$$g(\mu x) \leq \max(1, |\mu|^{\sup p_r}) \inf \Big\{ t^{\frac{p_r}{H}} : \Big(\frac{1}{h_r} \sum_{k \in I_r} \Big[M_k \Big(|| \frac{\Lambda_k(x)}{t}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \Big)^{\frac{1}{H}} \leq 1, r \in \mathbb{N} \Big\}.$$

So, the fact that scalar multiplication is continuous follows from the above inequal-

This completes the proof of the theorem.

Theorem 2.3. Let $M = (M_k)$ be a Musielak-Orlicz function. If $\sup_{x \in M_k} [M_k(x)]^{p_k} < \infty$ for all fixed x > 0, then $[c, M, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^\theta \subset [c, M, p, \Lambda, ||\cdot, \cdots, \cdot||]_\infty^\theta$.

Proof. Let $x = (x_k) \in [c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^{\theta}$. There exists some positive ρ_1 such that

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Lambda_k(x)}{\rho_1}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} = 0.$$

Define $\rho = 2\rho_1$. Since $\mathcal{M} = (M_k)$ is non-decreasing and convex, by using inequality (1.1), we have

$$\begin{split} \sup_{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M_{k} \left(|| \frac{\Lambda_{k}(x)}{\rho}, z_{1}, \cdots, z_{n-1} || \right) \right]^{p_{k}} \\ &= \sup_{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M_{k} \left(|| \frac{\Lambda_{k}(x) - L + L}{\rho}, z_{1}, \cdots, z_{n-1} || \right) \right]^{p_{k}} \\ &\leq K \sup_{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[\frac{1}{2^{p_{k}}} M_{k} \left(|| \frac{\Lambda_{k}(x) - L}{\rho_{1}}, z_{1}, \cdots, z_{n-1} || \right) \right]^{p_{k}} \\ &+ K \sup_{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[\frac{1}{2^{p_{k}}} M_{k} \left(|| \frac{L}{\rho_{1}}, z_{1}, \cdots, z_{n-1} || \right) \right]^{p_{k}} \\ &\leq K \sup_{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M_{k} \left(|| \frac{\Lambda_{k}(x) - L}{\rho_{1}}, z_{1}, \cdots, z_{n-1} || \right) \right]^{p_{k}} \\ &+ K \sup_{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M_{k} \left(|| \frac{L}{\rho_{1}}, z_{1}, \cdots, z_{n-1} || \right) \right]^{p_{k}} \\ &< \infty. \end{split}$$

Hence $x = (x_k) \in [c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}$.

Theorem 2.4. Let $0 < \inf p_k = g \le p_k \le \sup p_k = H < \infty$ and $M = (M_k)$, $M' = (M'_k)$ are Musielak-Orlicz functions satisfying Δ_2 -condition, then we have

$$(i) \ [c, M', p, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta} \subset [c, M \circ M', p, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta},$$

$$(iii) \ [\ c,M',p,\Lambda,||\cdot,\cdots,\cdot||\]_{\infty}^{\theta} \subset [\ c,M\circ M',p,\Lambda,||\cdot,\cdots,\cdot||\]_{\infty}^{\theta}.$$

Proof. Let $x = (x_k) \in [c, \mathcal{M}', p, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta}$. Then we have

$$\lim_{r\to\infty}\frac{1}{h_r}\sum_{k\in I_r}\left[M_k'\Big(||\frac{\Lambda_k(x)-L}{\rho},z_1,\cdots,z_{n-1}||\Big)\right]^{p_k}=0, \text{ for some } L.$$

Let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $M_k(t) < \epsilon$ for $0 \le t \le \delta$. Let

$$y_k = M'_k \left(|| \frac{\Lambda_k(x) - L}{\rho}, z_1, \cdots, z_{n-1} || \right) \text{ for all } k \in \mathbb{N}.$$

We can write

$$\frac{1}{h_r} \sum_{k \in I_r} [M_k(y_k)]^{p_k} = \frac{1}{h_r} \sum_{k \in I_r, y_k < \delta} [M_k(y_k)]^{p_k} + \frac{1}{h_r} \sum_{k \in I_r, y_k > \delta} [M_k(y_k)]^{p_k}.$$

Since $\mathcal{M} = (M_k)$ satisfies Δ_2 -condition, we have

$$\frac{1}{h_r} \sum_{k \in I_r, y_k \le \delta} [M_k(y_k)]^{p_k} \le [M_k(1)]^H \frac{1}{h_r} \sum_{k \in I_r, y_k \le \delta} [M_k(y_k)]^{p_k}
\le [M_k(2)]^H \frac{1}{h_r} \sum_{k \in I_r, y_k \le \delta} [M_k(y_k)]^{p_k}$$

For $y_k > \delta$

(2.1)

$$y_k < \frac{y_k}{\delta} < 1 + \frac{y_k}{\delta}.$$

Since $\mathcal{M} = (M_k)$ is non-decreasing and convex, it follows that

$$M_k(y_k) < M_k \left(1 + \frac{y_k}{\delta}\right) < \frac{1}{2} M_k(2) + \frac{1}{2} M_k \left(\frac{2y_k}{\delta}\right).$$

Since (M_k) satisfies Δ_2 -condition, we can write

$$M_k(y_k) < \frac{1}{2} T \frac{y_k}{\delta} M_k(2) + \frac{1}{2} T \frac{y_k}{\delta} M_k(2)$$
$$= T \frac{y_k}{\delta} M_k(2).$$

Hence.

$$(2.2) \qquad \frac{1}{h_r} \sum_{k \in I_r, y_k > \delta} [M_k(y_k)]^{p_k} \le \max\left(1, \left(\frac{TM_k(2)}{\delta}\right)^H\right) \frac{1}{h_r} \sum_{k \in I_r, y_k > \delta} [(y_k)]^{p_k}$$

from equations (2.1) and (2.2), we have

$$x = (x_k) \in [c, \mathcal{M} \circ \mathcal{M}', p, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta}.$$

This completes the proof of (i). Similarly, we can prove that

$$[c,\mathcal{M}_0'^{\theta}\subset [c,\mathcal{M}\circ\mathcal{M}_0'^{\theta}]$$

and

$$[\ c,\mathcal{M}_{\infty}^{\prime\theta}\subset [\ c,\mathcal{M}\circ\mathcal{M}^{\prime},p,\Lambda,||\cdot,\cdots,\cdot||\]_{\infty}^{\theta}.$$

Corollary 2.1. Let $0 < \inf p_k = h \le p_k \le \sup p_k = H < \infty$ and $M = (M_k)$ be a Musielak-Orlicz function satisfying Δ_2 -condition, then we have

$$[\ c, \mathcal{M}', p, \Lambda, ||\cdot, \cdots, \cdot||\]_0^{\theta} \subset [\ c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||\]_0^{\theta}$$

and

$$[\ c,\mathcal{M}',p,\Lambda,||\cdot,\cdots,\cdot||\]_{\infty}^{\theta}\subset [\ c,\mathcal{M},p,\Lambda,||\cdot,\cdots,\cdot||\]_{\infty}^{\theta}.$$

Proof. Taking $\mathcal{M}'(x) = x$ in Theorem 2.4, we get the required result.

Theorem 2.5. Let $M = (M_k)$ be a Musielak-Orlicz function. Then the following statements are equivalent:

$$(i) \ [\ c,p,\Lambda,||\cdot,\cdots,\cdot||\]_{\infty}^{\theta} \subset [c,M,p,\Lambda,||\cdot,\cdots,\cdot||\]_{\infty}^{\theta}$$

$$(ii) [c, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^{\theta} \subset [c, M, p, \Lambda, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta},$$

tiements the equivalent.

(i)
$$[c, p, \Lambda, ||\cdot, \dots, \cdot||]_{\infty}^{\theta} \subset [c, M, p, \Lambda, ||\cdot, \dots, \cdot||]_{\infty}^{\theta},$$

(ii) $[c, p, \Lambda, ||\cdot, \dots, \cdot||]_{0}^{\theta} \subset [c, M, p, \Lambda, ||\cdot, \dots, \cdot||]_{\infty}^{\theta},$

(iii) $\sup_{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} [M_{k}(\frac{t}{\rho})]^{p_{k}} < \infty \quad (t, \rho > 0).$

Proof. (i) \Rightarrow (ii) The proof is obvious in view of the fact that $[c, p, \Lambda, || \cdot, \cdots, \cdot ||]_0^\theta \subset [c, p, \Lambda, || \cdot, \cdots, \cdot ||]_\infty^\theta$ (ii) \Rightarrow (iii) Let $[c, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^\theta \subset [c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]_\infty^\theta$. Suppose that (iii) does not hold. Then for some $t, \rho > 0$

$$\sup_{r} \frac{1}{h_r} \sum_{k \in I_r} [M_k(\frac{t}{\rho})]^{p_k} = \infty$$

and therefore we can find a subinterval $I_{r(j)}$ of the set of interval I_r such that

(2.3)
$$\frac{1}{h_{r(j)}} \sum_{k \in I_{r(j)}} \left[M_k \left(\frac{j^{-1}}{\rho} \right) \right]^{p_k} > j, j = 1, 2,$$

Define the sequence $x = (x_k)$ by

$$\Lambda_k(x) = \left\{ \begin{array}{ll} j^{-1}, \ k \in I_{r(j)} \\ 0, \quad k \not \in I_{r(j)} \end{array} \right. \text{for all } s \in \mathbb{N}.$$

Then $x = (x_k) \in [c, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^\theta$ but by equation (2.3), $x = (x_k) \notin [c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]_\infty^\theta$ which contradicts (ii). Hence (iii) must hold.

(iii) \Rightarrow (i) Let (iii) hold and $x = (x_k) \in [c, p, \Lambda, ||\cdot, \dots, \cdot||]_{\infty}^{\theta}$. Suppose that $x = (x_k) \notin [c, \mathcal{M}, p, \Lambda, ||\cdot, \dots, \cdot||]_{\infty}^{\theta}$. Then

(2.4)
$$\sup_{r} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\left| \left| \frac{\Lambda_k(x)}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k} = \infty$$

Let $t = ||\Lambda_k(x), z_1, \dots, z_{n-1}||$ for each k, then by equations (2.4)

$$\sup_{r} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\frac{t}{\rho} \right) \right] = \infty,$$

which contradicts (iii). Hence (i) must hold.

Theorem 2.6. Let $1 \leq p_k \leq \sup p_k < \infty$ and $M = (M_k)$ be a Musielak Orlicz function. Then the following statements are equivalent:

(i)
$$[c, M, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^\theta \subset [c, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^\theta$$

(ii)
$$[c, M, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^\theta \subset [c, p, \Lambda, ||\cdot, \cdots, \cdot||]_\infty^\theta$$

(i)
$$[c, M, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^\theta \subset [c, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^\theta,$$

(ii) $[c, M, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^\theta \subset [c, p, \Lambda, ||\cdot, \cdots, \cdot||]_\infty^\theta,$
(iii) $\inf_r \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\frac{t}{\rho} \right) \right]^{p_k} > 0 \quad (t, \rho > 0).$

Proof. (i) \Rightarrow (ii) It is trivial.

 $(ii) \Rightarrow (iii)$ Let (ii) hold. Suppose that (iii) does not hold. Then

$$\inf_{r} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\frac{t}{\rho} \right) \right]^{p_k} = 0 \quad (t, \rho > 0),$$

so we can find a subinterval $I_{r(i)}$ of the set of interval I_r such that

(2.5)
$$\frac{1}{h_{r(j)}} \sum_{k \in I_{r(j)}} \left[M_k \left(\frac{j}{\rho} \right) \right]^{p_k} < j^{-1}, \quad j = 1, 2, .$$

Define the sequence $x = (x_k)$ by

$$\Lambda_k(x) = \begin{cases} j, & k \in I_{r(j)} \\ 0, & k \notin I_{r(j)} \end{cases} \text{ for all } s \in \mathbb{N}.$$

Thus by equation (2.5), $x = (x_k) \in [c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^{\theta}$, but by equation (2.3), $x = (x_k) \notin [c, p, \Lambda, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}$, which contradicts (ii). Hence (iii) must hold. (iii) \Rightarrow (i) Let (iii) hold and suppose that $x = (x_k) \in [c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]_0^{\theta}$, i.e.

(2.6)
$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Lambda_k(x)}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} = 0, \text{ for some } \rho > 0.$$

Again, suppose that $x=(x_k) \notin [c,p,\Lambda,||\cdot,\cdots,\cdot||]_0^{\theta}$. Then, for some number $\epsilon > 0$ and a subinterval $I_{r(j)}$ of the set of interval I_r , we have $||\Lambda_k(x), z_1, \cdots, z_{n-1}|| \ge \epsilon$ for all $k \in \mathbb{N}$ and some $s \ge s_0$. Then, from the properties of the Orlicz function, we can write

$$M_k\Big(||\frac{\Lambda_k(x)}{\rho}, z_1, \cdots, z_{n-1}||\Big)_k^p \ge M_k\Big(\frac{\epsilon}{\rho}\Big)^{p_k}$$

and consequently by (2.6)

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\frac{\epsilon}{\rho} \right) \right]^{p_k} = 0,$$

which contradicts (iii). Hence (i) must hold.

Theorem 2.7. Let $0 < p_k \le q_k$ for all $k \in N$ and $\left(\frac{q_k}{p_k}\right)$ be bounded. Then, $[c, M, q, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta} \subset [c, M, p, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta}$.

Proof. Let $x \in [c, \mathcal{M}, q, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta}$. Write

$$t_k = \left[M_k \left(|| \frac{\Lambda_k(x) - L}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{q_k}$$

and $\mu_k = \frac{p_k}{q_k}$ for all $k \in \mathbb{N}$. Then $0 < \mu_k \le 1$ for $k \in \mathbb{N}$. Take $0 < \mu < \mu_k$ for $k \in \mathbb{N}$. Define the sequences (u_k) and (v_k) as follows: For $t_k \ge 1$, let $u_k = t_k$ and $v_k = 0$ and for $t_k < 1$, let $u_k = 0$ and $v_k = t_k$. Then clearly for all $k \in \mathbb{N}$, we have

$$t_k = u_k + v_k, \qquad t_k^{\mu_k} = u_k^{\mu_k} + v_k^{\mu_k}$$

Now it follows that $u_k^{\mu_k} \leq u_k \leq t_k$ and $v_k^{\mu_k} \leq v_k^{\mu}$. Therefore,

$$\frac{1}{h_r} \sum_{k \in I_r} t_k^{\mu_k} = \frac{1}{g_h} \sum_{k \in I_r} (u_k^{\mu_k} + v_k^{\mu_k}) \le \frac{1}{h_r} \sum_{k \in I_r} t_k + \frac{1}{h_r} \sum_{k \in I_r} v_k^{\mu}.$$

Now for each k,

$$\begin{split} \frac{1}{h_r} \sum_{k \in I_r} v_k^{\mu} &= \sum_{k \in I_r} \left(\frac{1}{h_r} v_k\right)^{\mu} \left(\frac{1}{h_r}\right)^{1-\mu} \\ &\leq \left(\sum_{k \in I_r} \left[\left(\frac{1}{h_r} v_k\right)^{\mu} \right]^{\frac{1}{\mu}} \right)^{\mu} \left(\sum_{k \in I_r} \left[\left(\frac{1}{h_r}\right)^{1-\mu} \right]^{\frac{1}{1-\mu}} \right)^{1-\mu} \\ &= \left(\frac{1}{h_r} \sum_{k \in I_r} v_k\right)^{\mu} \end{split}$$

and so

$$\frac{1}{h_r} \sum_{k \in I_r} t_k^{\mu_k} \le \frac{1}{h_r} \sum_{k \in I_r} t_k + \left(\frac{1}{h_r} \sum_{k \in I_r} v_k\right)^{\mu}.$$

Hence $x \in [c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta}$.

Theorem 2.8. (a) If $0 < \inf p_k \le p_k \le 1$ for all $k \in N$, then

$$[c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta} \subset [c, \mathcal{M}, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta}$$

(b) If $1 \le p_k \le \sup p_k < \infty$ for all $k \in \mathbb{N}$. Then

$$[c, \mathcal{M}, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta} \subset [c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta}.$$

Proof. (a) Let $x \in [c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta}$, then

$$\lim_{r\to\infty}\frac{1}{h_r}\sum_{k\in I_r}\left[M_k\Big(||\frac{\Lambda_k(x)-L}{\rho},z_1,\cdots,z_{n-1}||\Big)\right]^{p_k}=0.$$

Since $0 < \inf p_k \le p_k \le 1$. This implies that

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\left| \left| \frac{\Lambda_k(x) - L}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]$$

$$\leq \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\left| \left| \frac{\Lambda_k(x) - L}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k},$$

therefore,
$$\lim_{r\to\infty}\frac{1}{h_r}\sum_{k\in I_r}\left[M_k\Big(||\frac{\Lambda_k(x)-L}{\rho},z_1,\cdots,z_{n-1}||\Big)\right]=0.$$

This shows that $x \in [c, \mathcal{M}, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta}$. Therefore,

$$[\ c,\mathcal{M},p,\Lambda,||\cdot,\cdots,\cdot||\]^{\theta}\subset [\ c,\mathcal{M},\Lambda,||\cdot,\cdots,\cdot||\]^{\theta}.$$

This completes the proof.

(b) Let $p_k \ge 1$ for each k and $\sup p_k < \infty$. Let $x \in [c, p, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta}$. Then for each $\epsilon > 0$ there exists a positive integer N such that

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Lambda_k(x) - L}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} = 0 < 1.$$

Since $1 \le p_k \le \sup p_k < \infty$, we have

$$\begin{split} \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \Big(|| \frac{\Lambda_k(x) - L}{\rho}, z_1, \cdots, z_{n-1} || \Big) \right]^{p_k} \\ & \leq \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \Big(|| \frac{\Lambda_k(x) - L}{\rho}, z_1, \cdots, z_{n-1} || \Big) \right] \\ & = 0 \\ & < 1. \end{split}$$

Therefore $x \in [c, \mathcal{M}, p, \Lambda, ||\cdot, \cdots, \cdot||]^{\theta}$.

References

- [1] A.Esi, Some new paranormed sequence spaces defined by Orlicz function, International Journal of Science, Environment and Technology, 1 (2012), 49-55.
- [2] A.Esi, Strongly lacunary summable double sequence spaces in n-normed spaces defined by ideal convergence and an Orlicz function, Advanced Modeling and Optimization, 14(2012), 70.86
- [3] A.Esi, Strongly almost summable sequence spaces in 2-normed spaces defined by ideal convergence and an Orlicz function, Stud. Univ. Babes-Bolyai Math. 57 (2012), 75-82.
- [4] A. R. Freedman, J. J. Sember and M. Raphael, Some Cesaro-type summability spaces, Proc. London Math. Soc., 37 (1978), 508-520.
- [5] S. Gahler, Linear 2-normietre Rume, Math. Nachr., 28 (1965), 1-43.
- [6] H. Gunawan, On n-inner product, n-norms, and the Cauchy-Schwartz inequality, Sci. Math. Jap., 5 (2001), 47-54.
- [7] H. Gunawan, The space of p-summable sequence and its natural n-norm, Bull. Aust. Math. Soc., 64 (2001), 137-147.
- [8] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27 (2001), 631-639.
- [9] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Mathematica, 80 (1948), 167-190.
- [10] Lindenstrauss, J. and Tzafriri, L., On Orlicz sequence spaces, Israel J. Math., 10 (1971), 345-355.
- [11] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math., 18 (1967), 345-355.
- [12] I. J. Maddox, A new type of convergence, Math. Proc. Camb. Phil. Soc., 83 (1978), 61-64.
- [13] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.
- $[14]\,$ A. Misiak, n-inner product spaces, Math. Nachr., $\mathbf{140}$ (1989), 299-319.
- [15] M. Mursaleen and A. K. Noman, On some new sequence spaces of non absolute type related to the spaces l_p and l_{∞} I, Filomat, **25** (2011), 33-51.
- [16] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034 (1983).
- [17] K. Raj, A. K. Sharma and S. K. Sharma, A Sequence space defined by a Musielak-Orlicz function, Int. J. Pure Appl. Math., 67(2011), 475-484.
- [18] K. Raj and S. K. Sharma, Some sequence spaces in 2-normed spaces defined by Musielak-Orlicz functions, Acta Univ. Sapientiae Math., 3 (2011), 97-109.
- [19] A. Wilansky, summability through Functional Analysis, North- Holland Math. stud. 85(1984).

Department of Mathematics, Adiyaman University, 02040, Adiyaman, Turkey $E\text{-}mail\ address$: aesi23@hotmail.com

School of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, J&K, India $E\text{-}mail\ address$: sunilksharma420gmail.com