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ABSTRACT. Assume that only the lists of upper k-records and lower k-records
of a finite sequence are available and the existence of a monotonic trend in
location is interested in. In this study, a distribution-free test based on the
difference between the numbers of upper and lower k-records is proposed for
this situation. The exact and asymptotic distributions of the proposed test
statistic are obtained for a random continuous sequence which is independent
and identically distributed (i.i.d.). Also, a comparison between the proposed
test and some well-known distribution-free tests is made in terms of empirical
powers.

1. INTRODUCTION

Statistical detection of a monotonic upward or downward trend in location over
time is a crucial subject in many applications. For example, in meteorology, relating
to global warming, it is inevitable and important to ask whether the mean annual
temperatures have been rising over a long-time period. Similar questions related
to the monotonic changes can also be found in many other fields. Considering
the problems of a monotonic trend detection; in general, two groups of methods,
i.e., parametric and nonparametric, are discussed in the literature. Parametric
methods are more powerful in detecting trends compare to nonparametric methods
if observations come from a normal distribution. However, when the distributional
assumption of normality fails to be the case, it is statistically appropriate to use
a nonparametric method. For this reason, various distribution-free tests related to
this issue were proposed by many authors such as Wallis and Moore [24], Moore and
Wallis [16], Wald and Wolfowitz [23], Mann [15], Daniels [6], Foster and Stuart [9],
Cox and Stuart [5], Aiyer et. al. [2], Diersen and Trenkler [7], and Hofmann and
Balakrishnan [10]. If each observation is recorded one by one in time, one of the
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rank-correlation tests like Mann-Kendall [15], Spearman’s rho [6], and Hofmann-
Balakrishnan [10] can be used for the trend detection due to their high power under
variety of distributions (see [10], [21], and [22]). On the other hand, sometimes, only
extreme values, i.e., record values (see [4]), are sequentially recorded and taken into
consideration in many areas like hydrology, meteorology, epidemiology, and sports
(see for details; [1], [3], [12], [17], [18], and [20]). In the case of such data, the
record based distribution-free tests are uniquely appropriate in order to detect a
monotonic trend in location. First examples of this kind of tests were proposed
by Foster and Stuart [9]. In the more recent literature, Diersen and Trenkler [7]
proposed more powerful versions of these tests.

In some applications like insurance claims in non-life insurance, kth-records (kth
largest or smallest values) rather than records among a sequence may be considered
(see [11] and [19]). The distributional theory of kth-records was first introduced by
Dziubdziela and Kopocinski [8]. There are many papers on the kth-records in the
literature but it appears that none of them has been related to the nonparametric
trend detection. For this reason, in this study, a nonparametric test based on the
difference between the numbers of upper and lower kth-records in a finite continuous
sequence will be proposed as a generalized version of the d-test in Foster and Stuart
[9]. This generalized version can be thought to be suitable in some situations. For
example, in sports, generally, only the k£ best and the k worst scores among all the
performances are instantly reported at the time when one of the k lists is updated.
Note that such k lists are called "bottom-k-list" and "top-k-list" (see [13] and
[14]). Sometimes, the changing numbers of both lists and the total number of the
performances from the beginning may be accessible even if all of the performances
are not available. Such situations also exist in some other fields like meteorology
and hydrology. In this context, the proposed distribution-free test will be uniquely
appropriate for detecting a monotonic increasing or decreasing trend in location.

The paper is organized as follows: The proposed test statistic is defined and its
exact distribution is derived for i.i.d. case in Section 2. In the following section,
the asymptotic distribution of the test statistic is also obtained. An illustrative
example is given in Section 4. In the last section, the comparative results of the
proposed test against Mann-Kendall’s and Foster and Stuart’s tests are presented
via Monte-Carlo simulations.

2. THE PROPOSED TEST STATISTIC AND ITS EXACT DISTRIBUTION

Let X1, X5, ..., X,, be independent continuous random variables with distribution
functions Fy, F, ..., F,, respectively. The proposed test statistic is defined as

k m
Tk,m = Z fk,r + Z Nk,r
r=1 r=k+1
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where ", =0,1<k<n,m=n-—k,
—1 if the (k + r)th observation changes only current lower kth-record,

Le., Xk+T< Xr:k+r—1
1 if the (k + r)th observation changes only current upper kth-record,

gkﬂ‘ N ie, Xk+r> Xk:k+7’—1
0 if the (k + r)th observation changes both of current upper kth-record

and current lower kth-record, i.e., Xygtr—1< Xppr< Xkiktr—1,

and
—1 if the (k 4 r)th observation changes only current lower kth-record,

e, Xppr< Xpiktro1

i 1 if the (kK 4 r)th observation changes only current upper kth-record,
k,r —

Le., Xk+T> Xr:k+r—1
0 if the (k + 7)th observation changes neither current upper kth-record
nor current lower kth-record, i.e., Xgpotr—1< Xptr< Xrikgr—1.

It is clear from the definition that the statistic of T} ,, indicates the difference
between the numbers of upper kth-records and lower kth-records in the sequence
X1, X, ..., X,,. Note that, for k = 1, this definition reduces to the definition of the
d-statistic in [9].

In i.i.d. case, since every arrangement of independent observations has an equal
probability, the probability generating functions of ; . and 7, , are obtained as
follows:

B(ser) = % P&, =i)s

1=—1
B r o, (k=r) r
kJrrS k+r +k+rs (2.1)
for1<r<kand
1 ,
E(s™r) = > P(nkﬂ.:i)sl
i=—1
k 1 r—k k
= - 2.2
Frr’ ke ke (22)

for £ < r < m. Under the null hypothesis Hy : F} = F» = ... = F,,, since the
event that the rth observation of the sequence is an upper or lower kth-record is
independent of the order among themselves of the preceding observations, one can
write the probability mass function of T ,, as
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P (Th,m—1 —ﬁ—l) (Erm =1)
+P (Tim—1=1) (@(‘k m=0) )
B B +P(Tk’m,1=t+1) $rom = —1 ,1<m<k
P (Tk,m == t) - P (Tk,mfl =1 — 1) P (nk,m — )
+P (Tk,m—l = t) P (nk,m = 0)
+P(Tk7m_1:t+1)P(nkm:fl) ,1<k<m
P(Tk,zz;:n:t—l) + (Tk me1= =t) + P(Tk,yz,;;:t+l) 1<m<k
= p(T,méth) L (Tﬁl_t) n P(Tk‘ﬁé:tﬂ) 1<k<m

where t € {—m,—m+1,...,m} and P (T} =0) = 1. In addition, the probability
generating function of T ,, can be obtained using (2.1) and (2.2) as follows:

k! 1 rs l4k—r+rs
=1

E (STk,m) _ . : (k+m7)7i forl<m<k (2.3)
k! H (rsil+k7r+rs) H (k571+r7k+ks)
r=1 r=k+1
(k+m)!+ Jfor 1 <k <m.

Note that the probability of {Tk,, =t} is the coefficient of s'™™ in s™E (s7km).
Furthermore, substituting s = ¢ in

(2.3), the following characteristic function of
T}, m is obtained as

m

k! H(krfr+2rcosu)
= (R JdJor1<m <k

e, (u) = (2.4)

:w

m
k! (k—r+2rcosu) H (r—k+2k cos u)

1 r=k+1

o) Jor 1 <k <m.

Thanks to the characteristic function in (2.4), the following first three cumulants
are derived:

™

dlo U
p= B (Ti) = [gaifg;( )] —0,
0

821
_B T OgSOTA2 (u)
0 (iu) o

S =

k+m
’”— > JJor1<m <k
r=k+1
+m

3?c+21k Z_ers) for 1<k <m
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where ), =0, and

Fam a (i)

Finally, if there is an increasing trend in X7, X, ..., X,,, it is expected that the
upper kth-records will be observed more than the lower kth-records. In other
words, in such trends, it is expected that the proposed test statistic T ., will be
large enough. Thus, for testing against the existence of a monotonic increasing
trend in location, the critical value at « level of significance can be defined as

E (T3 ) - lagloggom(u)] =0.
u=0

Ty, =min{j € {-m,-m+1,...m}: P(Tym > j) < a}.
If there is no such j that P (Tjm, > j) < «, it can not be tested at « level of
significance. For m < 5, k < 20, and a = 0.05, the critical values which are derived
using (2.3) can be given as in Table 1. Note that this table can also be used for
left-tailed and two-tailed trend tests since T, is symmetrically distributed.

3. AsymMPTOTIC DISTRIBUTION

One can see that it is difficult to obtain the critical values for large m by using
the probability generating function of T}, ,,, in (2.3). For that reason, the asymptotic
distribution of T}, ,, is derived in this section. Let T,é,m = Tkm/0k,m. Considering
(2.4), the characteristic function of 7}, for 1 < k < m can be obtained as

u k Kk —r+42rcos =
er, (W) = en, <0k’m) =11 oy

m 1 —k -+ 2kcos

x 11 T ) (3.1)

r=k+1 k: +r

Furthermore, using (3.1), the cumulative function can be derived as

k k—r+2rcosa: m r—k+2kcosm:‘
|\ u) = lo ’ u) = lo m lo o m
7, (W) =logor (u)= 3, log - +r§+1 g o
. . X k k—r+2r cos = CJ
It is clear that since ai’m — oo while m — oo, > log k—M” convergences
r=1

zero. Therefore, one can write

m T —k + 2k cos
lim U,v (u)= lim ) log J

m— oo k,m m—oo . 37 ]{:—|—’r‘

u
,m

(3.2)

Also, (3.2) can be rewritten as
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m k
lim W,v (u)= lim 3} log <1 + Vkym (u))
m— oo k,m m—oo . 7 k +7r
2.9 4.4 6.6 .. .
where vy, (u) = cos U:m -1 = Ug TRE JZ}: it Gz; & + - In addition, using

the Taylor expansion, one can write

J
k%}{crvkam (u))

2% 2% = (

1 1+ ——vpm = — 3.3

o8 < TR em (u)) o (W) + ng J (33)
Considering (3.3), one has

J
. _om 2% m o (k%vk,m (u))
lim Uy (u)= lim Y ——upm(u)+ > ——. (34
m— o0 k,m m—oo , 37y k +r re=kt1j=2
. 2R (B m(u))j : :
Since >, > EE =" 0 while m — 00, (3.4) can be rewritten as
r—hg15=2 J
lim W, (u) = lim py 0k m (1)
i u?4? n utit n u%46 n
= lim
messo PR a%,m2! ai}méﬂ Ugymﬁl
where py ,, = _Xk:ﬂ 2. While m — o0, py, ,,,/0%,, — 1 and phm/a?m — 0 for
j > 2. Thus, the following result is obtained as
2
. —u
Py (W)=

which indicates that Tk/:,m = Tk.m/0k m asymptotically follows the standard normal
distribution under the null hypothesis. In a similar way, while m — oo, one can
deduce that the asymptotic distribution of TI::,m for 1 < m < k is also standard
normal. In practice, the following standardized test statistic with a continuity
correction can be used for large m:

Tun=05 g, 50

Zk,m = 0 5 for Tk,m =0 (35)
Tk, m+0.5
kaT , for T, ., < 0.

In order to see the practical usage of this result, the exact and the asymptotic
cumulative distribution functions of T} ,, are given in Table 2 for m = 6, k =
1,5, 10, 15, 20, and nonnegative values of T}, ,,,. In this table, some numerical values
of the exact and the asymptotic cumulative distributions are derived by using (2.3)
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and (3.5), respectively. It will be seen that the approximation to the distribution
of T}, m is remarkably good at m = 6. Therefore, the asymptotic distribution can
be used instead of the exact distribution for m > 6.

4. TLLUSTRATIVE EXAMPLE

Let the data which represent the amount of annual rainfall in inches at the
Los Angeles Civic Center during the 100-year period from 1890 until 1989 (see
[3], p.180) be considered. For k = 1,2, and 3, the upper kth-records and lower
kth-records extracted from these data can be tabulated as in Table 3. Also, the
summary statistics of the monotonic increasing trend tests based on 1th-, 2nd-,
and 3rd-records have been presented as in Table 4. From this table, for each one
of the tests, it can be statistically said that there is no monotonic increasing trend
in location at a = 0.05 level of significance.

5. EMPIRICAL POWER

This section has been motivated by two different ways: (i) to compare empirical
powers of the T} ,, statistic and some well-known statistics (Mann-Kendall’s @
statistic [15] and Foster and Stuart’s d and D statistics [9]) if all of the observations
are available, and (#7) to give empirical powers of the T}, statistic for some fixed
values of k in the case that only the lists of upper kth-records and lower kth-records
of a finite sequence are available.

Let X1, X5, ..., X,, be independent continuous random variables with distribution
functions Fy, Fy, ..., F,, respectively. Recall that the Mann-Kendall’s test statistic
is

n—1 n
Q=2 > I
i=1 j=i+1
where
-1 , for X; > X
Ii,j = 1 , for X; < Xj
0 , otherwise.

and the statistics of d and D can also be defined as

and

where
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-1, for X; < X151
I, = 1, for X; > X, 1.1
0 , otherwise

-1, forY; < Yiu_1
Jj = 1, forY; >Y 1.4
0 , otherwise,

and Y; = X1 fori=1,2,...,n.
In this empirical study, we have restricted the alternative hypothesis to H; :
Fy > Fy > ... > F,. Also, we have selected the increasing trend model as

Xl:UZ—l—Ot(z), i:1,2,3,...,n

where 6 > 0, Uy, Us, ..., U, are i.i.d. random variables, and ¢ (¢) is a strictly increas-
ing trend function. In addition, the trend function has been determined as ¢ (i) = i
for linear trend, t (i) = v/2ni for concave trend, and t (i) = % for convex trend.
Furthermore, standard normal, standard logistic, and standard exponential distri-
butions have been used as underlying models for U;’s. Here, n = 10,50, a = 0.05
level of significance, and some selected k values among {2,3,...,n — 1} have been
considered. Moreover, 100,000 simulations for n = 50 and 300,000 simulations for
n = 10 have been carried out in Matlab to obtain empirical powers of the selected
tests.

The simulation results are summarized in Table 5 and 6. In the tables, the values
shown as bold represent the largest two empirical powers in each row. It can be
said that simulated a’s are sufficiently closest to the true a’s and the Q-test seems
to be the most powerful. In general, the proposed test is clearly better than the
d-test. For n = 50, the T} ,, test is observed to be more powerful than the D-test
for almost every selected k. On the other hand, for n = 10, it can be generally said
that it is less powerful than the D-test. The reason for this result may be the fact
that the true o’s of the T}, ,, tests are considerably smaller than 0.05.
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6. APPENDIX

TABLE 1. Positive critical values for T ,, derived from (2) for m <5 and k& < 20

ko Ty Tis Tps Tia Tis |k o Tin T Ty Tia Tis
1 .100 - — 3 3 3 6 .100 — 2 3 3 3
050  — — 3 4 4 .050 — 2 3 3 4
025 — — - 4 4 025 — — 3 4 4
010 — — - 4 5 010 - - — 4 5
005 — — - — ) 005 — - - 4 3
2 .100 - — 3 3 3 7 100 - 2 2 3 3
050  — — - 4 4 050 - 2 3 3 4
025 — — - 4 5 025 — - 3 4 4
010 - - — 5 010 - — 3 4 )
005 — — — — — 005 — — — 4 5
3 .100 - — - 3 4 § .100 - 2 2 3 3
050 - - - 4 4 050 — 2 3 3 4
025 — — — 4 5 025 - 2 3 4 4
010 — — — — 5 010 - — 3 4 5
005  — — — — — 005 — — — 4 5
4 100 - 2 3 3 4 9 100 1 2 2 3 3
050  — — 3 4 4 .050 — 2 3 3 4
025 — — - 4 5 025 — 2 3 3 4
010 - — - — 010 — - 3 4 4
005 - — — — — 005 — — 3 4 5
5 .100 — 2 3 3 3 |10 .100 1 2 2 3 3
050  — 2 3 4 4 050 - 2 3 3 3
025 — — 3 4 5 025 — 2 3 3 4
010 - — - 4 5 010 - - 3 4 4
005 — — — — 5 005 — — 3 4 )
11 .100 1 2 2 3 3 |16 .100 1 2 2 2 3
050 - 2 2 3 3 050 — 2 2 3 3
025 - 2 3 3 4 025 — 2 3 3 3
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TABLE 1. (Continued) Positive critical values for T}, ,, derived from (2) for
m<5and k <20

k o TI?,I T, T Tka,4 Tis | K a Ty TI?,2 Tys T4 Tl?ﬁs
010 - - 3 4 4 010 - 2 3 3 4
.005 — — 3 4 4 .005 — — 3 4 4

12 .100 1 2 2 2 3 |17 100 1 2 2 2 3
.050 — 2 2 3 3 .050 — 2 2 3 3
025 - 2 3 3 4 025 — 2 3 3 3
.010 - — 3 4 4 .010 - 2 3 3 4
005 — — 3 4 4 005 — — 3 4 4

13 .100 1 2 2 2 3 118 100 1 2 2 2 2
.050 — 2 2 3 3 .050 — 2 2 3 3
025  — 2 3 3 4 025 — 2 2 3 3
.010 — 2 3 4 4 .010 — 2 3 3 4
005 — — 3 4 4 005 — — 3 3 4

14 .100 1 2 2 2 3 119 .100 - 2 2 2 2
.050 — 2 2 3 3 .050 — 2 2 3 3
025 — 2 3 3 3 025 — 2 2 3 3
.010 2 3 3 4 010 - 2 3 3 4
.005 — — 3 4 4 .005 — 2 3 3 4

15 .100 1 2 2 2 3 20 .100 1 2 2 2 2
.050 — 2 2 3 3 050 1 2 2 2 3
025 — 2 3 3 3 025 — 2 2 3 3
.010 - 2 3 3 4 010 - 2 3 3 4
.005 — - 3 4 4 .005 — 2 3 3 4
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TABLE 2. Exact and asymptotic probabilities of the event {T} ¢ < t} for
k =1,5,10,15,20 and nonnegative integer t.

k:oke
t 1:1.7849 5:2.1102 10:1.7219 15:1.4785 20 :1.3164
0 .6069 .5898 6121 .6325 .6517
0.5%* .6103* .b937* .6142* .6324* .6480*
1 7944 7563 .8054 .8466 .8784
1.5%* .7997* .7614* .8082* .8448* .8728*
2 9192 8776 .9276 9577 9741
2.5%* .9193* .8819* .9267* .9546* .9712*
3 9788 .9529 9821 9931 .9969
3.5%* 9751* .9514* .9790* .9910* .9961*
4 .9968 .9863 .9976 .9994 .9998
4.5%* .9942* .9835* .9955% .9998* .9997*
5 .9998 .9982 .9998 .9999 .9999
5.5%* .9990* .9954* .9993* .9999* .9999*
6 1.0000 1.0000 1.0000 1.0000 1.0000
6.5 .9999* .9990* .9999* .9999* .9999*

* Normal approximation for selected k. ** Corrected ¢ for continuity.

TABLE 3. Upper and lower k-records extracted from the data set in Arnold et
al. (1998, p.180)

Number Upper Lower Upper Lower Upper Lower
1 12.69 12.69 12.69 12.84 12.69 18.72

2 12.84 751 1284 12,69 12.84 12.84
3 18.72 4.83 1872 12,55 14.28 12.69
4 2196 413 19.19 11.80 14.77 12.55
) 23.92 4.08 2146 751 1872 11.80
6
7
8

27.16 — 21.96 489 19.19 8.69

31.28 — 23.21 483 2146 7.51

34.04 - 23.29 413 2196 6.25
9 - - 23.92 — 23.21  4.89
10 - - 27.16 - 23.29 4.83
11 — — 30.57 — 23.92 4.56
12 — — 31.28 — 24.95 —
13 — — — — 26.81 —
14 — — — — 27.16 —

15 - — — — 30.57 —
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TABLE 4. Summary statistics
k, m Tk m ok.m Z m asymptotic p-value
T, 99 3 2.894  .8638 1938
2,98 4 3.753  .9326 1755
3,07 4 4.327  .8089 .2093
TABLE 5. Empirical power comparison for n = 50.
Tost Statistics
Trend Distribution * 0 D a T, T T T T
405%** 033%x oazer (35 ORI oiir  chser  obges
Nonc Auy Dist. 0 049 032 043 -043 -042 -044 .032 -039
Tincar Normal 010 248 081 086 148 17T 188 153 157
019 578 155 143 318 411 .439 .383 .373
.025 781 .226 195 1469 .593 .628 .568 542
Togistic 018 267 071 079 148 192 208 172 168
.031 .548 117 114 .284 .396 .434 .378 .350
.041 754 164 149 417 .576 .626 .565 .516
Exponcntial 006 247 189 110 184 178 169 136 154
012 .570 .368 144 .343 .416 417 .360 .387
016 .759 .484 .169 .446 577 .605 .555 .569
Concave  Normal 009 247 084 100 169 189 190 146 141
017 569 1169 182 .380 .442 .438 .359 1319
022 760 .240 245 .538 .621 .616 .525 457
Togistic 016 261 076 001 169 203 206 161 148
028 .547 129 145 .344 .431 .439 .360 .305
037 752 .183 .196 .502 .622 .631 .537 .450
Exponcntial 005 225 1oz 129 196 71 157 122 126
011 575 412 192 .430 .460 .421 .346 .333
015 .768 .542 .230 .556 .642 .621 .533 .502
Convex  Normal 020 254 083 075 125 161 183 159 186
035 532 .146 110 .231 .322 .377 .352 1402
047 746 212 145 341 .481 558 .542 .603
Togistic 032 253 068 068 117 161 188 168 187
062 .560 120 .094 .225 .345 .418 .397 .432
.081 757 .166 117 .320 .498 .593 .580 .618
Exponcntial 013 269 182 087 153 173 180 156 203
024 578 .329 .107 .249 .353 .408 .392 .503
.031 747 .426 119 .305 .463 .565 57T .689
All selected distributions are in standard forms. ** True a's.
TABLE 6. Empirical power comparison for n = 10.
Test Statistics
Trend Distribution™® ) D d T, T, T Ts.5 T,
033rr  043%* oges 05TF* __ogpex  018%r  ogger  osger
None Auy Dist. 0 ~036 042 035 -020 022 015 -029 044
Lincar Normal 148 257 216 150 132 147 113 173 222
254 .556 .424 292 .304 .341 278 .370 .430
.327 .750 .575 .406 .448 .497 419 519 572
Togistic 248 254 203 142 129 148 112 72 222
.442 .565 417 .201 .316 .357 .289 .378 .436
578 .758 .573 412 471 .521 .436 .527 .580
Exponential 100 7265 246 142 149 188 153 193 197
.185 .546 .453 .249 .323 .428 377 .410 .394
.265 755 624 .362 .500 637 574 .587 .567
Concave  Normal 139 246 213 163 137 145 106 158 196
.248 .558 .444 .342 .338 .357 275 .349 .386
.319 747 .595 .473 .496 519 .413 .485 .510
Togistic 238 249 205 158 138 150 11 163 200
.425 .555 .426 .332 .342 .363 278 .348 .386
561 752 591 474 514 537 425 .493 518
Exponential 091 250 249 160 157 182 135 166 169
181 549 .479 207 .362 .440 .367 .387 .353
.258 748 .647 419 537 .642 562 .560 510
Convex  Normal 264 247 209 124 110 131 106 175 243
.469 .553 .424 .241 .253 .303 .265 .386 .497
.615 .752 .581 .339 .378 .444 .401 .545 .665
Logistic .452 .251 .202 .119 L111 .137 112 .180 .249
.805 551 410 234 .258 311 .269 .387 .493
1.095 763 585 .347 .403 471 .420 557 670
Exponontial 185 256 225 110 117 167 152 200 230
.357 .561 .443 .200 277 .408 .383 .446 .479
.498 757 .607 .290 .428 591 547 .603 .648

*All selected distributions are in standard forms.

** True o's.
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